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Land-use changes (LUC), primarily due to deforestation and soil disturbance, are one of
the major causes of soil quality degradation and greenhouse gas emissions. Effects of LUC
on soil physicochemical properties and changes in soil quality and land use management
strategies that can effectively restore soil carbon and microbial biomass levels have been
reported from all over the world, but the impact analysis of such practices in the Indian
context is limited. In this study, over 1,786 paired datasets (for meta-analysis) on land uses
(LUs) were collected from Indian literature (1990–2019) to determine the magnitude of the
influence of LUC on soil carbon, microbial biomass, and other physical and chemical
properties at three soil depths. Meta-analysis results showed that grasslands (36.1%) lost
the most soil organic carbon (SOC) compared to native forest lands, followed by plantation
lands (35.5%), cultivated lands (31.1%), barren lands (27.3%), and horticulture lands
(11.5%). Our findings also revealed that, when compared to forest land, the microbial
quotient was lower in other LUs. Due to the depletion of SOC stock, carbon dioxide
equivalent (CO2 eq) emissions were significantly higher in all LUs than in forest land. Results
also showed that due to the conversion of forest land to cultivated land, total carbon, labile
carbon, non-labile carbon, microbial biomass carbon, and SOC stocks were lost by 21%,
25%, 32%, 26%, and 41.2%, respectively. Changes in soil carbon pools and properties
were more pronounced in surface (0–15 cm) soils than in subsurface soils (15–30 cm and
30–45 cm). Restoration of the SOC stocks from different LUs ranged from a minimum of
2% (grasslands) to a maximum of 48% (plantation lands). Overall, this study showed that
soil carbon pools decreased as LUC transitioned from native forestland to other LUs, and it
is suggested that adopting crop-production systems that can reduce CO2 emissions from
the intensive LUs such as the ones evaluated here could contribute to improvements in soil
quality and mitigation of climate change impacts, particularly under Indian agro-climatic
conditions.
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1 INTRODUCTION

Anthropogenic activities have changed the development of
livelihood by altering the land-use changes (LUC) in the past
century at a very rapid pace (Liu et al., 2005a; 2005b; Hurtt et al.,
2006; Liu and Tian, 2010; Tian et al., 2014). The conversion of
forest land (FL) into different land use (LU) systems such as
barren land (BL), cultivated land (CL), grassland (GL),
horticulture land (HL), and plantation land (PL) has been
reported at the rate of 13 million hectares (mha) per year
through deforestation (FAO, 2006), and sometimes caused a
decline in soil quality, thereby reducing its potential for actual
productivity (Wei et al., 2014; Nath et al., 2018). Reports from
global studies indicated that LUC caused soil degradation
resulting from intensive use and uneven terrain coupled with
changing climatic conditions (Palni et al., 1998; Abera and
Wolde-Meskel, 2013; Kumar et al., 2017; Kumar et al., 2021).
This LUC altered the system’s capacity as a carbon source or sink
(Abera and Wolde-Meskel, 2013; De Blécourt et al., 2013;
Guillaume et al., 2015; Fan et al., 2016; Iqbal and Tiwari,
2016). A loss of soil organic carbon (SOC) and biodiversity
due to the conversion of FL into different LUs has been well
documented (De Blécourt et al., 2013; Ahrends et al., 2015;
Guillaume et al., 2015; Nath et al., 2018). Therefore,
quantifying the impacts of LUC is critical to better understand
the interactions among human activities, climate systems, and
ecosystems and to design government policies (Houghton and
Hackler, 2003; Tian et al., 2003; Arora and Boer, 2010).

Detecting the impact of management and LUC in soil carbon
pools is likely to be more sensitive than total SOC (Campbell
et al., 1997; Padbhushan et al., 2015; Padbhushan et al., 2016a;
Padbhushan et al., 2016b; Rakshit et al., 2018; Meetei et al., 2020;
Padbhushan et al., 2020). Soil microbial activity is the central
process in the terrestrial carbon cycle. The microbial quotient
(MQ) refers to the ratio between microbial biomass carbon
(MBC) to SOC, which is used as a measure of
ecophysiological status of soil microorganisms (Anderson and
Domsch, 1993). The MQ value can also reflect about the quality
and nature of microbial activity in the soil. A large number of
studies on MQ have shown its importance to evaluate or monitor
the influence of short- or long-term changes in soil biological
status due to management and other system-level manipulations
(Brookes, 1995; Bastida et al., 2008; Anderson and Domsch, 2010;
Padbhushan et al., 2021). Soil properties and SOC stocks may be
altered due to soil disturbances (Guo and Gifford, 2002; Paul
et al., 2002). A carbon dioxide equivalent (CO2 eq) emission is a
soil indicator that provides information on the amount of carbon
loss from SOC stocks into the atmosphere. Through meta-
analysis studies, these parameters have been found to be
altered in changing LU systems at a global scale (DeFries
et al., 2002; Guo and Gifford, 2002; Achard et al., 2004;
Houghton, 2008; Don et al., 2011). Therefore, knowledge of
soil carbon pools, MQ and CO2 eq emission helps to
understand their impacts in a changing LU system.

India is the world’s second largest populous country and is
expected to overtake China by 2025 (United Nations Department
of Economic and Social Affairs: Population Division, 2019). In

India, the human population has increased from 200 million to
1,400 million during 1980–2020 and, coupled with economic
growth, has brought significant change in LUs (Tian et al.,
2014; World Population Prospects: The 2019 Revision United
Nations Population Division, 2020). Total SOC stocks in India
are about 20.67 Pg (soil depth 0–30 cm) and 63.19 Pg (soil depth
0–150 cm) covering a total geographical area of 329 m ha.
Figure 1A depicts the SOC stocks in different physiographic
regions of India (Bhattacharyya et al., 2000). The data are
summarized into five categories, namely, Northern Mountains,
The Great Plains, Peninsular India, Peninsular Plateau, and
Coastal Plains and Islands representing the different
physiographic regions of India. In the soil depth 0–30 cm,
maximum and minimum SOC stocks have been recorded in
NorthernMountains and Coastal Plains and Islands, respectively,
whereas in the soil depth 0–150 cm, maximum and minimum
were recorded in Northern Mountains and Peninsular Plateau.
The area covered by the different regions is shown in Figure 1A.

