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Abstract: Grain size plays a significant role in rice, starting from affecting yield to consumer preference, 

which is the driving force for deep investigation and improvement of grain size characters. Quantitative 

inheritance makes these traits complex to breed on account of several alleles contributing to the complete 

trait expression. We employed genome-wide association study in an association panel of 88 rice 

genotypes using 142 new candidate gene based SSR (cgSSR) markers, derived from yield-related 

candidate genes, with the efficient mixed-model association coupled mixed linear model for dissecting 

complete genetic control of grain size traits. A total of 10 significant associations were identified for four 

grain size-related characters (grain weight, grain length, grain width, and length-width ratio). Among the 

identified associations, seven marker trait associations explain more than 10% of the phenotypic variation, 

indicating major putative QTLs for respective traits. The allelic variations at genes OsBC1L4, SHO1 and 

OsD2 showed association between 1000-grain weight and grain width, 1000-grain weight and grain 

length, and grain width and length-width ratio, respectively. The cgSSR markers, associated with 

corresponding traits, can be utilized for direct allelic selection, while other significantly associated 

cgSSRs may be utilized for allelic accumulation in the breeding programs or grain size improvement. The 

new cgSSR markers associated with grain size related characters have a significant impact on practical 

plant breeding to increase the number of causative alleles for these traits through marker aided rice 

breeding programs. 

Key words: best linear unbiased predictor estimate; candidate gene based SSR; efficient mixed-model 

association approach; genome-wide association study; VanRaden kinship 

 

Rice is a major food crop that provides nourishment to 

billions of people across the world, accounting for 

almost half of the total daily calorie intake (Collard et al, 

2008). This is also shown by the worldwide spread of 

rice production and cultivation in various ecologies 

throughout the year, regardless of the season (Patra et al, 

2020; Chakraborti et al, 2021). As the world’s population 

continues to grow at an alarming rate, the daily need 

for rice as a food source grows as well (Mohanty, 

2013). Development of new cultivars and management 

packages which maximize the yield under differential 

rice growing environments with sustainable use of 

inputs is the primary target to meet the demand 

(Norton et al, 2018). Utilizing advanced breeding 

tools to counter the change in climate and increase 

production levels is the need of the hour (Gobu et al, 

2020). Three-dimensional grain shape, as assessed by 

grain length (GL), grain width (GW) and length by 
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width ratio, contributes to grain weight, which is the 

most significant yield determinant (Bai et al, 2010; 

Sanghamitra et al, 2018; Gao et al, 2020). Grain type 

has a direct relationship with grain yield and quality in 

rice. After grain number per panicle and panicle number 

per plant, grain size is a significant component of 

yield in rice. It also has a direct positive correlation 

with grain shape characters such as GL and GW 

(Evans, 1972; Xu, 2002). Determining the genetic 

basis of these traits is a prelude to their improvement. 

Hence, more than a decade of research has been done 

on these traits to understand their pattern of inheritance 

(Fu et al, 1994; Zhou et al, 2000; Hussain et al, 2020).  

Rice grain characteristics have been extensively 

researched and recognized as a complicated inheritance 

system governed by multiple genes with modest and 

cumulative effects. To better understand the genetics 

of these characteristics, researchers applied both 

forward and reverse genetics methods (Hu et al, 2016; 

Hu et al, 2018). Several mapping experiments utilizing 

populations derived from bi-parental crosses have 

been performed to uncover genomic regions responsible 

for grain size. More than 500 QTLs for grain size 

related traits, including GL, GW and 1000-grain weight 

(TGW), have been mapped across all the rice 

chromosomes (Huang et al, 2013); however, only a 

few of these are fine-mapped. Advances in rice 

functional genomics have made it possible to 

characterize some of the genes that either positively or 

negatively regulate grain size characteristics in rice 

(Zhao et al, 2018). Furthermore, only a limited 

number of QTLs are directly used in practical plant 

breeding. The discovered QTLs are frequently not 

transferrable to other genetic backgrounds since the 

estimated effects are restricted to the two parents 

under investigation, as most genetic mapping research 

relies on conventional linkage mapping utilizing 

populations generated from bi-parental crosses. Since 

bi-parental populations account for only a small 

portion of genetic variation of a quantitative trait, the 

identified QTL effect compounds with epistatic effect, 

environmental interaction and pleiotropic effect on the 

trait. The genetic variation for quantitative traits like 

grain size should be captured by following an 

approach that exploits historic recombination events 

through linkage disequilibrium (Mather et al, 2004).  

Advances in molecular marker technology, ease of 

genotyping at cheaper cost, and improved biometrical 

analysis platforms have assisted plant breeders to 

adopt new strategies for identification of QTLs for 

complex traits (Katara et al, 2021). The constraints of 

conventional bi-parental linkage mapping may be 

addressed by utilizing genome-wide association mapping 

to identify QTL by considering historic and ancestral 

recombination frequency (Yu et al, 2017). Genome- 

wide association study (GWAS) is the most successful 

method for identifying causative alleles for complicated 

traits like yield using well-distributed DNA markers 

across the genome (Korte and Farlow, 2013). The 

efficacy of GWAS is determined by ancestral linkage 

disequilibria between markers and phenotype-causing 

alleles. For identification of QTL for grain size, 

GWAS has been shown to be a strong supplementary 

approach to bi-parental linkage mapping in rice (Duan 

et al, 2017; Ma et al, 2019). Considering the 

availability of huge allelic diversity for grain related 

traits, GWAS can be the most promising approach for 

simultaneous mapping of QTLs for several traits with 

high precision (Huang and Han, 2014). GWAS 

utilizes dissimilarities among natural populations and 

identifies the new gene complexes for quantitative 

traits by whole genome scan with DNA markers. 

Allele diversity existing in natural populations along 

with historic recombination frequency considered for 

mapping enhances map resolution (Rafalski, 2010). 

Recently, a few research outcomes have proved the 

importance and efficiency of GWAS in identification 

of genomic regions for grain size characters in rice 

(Ponce et al, 2020). Hence, the approach can be 

considered for effective identification of causative 

alleles for grain size characters with a sufficient 

number of well distributed DNA markers.  

A high number of DNA markers distributed across 

all chromosomes is required for a successful GWAS 

programme (Alqudah et al, 2020). Despite the fact that 

single nucleotide polymorphism (SNP) markers are 

the most prevalent in the rice genome, the high cost of 

genotyping prevents researchers from using them in 

their studies. Rice researchers most often employ 

simple sequence repeats (SSRs) for a variety of 

purposes, ranging from diversity studies (Garris et al, 

2005; Anandan et al, 2021) to gene characterization 

investigations (Lu et al, 2005). The multi-allelic 

distribution, co-dominant inheritance pattern and high 

polymorphic informativeness, even with sparser 

coverage of the genome, made SSRs the most suitable 

for GWAS studies (Cho et al, 2000; Ching et al, 2002; 

Varshney et al, 2005). The candidate gene based SSR 

(cgSSR) markers can solve the uncertainty of linkage 

of random SSRs with a complex trait and increase the 
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resolution and precision of mapping through GWAS 

(Molla et al, 2015). By comprehending the benefits of 

utilizing SSRs, Vieira et al (2016) believe that the 

user-friendly and cost-effective nature of SSR markers 

has encouraged researchers to utilize them in practical 

plant breeding programmes.  

In this study, genome-wide association mapping 

was conducted with a statistically strong and diverse 

association panel evaluated over three cropping seasons 

to identify significant marker-trait associations for 

grain size related characters. To guarantee the accuracy 

of findings, a set of cgSSR markers that had been 

newly developed based on seed dimension-related 

genes and grain yield-related genes were applied in 

the study. The findings of this study may be useful in 

further elucidating the genetic basis of rice grain size 

as well as in marker-assisted breeding programmes for 

improving grain yield in rice. 

RESULTS 

Phenotype variation  

A wide range of observations for grain-size traits was 

recorded over three cropping seasons, which was 

reflected in across season genotype best linear 

unbiased predictor (BLUP) estimates. BLUP value 

based phenotypic variance, mean and other descriptive 

statistics estimated are presented in Table 1. BLUP 

estimates for TGW ranged from 10.6 to 31.9 g with an 

average of 21.50 g; while GL ranged from 5.21 to 

10.59 mm with a mean of 8.39 mm. Similarly, GW 

ranged from 1.65 to 3.26 mm, with an average of 2.62 

mm. Length-width ratio (LWR) ranged from 2.01 to 

5.59, finding an average of 3.31. Third degree 

statistics-skewness and fourth degree statistics-kurtosis 

were employed to measure the distribution of phenotypes 

in the population. The skewness of the population for 

all the traits was negligible except for LWR, which 

showed positive significant skewness. However, 

kurtosis for all the traits was less than three, indicating 

platykurtic distribution of phenotypes in the population. 

The distribution pattern of phenotypes was depicted 

using frequency distribution plots with a normal curve 

(Fig. 1), and Shapiro-Wilk’s test (Shapiro and Wilk, 

1965) for normality was also performed. P values 

suggested non-significance except for LWR, which 

was significant at the 0.05 level but non-significant at 

the 0.01 level (Table 1), thus population for above 

traits was normally distributed.  