Currently, India ranks third with a share of 7% of total CO2

emissions in the world (IEA, 2019), but ranks 20th in the world
for per-capita annual CO2 emissions, which is approximately 1.94
tons, less than half the global average of 4.8 tons CO2 (Ritchie and
Roser, 2019). The per-capita emissions of CO2 are lower for India
when compared to the other major CO2 emission contributors of
the world (except China). During the period 1880–2020, India
has experienced a decline in FL of 18 mha (from 89 mha in 1880
to 71 mha in 2019) and expansion of CL by 49 m ha (from 92 mha
in 1880 to 141 mha in 2019) resulted from conversion from FL,
GL, and BL into CL (Tian et al., 2014; Bodh, 2019). Due to these
conversions, a significant reduction in SOC stocks and its impacts
on soil quality and ecosystem health have been observed.
Supplementary Figure S1 presents the trend for the share of
FL and CL systems in the total land area during the period 1990 to
2017. Although the magnitude of change is small, the trends are
encouraging, i.e., the FL area has increased from 21.5% to 23.7%
while the CL area has decreased from 61.1% to 60.4%.
Governmental initiatives in recent years have helped to reduce
the rate of deforestation rate in India by reducing deforestation,
rectifying deforestation by reforestation, and increasing
afforestation by establishing forests in new areas (Don et al.,
2011). This is evident from the governments’ effort to increase the
area under forests for achieving the long-term target to fetch 33%
of total area under FL cover. However, in the past few years,
during 2000–2017, net emissions/removals of CO2 by the FL have
increased (from −18 × 104 gigatons to −11 × 104 gigatons),
whereas net emissions/removal of CO2 of CL and GL
remained constant and consistently positive (Figure 1B).

Ameta-analysis approach has generally been used to assess the
magnitude and direction of treatment effects as well as pattern
and sources of heterogeneity by combining the findings from
several studies under various environmentally and ecologically
variable regions (Hedges et al., 1999; Koricheva et al., 2013). For
example, meta-analysis has been used to derive general
conclusions in ecology, biogeographic patterns of biota,
carbon, and nitrogen dynamics and climate change effects at
global and regional scales (Treseder, 2008; Meiser et al., 2014; Liu
et al., 2020;Porre et al., 2020). Similar research was also conducted
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to quantify the effects of various LUC on the global SOC, soil
carbon pools and soil properties through meta-analysis (Guo and
Gifford, 2002; Deng et al., 2016) but no such investigations to
understand the impact of conversion of FL to other LUs were
done in an Indian context.

The main aim of this study is to obtain a quantitative
assessment of responses in soil properties under Indian

climatic and edaphic conditions including soil carbon stocks,
microbial biomass, MQ, and CO2 equivalent emissions, due to
conversion of FL to other LUs. This was done through a meta-
analysis approach using datasets obtained from published studies
carried out in different regions of India. The general hypothesis
was that conversion of FL into LUs with varying degrees of
disturbance and plant diversity would cause a general decline in

FIGURE 1 | (A) Soil carbon stocks in different physiographic regions of India (source: Bhattacharyya et al., 2000). (B) Trend of net emissions/removals of CO2 from
forest land (FL), cultivated land (CL), and grassland (GL) (1990–2017) of India (Y1-axis represent CL and GL; Y2-axis represent FL), FAO (http://faostat.fao.org/).

FIGURE 2 | Different land use systems and taxonomic soil group in India showing location map of major study sites.
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SOC stocks along with a decline in soil microbial capacity.
Specific goals were to (1) determine the effect of LUC on
general soil properties; (2) estimate the effect of LUC on SOC,
soil carbon pools, and SOC stocks; (3) determine the relationship
between SOC and bulk density (BD) under various LUs; and (4)
analyze the variations in MQ and CO2 eq emission in various LUs
in the Indian agroecological context.

2 MATERIALS AND METHODS

2.1 Data Sources and Collections
Data on soil physical, chemical, and biological properties, including
soil carbon pools, were obtained from studies that evaluated LUC
effects in established experiments covering India’s five
physiographic regions: Northern Mountains, Great Plains,
Peninsular India, Peninsular Plateau, and Coastal Plains and
Islands. Figure 2 shows the major soil taxonomic groups of
India and the major study sites (31 locations) from which
experimental results were obtained from published literature for
the meta-analysis. Data were obtained from published research/
review articles and theses using unique keywords related to the
study’s objectives. The data were compiled following different
categories of LUC, e.g., from FL to BL; from FL to CL; from FL
to GL; from FL to HL; and from FL to PL. Data didn’t require any
specific criteria other than have two minimum LUs including FL.
To understand the effect of LUC on soil properties and soil carbon
pools, a thorough analysis was conducted on different LU systems
in the Indian context (details in Section 2.2) and only studies with
a minimum of two LUs and with appropriate sets of soil physical,
chemical, and biological parameters were considered as part of the
selected studies irrespective of years of study as the magnitude of
LUC change would depend on the duration that the LU was
implemented (details in Section 2.2). In all studies with
comparable LUs in different agroecological regions, FL use
systems are native in nature and other LUs are converted from
native forest due to human disturbances. Major soil types covered
in this study included alluvial soil, black soil, red soil, laterite soil,

and arid soil. Over the other LUs (BL, CL, GL, HL, and PL), FL was
used as a control treatment. This study also covers the Himalayan
zone, the Indo-Gangetic plains, the north-eastern region, and the
peninsular region, which represent different subtropical climate
regions of India. Specific soil types, taxonomy, management
methods, crops and cropping systems, as well as specific trees
and grasses were not included in this report.

2.2 LU Selection and Soil Parameters
Considered for the Study
Figure 2 shows the major LU systems present in the different
agroecological regions of India. The description of different LUs
selected for the assessment of changes in soil carbon in the Indian
soils is given in Table 1. Details of the soil parameter data used in
this study and the soil characteristics of various LUs are given in
Table 2 and Table 3.

2.3 Data Compilation
Various published literatures (original articles, review papers, and
theses) were collected from the period of 1990–2019 and reviewed
critically in context to the impact of LUC on soil carbon pools and
soil properties in different regions of India with an aim of finding
the changes in these soil parameters due to conversion of FL to
other LUs. Following a general analysis, data from a replicated
studies on different LUs were used, with FL data serving as a
control to better understand the impact of LUC on BL, CL, GL, HL,
and PL in India. To understand the impact of LUC in various soil
depths (0–0.15 m, 0.15–0.30m, and 0.30–0.45m), 1,786 paired
datasets from 31 major study sites (reflected in Figure 2) with
multiple LU comparisons including the FL system were analyzed
for meta-analysis using MetaWin 2.1 software.

2.4 Meta-Analysis: Method of Analysis
Using Diverse Datasets
Two stage-based random effect meta-analyses were used to
analyze the database and understand the comparative changes

TABLE 1 | Descriptions of Land uses (LUs) in the study.

S. No Land uses (LUs) Descriptions

1 Forest land (FL) Open to dense forest
Single species tree cover to several species tree cover
Himalayan to plain forest
Low aged to high aged trees

2 Barren land (BL) Without any vegetation naturally developed
Without any vegetation developed by human activity

3 Cultivated land (CL) All types of crop
All major cropping systems
Various soil types
Different management practices

4 Grassland (GL) Natural one
No specific grasses grown in the areas

5 Horticulture land (HL) Orchards
Agroforestry

6 Plantation land (PL) Includes arecanut, coffee, mango, oil palm, orange, pine, and teak trees
Intercultural operations like weeding was performed
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(Rosenberg et al., 2000; Chakraborty et al., 2017; Sharma et al.,
2019). Under this, the effect size (ES) was calculated for individual
parameter as the natural log of the response ratio (InR) using the
equation as proposed by Hedges et al. (1999):

ES � lnR � ln[XT

XC
]

Where XT is the average of response variables (SOC, SOC stocks,
soil carbon pools, and other soil parameters) of the treatments
(LUs), and XC is the average of these variables in FL with
control.

In the second stage, combined effect estimate was determined
as a weighted mean of the effects estimated in the individual
studies. A weighted mean is calculated as

TABLE 2 | Soil parameters considered in the study.

S. No Soil parameters Measurement units

1 Soil properties Soil pH No unit
Bulk density (BD) Mg m−3

Cation exchange capacity (CEC) cmol (p+) kg−1

Soil organic carbon (SOC) %
Total carbon (TC) Mg ha−1

Soil carbon stocks (SOC stocks) Mg ha−1

2 Soil carbon pools Labile carbon (LC) %
Non-labile carbon (NLC) %
Microbial biomass carbon (MBC) mg kg−1

3 Microbial quotient (MQ) MBC/SOC No unit
4 Carbon dioxide equivalent emissions (CO2 eq. emissions) Relative SOC stocks loss x 44/12 Mg ha−1

TABLE 3 | Soil characteristics of various land uses from the collected studies.

Soil
parameters

Soil pH BD SOC CEC TC LC NLC MBC SOC stocks

Land
uses

Barren land (BL)
Minimum 4.52 1.38 0.40 17.50 12.00 0.18 0.07 51.10 1.10
Maximum 7.69 1.83 2.51 18.60 43.15 1.50 0.51 154.7 106.1
Average 5.93 1.54 1.08 17.93 19.67 0.50 0.29 97.98 24.13
Standard error 0.08 0.04 0.05 0.04 0.61 0.03 0.01 2.91 1.60

Cultivated land (CL)
Minimum 4.29 1.60 0.90 5.21 1.60 0.01 0.04 24.1 2.10
Maximum 8.10 1.75 2.90 19.46 108.7 0.93 0.49 486.0 77.00
Average 6.26 1.68 0.77 12.45 12.28 0.17 0.24 155.2 19.68
Standard error 0.07 0.03 0.05 0.38 1.15 0.02 0.01 21.69 1.12

Grassland (GL)
Minimum 4.36 1.43 0.70 10.51 5.60 0.02 0.05 20.00 1.10
Maximum 6.20 1.69 2.48 17.27 46.11 0.44 0.41 198.2 141.0
Average 5.54 1.49 0.91 14.22 17.59 0.11 0.26 599.7 31.40
Standards error 0.04 0.04 0.05 0.13 0.70 0.01 0.01 16.02 3.04

Horticulture land (HL)
Minimum 4.59 1.65 0.29 11.98 7.10 0.03 0.20 67.50 9.50
Maximum 8.20 1.71 2.44 20.32 105.6 0.74 0.43 666.0 59.07
Average 6.08 1.68 1.12 15.69 22.24 0.21 0.37 178.3 32.31
Standard error 0.08 0.03 0.09 0.14 1.89 0.01 0.01 20.92 1.11

Plantation land (PL)
Minimum 4.10 1.26 0.30 3.65 6.72 0.01 0.16 ## 7.00
Maximum 8.00 1.59 3.40 6.69 269.3 0.33 143.8 ## 67.72
Average 6.08 1.49 1.03 5.03 61.53 0.18 16.22 ## 19.67
Standard error 0.09 0.03 0.04 0.08 8.20 0.01 3.43 ## 1.23