The correlation analysis performed to understand 

the linear relationship between grain traits is presented 

in Fig. 2. However, it was significant and strong 

Table 1. Phenotype variation and distribution pattern of four grain 

size-related traits. 

Trait 
Phenotype 

Skewness Kurtosis 
Shapiro-

Wilks ‘p’ Min Max Mean ± SE PV 

TGW 10.6 31.9 21.50 ± 0.04 0.18 0.07 0.41 0.197 

GL 5.2 10.6 8.39 ± 0.14 1.82 -0.09 -0.51 0.754 

GW 1.7 3.3 2.62 ± 0.04 0.14 -0.22 -0.74 0.094 

LWR 2.01 5.59 3.31 ± 2.01 0.52 0.67 0.24 0.016 

TGW, 1000-grain weight (g); GL, Grain length (mm); GW, Grain 

width (mm); LWR, Length-width ratio; PV, Phenotypic variance. 

Fig. 2. Correlation coefficients and trend of distribution among 

grain size characters estimated based on across season best linear 

unbiased predictor values of phenotypes.  

TGW, 1000-grain weight; GL, Grain length; GW, Grain width; LWR, 

Length-width ratio. 

***, P < 0.001 by Pearson’s correlation approach. 

Fig. 1. Variation and distribution pattern of grain size and related 

traits in association panel. 
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between TGW and GL as well as GW, and non- 

significant with LWR. Similarly, a negligible positive 

relationship was found between GL and GW as well 

as between TGW and LWR. The correlation coefficient 

between LWR and GW was negative significance, 

indicating that an inverse relationship exists between 

these two variables, while LWR has a positive and 

significant relationship with GL.  

Genotype analysis 

The 142 cgSSR markers were genotyped on 

individuals of the association panel. These markers 

amplified a total of 715 alleles in the population. The 

number of alleles ranged from 2 to 15, with an 

average of 6.3 alleles per locus. The robustness of 

cgSSRs was tested by estimating allele frequency and 

gene diversity. The major allele frequency ranged 

from 0.15 (M34) to 0.72 (M4) with allelic diversity 

ranging from 0 (M78) to 0.89 (M111). To test the 

informativeness of cgSSRs, the polymorphic information 

content (PIC) of each marker was estimated as a 

function of alleles in relation to their frequency in the 

population (Guo and Elston, 1999), and a PIC value 

of > 0.5 was considered as significantly high. Only 15 

cgSSR markers showed a PIC value of < 0.5. The 

remaining 127 cgSSR markers expressed a PIC value 

of > 0.5 with the highest PIC value of 0.89 (M111).  

Population structure and kinship analysis 

Before performing GWAS analysis, we used genotype 

data of 142 markers to ascertain the population 

structure. Structure analysis was performed at three 

different levels, first by STRUCTURE analysis and 

prediction of the number of subpopulations through 

estimation of ΔK. The value of ΔK was found three 

upon 10 000 burn-in and 100 000 Markov Chain 

Monte Carlo (MCMC) with five iterations. Thus, it 

indicated the presence of three sub-populations within 

the association panel (Fig. 3-A). The largest sub- 

population consisted of 37 individuals; the second 

sub-population had 34, and the lowest had 17 

individuals. Second, principal component analysis 

(PCA) detected the presence of three sub-populations, 

indicated by three significant components explaining 

the maximum variation of the population (Fig. 3-B). 

Third, the relatedness among individuals estimated 

through the VanRaden kinship algorithm using the 

genome association and prediction integrated tool 

Fig. 3. Population structure analysis. 

A, Magnitude of ∆K values with k ranging from 2 to 8 (x-axis) in association mapping panel. 

B, Population structure of association panel based on 142 new candidate gene based SSR markers at K = 3. Different color columns represent 

different sub-populations. 

C, 3D representation of principle component (PC) analysis showing three sub-populations. 

D, Heat map of kinship matrix. The heat map shows the level of relatedness among the population. The darker areas show the level of relatedness 

between varieties and the dendrogram depicts clustering of sub-populations.  
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(GAPIT) was also explained by the presence of three 

sub-groups within the association panel (Fig. 3-C). 

The bar diagram representing the distribution of 

genotypes within and between sub-populations is 

presented in Fig. 3-D. 

Association analysis 

The genotypic information from 142 cgSSR markers 

assayed on individuals with four grain size related 

characters (TGW, GL, GW and LWR) was subjected 

to association analysis using the mixed linear model 

(MLM), following the efficient mixed-model association 

(EMMA) approach. A total of 10 significant marker 

trait associations (MTAs) at P < 0.05 were identified, 

distributed on five chromosomes (Table 2 and Fig. 4). 