Forest land (FL)
Minimum 4.47 1.37 0.50 14.11 1.90 0.01 0.11 52.50 9.20
Maximum 7.80 1.65 4.82 19.90 223.0 0.96 0.71 848.0 192.2
Average 6.03 1.46 1.38 16.06 27.51 0.24 0.45 204.9 37.55
Standard error 0.05 0.03 0.09 0.14 3.61 0.02 0.02 21.72 2.73

##No sufficient data.
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Weightedmean � NTXNC

NT +NC

Where NT and NC represent the number of replications for each
of the treatments (LUs), in an individual study. If more than one
observation was included in a treatment, the weighted are divided
by the number of observations from that study. Since the studies
were from different soil and environmental conditions and with
varying multiple replications, the standard deviation calculated
was based on the number of observations with a simple statistical
procedure in MS excel. ES from individual studies were then
combined using a mixed-effect model to calculate the cumulative
effect size and the 95% confidence intervals (CIs) through boot-
strapping with 4,999 iterations (Adams et al., 1997). The mixed-
effect model is a random-effect meta-analytic model for
categorical data (Rosenberg et al., 2000), assuming random
variation among studies within a group and fixed variation
between groups. The cumulative effect was considered
significant if the CIs did not pass over zero. Results were
interpreted by back-transformation and presented as change in
percentage caused by treatments in relation to control. The
comparisons tested for their significance were between FL and
different LUs and the meta-analyzed values presented in graphs
with statistical significance (for p values < 0.05) marked with an
asterisk.

2.5 Linear Model for Correlation Among
SOC and BD in Different LUs
Data for SOC and BD within different LUs were log transformed
for normalization and analyzed for potential relationships using a
general linear regression model (Nelder and Wedderburn, 1972),
and the regression equations plus R2 values are shown in the
Figure 8.

3 RESULTS

3.1 Impacts on Soil pH
LUC showed positive effects on soil pH for LUs like BL, CL, GL,
HL, and PL when compared to FL (Figure 3A). For example, soil
pH increased significantly for BL (5.0%), CL (6.0%), and HL
(5.0%) but found non-significant changes for GL (1.1%) and PL
(4.1%) over the FL, which is considered as control for this study.
Soil pH showed positive effects for other LUs over the FL for
depth-wise data (Figure 3A). In the 0–15 cm soil depth, pH
increased significantly in CL (6.4%) and HL (5.6%) over the FL,
but no significant changes were found for BL, GL, and PL. In the
15–30 cm soil depth, pH increased significantly in CL (6.3%) and
HL (4.3%) over the FL but was non-significant for BL, GL, and PL,
whereas in soil depth 30–45 cm, pH increased significantly in BL
(8.1%), CL (3.7%), and HL (5.2%) over the FL and was non-
significant for GL and PL (Figure 3A). The depth-wise results of
pH were in concurrence to the findings of overall pH except for
BL and similarly indicated that conversion of FL towards other
LUs could result into increase in soil pH (Figure 3A).

3.2 Impacts on Bulk Density and Cation
Exchange Capacity
BDwas found to be significantly and positively affected in LUsCL and
HLover the FL. The percent increase of BD inBL, CL,GL,HL, and PL
was 2.7%, 5.9%, 1.0%, 4.9%, and 5.8%, respectively, when compared
with FL (Figure 3B); however, the increase was lower in the GL
system. BD improved with soil depths, particularly at 0–15 cm; a
significant increase of 4.2% (BL), 4.1% (CL), 1.6% (GL), and 4.2%
(HL) was observed over the FL. CL and HL showed a consistent
increase in BD with increased depth, 6.8% and 4.5% (15–30 cm) and
11.8% and 9.1% (30–45 cm), respectively, which was significant over

FIGURE 3 | Comparisons of soil properties. (A) Soil reaction (pH). (B) Bulk density (BD) and (C) cation exchange capacity (CEC) under various land uses (BL, CL,
GL, HL, and PL) with FL based on soil depths (0–15 cm, 15–30 cm, and 30–45 cm). The error bars show 95% confidence intervals (CI), and the difference is significant if
it does not pass zero. *indicates significant difference at p-value is less than 0.05. Here, Forest land (FL) is used as control, BL—Barren land, CL—Cultivated land,
GL—Grassland, HL—Horticulture land, and PL—Plantation land.
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FL (Figure 3B). Others showed a non-significant change. Conversion
of FL to GL reduced CEC significantly in particular in the 15–30 cm
depth. For example, the percent decrease forGL inCECwas 8.8%over
the FL (Figure 3C).

3.3 Impacts on Soil Organic Carbon
Negative effects of LUC on SOC were found for LUs like BL, CL,
GL, HL, and PL when compared to FL (Figure 4A). The SOC
decreased significantly for BL (−27.3%), CL (−31.1%), GL
(−36.1%), and PL (−35.5%) over the FL considered as control
for this study, but changes were non-significant for HL (−11.5%).
SOC decreased with soil depth in LUs when compared to FL
(Figure 4A). In the soil depth 0–15 cm, SOC decreased
significantly in BL (−25.5%) and GL (−27.5%) over the FL but
changed non-significantly for CL (−21.0%), HL (−17.5%), and PL
(−31.1%) in comparison to FL. In soil depth 15–30 cm, SOC
decreased significantly in BL (−29.6%), CL (−46.5%), GL
(−41.3%), and PL (−40.5%) over the FL. The reduction was
higher in soil depth 30–45 cm where SOC decreased
significantly in BL (−27.7%), CL (−54.9%), GL (−63.7%), and
PL (−36.4%) over the FL. In both soil depths, the observed
changes for HL were −12.4% (15–30 cm) and 1.8%
(30–45 cm), respectively, and were non-significant. The depth-
wise results of SOC were in concurrence to the findings of overall
SOC and similarly indicated that conversion of FL towards other
LUs would cause a decline in SOC content.

3.4 Impacts on Total Carbon
Negative effects of LUC on total carbon (TC) were found for LUs
like BL, CL, GL, HL, and PL when compared to FL (Figure 4B).

TC decreased significantly for BL (−54.3%), CL (−20.8%), GL
(−35.0%), HL (−39.6%), and PL (−8.7%) over the FL. Total C
decreased with soil depth for other LUs over the FL (Figure 4B).
In soil depth 0–15 cm, TC decreased significantly in BL (−57.8%),
CL (−30.5%), GL (−41.4%), HL (−31.2%), and PL (−20.2%) over
the FL. In soil depth 15–30 cm, TC decreased significantly in BL
(−39.5%) and GL (−31.6%) over the FL and increased
significantly in PL (16.6%). However, TC for CL was not
significantly different as compared to FL. In soil
depth 30–45 cm, TC decreased significantly in HL (−40.0%)
over the FL and increased significantly in PL (14.7%) over the
FL (Figure 4B).

3.5 Impacts on Labile Carbon and
Non-Labile Carbon
Labile carbon (LC) decreased significantly for BL (−34.7%), CL
(−24.9%), GL (−35.5%), HL (−33.5%), and PL (−48.9%) over the
FL (Figure 5A). These results indicated that conversion of FL
towards other LUs could readily result into decline in LC content
under most conditions. Labile C decreased significantly in the soil
depth 0–15 cm in BL (−29.6%), CL (−9.7%), GL (−28.4%), HL
(−31.0%), and PL (−46.8%) over the FL. Also, in soil depth
15–30 cm, LC decreased significantly in BL (−37.6%), CL
(−45.6%), GL (−55.6%), HL (−31.4%), and PL (−50.0%) over
the FL. In soil depth 30–45 cm, LC decreased significantly in BL
(−45.9%), CL (−53.8%), GL (−64.6%), HL (−42.8%), and PL
(−56.0%) over the FL (Figure 5A).

Non-labile carbon (NLC) decreased significantly for BL
(−32.3%), CL (−32.4%), GL (−35.3%), HL (−34.5%), and PL

FIGURE 4 | Comparisons of soil properties. (A) Soil organic carbon (SOC), and (B) total carbon (TC) under various land uses (BL, CL, GL, HL, and PL) with FL
based on soil depths (0–15 cm, 15–30 cm, and 30–45 cm). The error bars show 95% confidence intervals (CI) and the difference is significant if it does not pass zero.
*indicates significant difference at p-value is less than 0.05. Here, Forest land (FL) is used as control, BL—Barren land, CL—Cultivated land, GL—Grassland,
HL—Horticulture land, and PL—Plantation land.
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(−51.5%) over the FL (Figure 5B). These results indicated that
conversion of FL into other LUs could result into decline in NLC
content under most conditions in all soil depths. In soil depth
0–15 cm, NLC decreased significantly in BL (−37.6%), CL
(−31.4%), GL (−40.0%), HL (−39.44%), and PL (−54.9%) over
the FL. In soil depth 15–30 cm, NLC decreased significantly in CL
(−23.8%), GL (−15.6%), and PL (−26.8%) over the FL and
increased significantly in HL (4.9%) as compared to FL. The
BL was non-significantly changed in this depth. In soil depth
30–45 cm, NLC decreased significantly in BL (−69.5%), CL
(−76.4%), GL (−51.0%), HL (−63.0%), and PL (−70.4%) over
the FL (Figure 5B). In general, the percent decrease in 30–45 cm
soil depth was greater than that in 15–30 cm followed by 0–15 cm
(Figure 5B).

3.6 Impacts on Microbial Biomass
Carbon (MBC)
Negative effects of LUC on soil MBC were found for LUs like BL,
CL, GL, and HL (Figure 5C). For example, MBC levels decreased

significantly for BL (−61.3%) and CL (−25.7%) over the FL but
changes in GL (−29.5%) and HL (−10.3%) were non-significant.
These results indicate that the conversion of FL to other LUs (BL/
CL/GL/HL) could result in the decline of MBC content in soils
(Supplementary Figure S2).

3.7 Changes in Soil Carbon Stocks (SOC
Stocks) by Land-Use Change
LUC impacts on the SOC stocks were seen in all the regions of the
country. For example, conversion of FL into LUs such as BL, CL,
HL, and PL significantly reduced SOC stocks, whereas no
significant change was observed under GL (Figure 6). The
percent reduction of SOC stocks in BL, CL, GL, HL, and PL
was 34.0%, 41.2%, 1.5%, 33.5%, and 47.9%, respectively, as
compared with FL (Figure 6). There was a general trend of
reduction in SOC stocks in all LUs. In soil depth 0–15 cm, SOC
stocks decreased significantly in BL (−31.9%), CL (−38.3%), HL
(−38.0%), and PL (−30.2%) over the FL but no significant change
was observed for GL (5.7%) (Figure 6). Similarly, in soil depth

FIGURE 5 |Comparisons of soil carbon pools (SCP). (A) Labile carbon (LC), (B)Non-Labile carbon (NLC), and (C)Microbial Biomass Carbon (MBC) under various
land uses (BL, CL, GL, HL, and PL) with FL based on soil depths (0–15 cm, 15–30 cm, and 30–45 cm). The error bars show 95% confidence intervals (CI) and the
difference is significant if it does not pass zero. *indicates significant difference at p-value is less than 0.05. Here, Forest land (FL) is used as control, BL—Barren land,
CL—Cultivated land, GL—Grassland, HL—Horticulture land, and PL—Plantation land.
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15–30 cm, SOC stocks decreased significantly in BL (−41.4%), CL
(−44.6%), HL (−31.2%), and PL (−67.1%) over the FL, but the
small change observed for GL (−17.3%) was not significant.
Unlike the two top soil depths, in the soil depth 30–45 cm,
SOC in GL decreased significantly (−14.2%), whereas the
change in HL (−10.3%) was non-significant. There was a
significant change in SOC in BL (−35.9%), CL (−47.6%), and
PL (−67.2%) over the FL (Figure 6).

3.8 Effect of LUConMicrobial Quotient (MQ)
and CO2 Equivalent Emission
Results for MQ and CO2 equivalent emission showed significant
differences in all LUs compared to FL systems (Figure 7;
Supplementary Figure S2). MQ values in BL were lowest
(0.91 ± 0.28) compared with those observed in other LUs
(ranging from 3.31 ± 0.45 to 4.19 ± 0.49), whereas CO2

equivalent emissions were lower in GL and HL (23 ± 11 and

FIGURE 6 |Comparisons of soil carbon stocks (SOC stocks) under various land uses (BL, CL, GL, HL, and PL) with FL based on soil depths (0–15 cm, 15–30 cm,
and 30–45 cm). The error bars show 95% confidence intervals (CI) and the difference is significant if it does not pass zero. *indicates significant difference at p-value is
less than 0.05. Here, Forest land (FL) is used as control, BL—Barren land, CL—Cultivated land, GL—Grassland, HL—Horticulture land, and PL—Plantation land.

FIGURE 7 | Comparison of microbial quotient (MQ) and CO2 eq. emissions in various land uses from the collected studies (mean ± standard error). Here, Forest
land (FL) is used as control, BL—Barren land, CL—Cultivated land, GL—Grassland, HL—Horticulture land, and PL—Plantation land. Note: PL has no sufficient data for
MQ analysis.
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19 ± 8 Mg ha−1, respectively) and highest in CL and PL systems
(66 ± 12 Mg ha−1) compared to FL (Figure 7).

3.9 Correlation of SOCWith BD in LandUses
Bulk density (BD) was found to be significant and negatively
correlated with SOC in all the LUs at p < 0.05 (Figure 8). The
maximum correlation was observed in FL (R2 = 0.48**).

4 DISCUSSION

4.1 Changes in Soil Properties Following
Land-Use Change
Deforestation and LUC from FL to different LU production systems
with varying anthropogenic activities has been suggested to increase
CO2 and other GHG emissions contributing to climate change (Lal,
2004; Wang et al., 2021). Through meta-analysis, this study
attempted to determine the impact of LUC on soil properties,
particularly SOC and microbial biomass, in the Indian context
using datasets representing different agroecological regions.
Appropriate number of datasets was used for conducting meta-
analysis of soil parameters: soil pH (n= 155), SOC (n= 333), BD (n=
303), and TC (n = 163). A positive change in soil pH due to changes
of LU as observed in our study resonates the earlier work done
(Rabbi et al., 2016; Malik et al., 2018). The higher positive impact on
soil pH in CL followed by HL, BL, PL, and GL could be due to the
management practices including application of fertilizers and other
soil amendments, irrigation practices, etc. It has been reported that
LU intensification in lower pH soils positively affects the pH and
leads to SOC loss through increased rate of decomposition from
improved microbial growth and activity (Malik et al., 2018). Sharma
et al. (2014) recorded higher soil pH in CL than the FL in Indian
Himalaya’s foot hill. LUC have an impact on soil properties such as
BD. A positive change in BD due to changes of LU was recorded in

our study similar to previous reports (Vidya et al., 2002;Meena et al.,
2018). Lower BD in FL than other LUs could be partly attributed to
the higher organic matter (OM) content in the soil, better
aggregation resulting in an increase in the volume of micropores,
and overall better soil structure (Materechera and Mkhabela, 1995).
The highest BD was found in soil depths of 30–45 cm, while the
lowest was found in surface soil (0–15 cm), indicating that BD
increased with soil depth due to the effects of the overlying soil’s
weight (Vidya et al., 2002; Meena et al., 2018).

A better understanding of the dynamics and responses in SOC
content is vital for detecting and forecasting changes in response
to global climate change (Negi and Gupta, 2010). The evidence
from the meta-analysis of experimental findings from different
agroecological regions indicates a general trend of decline in SOC
from the conversion of FL into different LUs. Similar findings for
the reduction in SOCwhen native forest systemswere converted into
managed agroecosystems have been reported from other regions of
the world (Mayer et al., 2020). The heterogeneity associated with
various studies considered in this meta-analysis, in terms of
environmental, edaphic, and specific management practices,
contributed to the differences in the magnitude of effect seen for
different LUs. Similar results were reported in the central Himalayan
region of Uttarakhand, India (Kalambukattu et al., 2013).

Large annual additions of OM in the form of leaf litter, which are
potentially highest in the FL, coupled with lack of tillage/disturbance
activities and a slow rate of decomposition would have contributed
to higher soil carbon values (Haynes, 2005; Baker et al., 2007;
Kalambukattu et al., 2013). Whereas the lower SOC in other LUs
compared to FL could be attributed to the tillage and other
disturbance activities, removal of crop residues through burning,
grazing, irrigation, etc. affects higher OM decomposition and
nutrient mineralization (Batjes, 1999; Ogle et al., 2014).
Decomposition of OM releases CO2 into the environment,
resulting in a decrease in SOC (Ramzan et al., 2019). In the case

FIGURE 8 | Linear regression with the variables of soil organic carbon (SOC) and bulk density (BD) in contrast with six different land uses, with significant difference
in R2 value at p < 0.05. Here, FL, Forest land; BL, Barren land; CL, Cultivated land; GL, Grassland; HL, Horticulture land; PL, Plantation land.
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of CL systems, crop residue removal, intensive cultivation practices,
and increased microbial carbon turnover can increase carbon losses
from the soil system (Lal and Kimble, 1997; Yang et al., 2004; Baker
et al., 2007; Smith et al., 2008; Sharma et al., 2014). The loss of SOC
through increased CO2 levels into the environment is suggested to
contribute significantly to the global warming and climate change
(Lal 2004; Sanderman et al., 2017). Therefore, there is a widespread
belief that it is important to store SOC in the terrestrial
environment through increased SOC sequestration and reduced
losses in order to manage climate change and associated effects on
overall ecosystem health. Any attempts to reduce SOC losses
through changes in the management in different LUs would
help sequester more carbon in terrestrial ecosystems. The study
shows that there is scope for improvement of SOC in different LUs
(BL/CL/GL/PL/HL) to become carbon equivalent to that in FL
systems, i.e., a potential to increase SOC by 27.3% in BL, 31.1% in
CL, 36.1% in GL, 35.5% in PL, and 11.5% in HL. This change could
be possible through proper management strategies that promote C
sequestration in soil. As with our findings, several studies have
found a strong and negative association between SOC and BD over
the LUC (Hati et al., 2007; Wang et al., 2011; Padbhushan et al.,
2016a; Padbhushan et al., 2016b; Meena et al., 2018).

TC content is one of the key indicators of soil quality that has
been linked to the long-term addition of organic residues to the
soil (Lemke et al., 2010; Yang et al., 2012; Padbhushan et al.,
2016b), and it plays an important role in improving other
physico-chemical properties of soils. Total C includes all
carbon pools, i.e., inorganic carbon, charcoal carbon, and
organic carbon (which includes labile carbon pools). While the
changes in TC reflect the overall changes in SOC stocks, it may
not give true reflection of changes in SOC components that may
differentially respond or change due to management in different
LUs. Measuring changes in TC content due to LUC has been
shown to take longer periods, i.e., decades, compared to the
changes that can be seen in the more labile components of SOC
(Lal, 2004; Sanderman et al., 2017). Over the FL, the TC trend
changed from BL <HL < GL < CL < PL (higher negative value to
lower negative value). In terms of soil depths, the 0–15 cm soil
depth showed the greatest difference in negative value, indicating
that changes in TC were greater in the surface soil than the other
soil depths due to more litter addition on the undisturbed soil.

It is now well accepted that changes in TC may not be a
sensitive indicator for short-term responses on SOC stocks, and
carbon sequestration and measurement of SOM composition or
soil carbon pools have been suggested as better indicators of
changes in soil quality due to LUC (Gregorich et al., 1994; Leifeld
and Kögel-Knabner, 2005).

4.2 Changes in Soil Carbon Pools and
Microbial Quotient (MQ) Following
Land-Use Change
Soil carbon pools such as LC, NLC, and MBC were shown to give
more useful information about carbon cycling and loss through CO2

emissions and more sensitive soil-quality parameters for carbon
dynamics under different management practices (Yang et al., 2012).
PL showed greater loss both for LC andNLC than other LUs used in

our study over the FL. This could be due to post burn cultivation in
the PL system. Similar results were corroborated by Sahoo et al.
(2019) in Mizoram, Northeast India who reported lower LC and
NLC in PL than other LUs compared to FL. The negative effects of
LUC from FL extended to all the SOC pools including LC pool.
Thus, FL systems showed the highest values for SOC pools
compared to all the LUs considered in this study. High soil
carbon pools (for all the three soil quality parameters) in FL
could be attributed to undisturbed litter additions for long
periods. In contrast, disturbances caused by cultivation and low
additions of OM are reasons for low LC in CL. Consequences are
nutrient loss and impacting macroaggregate formation, which result
in lowering in soil fertility and quality, including higher BD and soil
compaction. In general, LC was more in surface soil than the
subsurface soil potentially due to higher amounts of added root
biomass and exudation coupled with surface crop residues (Padre
et al., 2007; Brar et al., 2013; Padbhushan et al., 2015).

MBC represents the living component of SOC and is considered
to reflect LC levels in soil systems (Gonzalez-Quiñones et al., 2011;
Mendoza et al., 2020). Soils from FL systems showed the highest
amount of MBC levels mostly from the larger amounts of
aboveground residues and root biomass (Holden and Treseder,
2013; Kumar et al., 2021). MBC can be a sensitive indicator of SOC
changes as it has a much faster rate of turnover; hence, trends in
MBC have been suggested to predict longer-term trends in SOC
(Gupta et al., 1994; Lal, 2004; Haynes 2005; Padbhushan et al.,
2020). The lack of carbon inputs from plants would be the primary
reason for the lowest MBC in the BL systems. It is well known that
the practice of fallowing in cropping lands can cause a significant
reduction in MBC and microbial activities (Sarkar et al., 2020).
Similarly, the lower value of MBC in CL is attributed to the
intensive tillage practice promoting microbial turnover of
biologically available soil OM and crop residues and the loss of
carbon as CO2 emissions (Gougoulias et al., 2014; Tiefenbacher
et al., 2021). There are several individual and meta-analysis studies
that reported significant reductions in MBC from conventional
tillage practices, in particular when compared to no-till practices
(Roper et al., 2010; Zuber and Villamil, 2016).

MQ is one of the important derived measures to indicate
changes in MBC, potential for microbial carbon turnover, and the
general soil quality in different LU systems (Anderson and
Domsch, 1993). Unlike the absolute values of microbial
biomass, MQ being a ratio avoids the problems from
comparing values across soils and systems with different total
SOM levels. Results in this study indicate that MQ showed
greater effect in BL followed by PL, CL, and GL. The lowest
values for MQ coupled with lower SOC in BL suggest that
changing FL systems to BL not only reduced the overall SOC
stocks but also affected microbial carbon turnover, with an
overall decline in soil quality. The general trend of higher MQ
values in LUs such as FL and GL suggests the presence of
perennial vegetation and/or lower disturbance supporting
higher biological activity and associated ecosystem functions.
It is suggested that a greater decrease in MQ values, in particular
LUs, indicates that soil is being used in an exploitative manner
and microbial pools are declining faster than changes in the total
SOC (Sparling, 1997).
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4.3 Changes in SOC Stocks Following
Land-Use Change
LUC-associated fluctuations in SOC stocks have been reported in
many agroecological regions from different parts of the world
(Chatterjee et al., 2018; Pellikka et al., 2018). Also, the conversion
of LUs from FL to other LUs leading in lower SOC stocks can
result in a decrease in soil quality (De Blécourt et al., 2013;
Guillaume et al., 2015; Fan et al., 2016; Iqbal and Tiwari, 2016).
Changes in LU from FL to other LUs can serve as a carbon source
while also affecting soil characteristics (Abera andWolde-Meskel,
2013). According to a report, about 350 mha of FL has been
transferred to other LUs (ITTO, 2002), resulting in biodiversity
loss (Ahrends et al., 2015) and 20–40% SOC storage losses (De
Blécourt et al., 2013; Guillaume et al., 2015). According to a meta-
analysis, when native FL was transformed to PL and CL, SOC
stocks decreased by 13%–42% (Guo and Gifford, 2002).
Similarly, in this study, LUs had a negative effect on SOC
stocks. The absence of deep-rooted trees and fewer canopy
covers in this study resulted in lower SOC stocks for PL and
HL as compared to FL. Also, SOC content is an indicator of the
influence of nature of crops and its management practice. These
PL use types undergo regular intercultural operations, which
thereby reduces the input of carbon to the soil (Sahoo et al.,
2019). The equilibrium between the rate of deposition of
photosynthetic materials and the rate of respiration by
decomposer microorganisms influences the ability for soils to
sequester carbon from the atmosphere (Mathieu et al., 2015). In
addition, since root tissue is more resistant to decomposition
and mineralization than top soil litters, root-derived carbon has
a longer residence period (Rasse et al., 2005).

This meta-analysis study shows that the scope of improvement
of SOC stocks in other LUs (BL/CL/GL/PL/HL) to become carbon
equivalent to FL can be possible by increasing SOC stocks by
33.5%–41.2% in BL, CL, and HL systems. The level of increase in
SOC stocks required was lowest in GL (1.47%) systems and highest
in PL. The general trend for the required increase of SOC stocks
with depth was similar to the total SOC. However, this change
beingmore in lower depths as compared to surface soil is due to the
differences in SOC stocks brought out by LUCs in the subsurface
soil over the surface soil. As restoring the lost SOC stocks under
different LUs is a difficult job, it is worthwhile to make it possible
through management practices. A large amount of atmospheric
CO2 can be restored into the soil, which may help mitigate the
problems of climate change. Integration of organic inputs with
chemical fertilizer in cultivated soil can be one of the better LU
management strategies for restoring carbon in the soil and
improving the crop productivity and thus managing soil health
and ensuring food security (Padbhushan et al., 2020).

4.4 Effects of SOC on Soil Health and Food
Security
Greenhouse gases (GHGs) are the main players to maintain
the Earth’s habitable temperature. A small change in their
amount in the atmosphere can affect the climatic conditions
on Earth. Anthropogenic emissions of CO2 are likely to

increase with increase in human population (Lelieveld et al.,
2019). Human led LUC can result in significant exchanges of
CO2 between the soil and air (Lal, 2004). Carbon dioxide
equivalent (CO2 eq) emissions in our study were found to be
affected in all the LUs over the FL, suggesting loss in SOC
stocks. CL and PL had more SOC stocks lost and added more
CO2 in the atmosphere (Sahoo et al., 2019). Therefore,
restoration of carbon in the soil can be one of the options
to counteract the effect of climate change and the problems
created due to climate change. Since OM plays a multifaceted
role in several soil processes (Gregorich et al., 1994), SOC is
one of the essential components for sustaining soil health and
food security by the maintenance of the production system
(Anantha et al., 2018).

The findings in this study show that changes in LU have an
effect on not only SOC but also other soil resources. Some
studies have found links between SOC and total nitrogen and
other parameters, implying that OM turnover has an effect on
these variables (Xu et al., 2019). The importance of soil
management and carbon storage is becoming more widely
recognized. However, due to continued LUC to meet the ever-
growing food production needs, maintaining or improving low
levels of SOC stocks is a major challenge. This issue can be
mitigated by employing proper crop production management
strategies that include systems with lower disturbance/tillage
practices, retention of crop residues, application of organic
manures, and inclusion of perennial crops as part of an
integrated system approach.

5 CONCLUSION

Our study found that LUC had a positive effect on soil pH and
BD, while SOC, TC, and soil carbon pools were negatively
affected, in comparison with FL systems. The conversion of FL
to other LUs resulted in losses of overall SOC stocks and
the trends were similar in all the soil carbon pools such as
LC, NLC, and MBC. LUC, in general, affected soil carbon
pools and soil properties in surface as well as subsurface
layers. SOC stocks declined by a minimum of 2% in GL,
42% in CL, and 48% in PL. There was a negative association
between SOC and BD in several LUs. Similarly, when
compared to FL, MQ and CO2 eq emissions were
negatively impacted in all LUs (BL/CL/GL/HL/PL). Overall,
in view of the evidence for the potential impact of LUC on
SOC stocks, C turnover, and soil quality, there is an urgent
need for sustainable management of current production
systems and natural resources that reduce CO2 emissions
and increase soil carbon in LU systems in India.
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