Four significant MTAs, two on chromosome 5 (M69 

and Sdi21) and one each on chromosomes 4 (M55) 

and 6 (Sd14), were identified for TGW. These MTAs 

were independent of each other and explained the 

phenotypic variances of 11.01%, 9.54%, 10.00% and 

10.23%, respectively. A significant and solitary QTL 

was identified for GL on chromosome 4 through 

association of marker M55, explained 6.34% of the 

phenotypic variation. A total of four MTAs for GW 

were identified, two on chromosome 1 (Sdi1 and M99) 

and one each on chromosome 5 (M69) and chromosome 

8 (M35), explaining 13.07%, 11.00%, 10.56% and 

13.25% of the phenotypic variances, respectively. 

Similarly, only one MTA (Sdi1) was identified for 

LWR on chromosome 1, explaining 8.00% of the 

phenotypic variance. Among these ten putative QTLs, 

seven explain more than 10% of phenotypic variation 

and can be considered as major QTLs. We 

also identified a few markers associated 

with more than one trait. Marker M69 on 

chromosome 5 was associated with TGW 

and GW explaining 11.01% and 10.56% of 

phenotypic variations. Marker M55 on 

chromosome 4 was associated with TGW 

and GL with explained phenotypic 

variances of 10.00% and 6.34%, respectively. 

Similarly, marker Sdi1 on chromosome 1 

was found associated with GW and LWR, 

explaining 13.07% and 8.00% of the 

phenotypic variances, respectively (Table 

2). The graphical representation of results 

was done by developing Manhattan plots 

and quantile-quantile (Q-Q) plots for each 

trait using the GAPIT package (Fig. 4). 

DISCUSSION  

Identification of genomic regions associated 

with quantitative traits is a pre-requisite for 

deploying them in practical breeding to 

enhance the trait specific breeding. 

Improving grain size characters in rice has 

drawn the attention of researchers since it 

has a significant impact on grain yield. 

Several researchers attempted to map the 

Table 2. Significant marker-trait associations identified for four 

grain size-related traits based on mixed line model. 

Trait Marker Chr Position (bp) P-value PVE (%) Known gene 

TGW M69 5 18 724 905 0.01 11.01 OSBC1L4 

 Sd14 6 5 315 178 0.02 10.23 OsC1 

 M55 4 25 489 003 0.02 10.00 SHO1 

 Sdi21 5 1 160 267 0.04 9.54 RSR1 

GL M55 4 25 489 003 0.04 6.34 SHO1 

GW M35 8 26 439 584 0.01 13.25 NPP1 

 Sdi1 1 5 236 623 0.01 13.07 OsD2 

 M99 1 25 382 698 0.02 11.00 Rd 

 M69 5 18 724 905 0.02 10.56 OSBC1L4 

LWR Sdi1 1 5 236 623 0.02 8.00 OsD2 

TGW, 1000-grain weight; GL, Grain length; GW, Grain width; LWR, 

Length-width ratio; Chr, Chromosome; PVE, Phenotypic variation 

explained. 

Fig. 4. Manhattan plots and Quantile-quantile plots for markers associated with 

grain traits across the genome.  

A, 1000-grain weight; B, Grain length; C, Grain width; D, Length-width ratio. 

In Manhattan plots, x-axis represents chromosomes and explains chromosome-wise 

marker distribution, and -log10P values on y-axis indicates significant associations. 

Quantile-quantile plots show deviation of observed -log10P values and expected -log10P 

values indicating the significant marker trait associations.  
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genomic regions controlling these traits and identify 

the underlying genes (Meng et al, 2016; Ponce et al, 

2020). However, associating candidate gene-based 

markers to genomic regions controlling grain size 

traits has a significant impact as it will assist to 

address more than one trait simultaneously (Molla et al, 

2019). Genome-wide association analysis in a set of 

germplasm accessions offers several advantages over 

bi-parental mapping in QTL identification (Wu et al, 

2015). However, only a few such studies have been 

reported for grain size traits (Hussain et al, 2020; 

Ponce et al, 2020). There is abundant scope to explore 

natural variation that exists in germplasm accession 

for grain size related characters and improvement by 

incorporating identified QTL into breeding lines. In 

this study, a set of 88 highly potential genotypes were 

considered to constitute the association panel and 

evaluated over three years for grain size characters, 

whereas a set of 142 new cgSSR markers developed 

from different seed dimension-related genes and grain 

yield-related genes in rice were used to identify 

significant association of these new cgSSR markers 

with grain size traits.  

Phenotype variation  

Significantly wider phenotypic variation was recorded 

over three years for grain size traits. High phenotypic 

variation recorded for these traits from the population 

suggests an abundance of allelic variation for grain 

size traits. The BLUP values of four traits estimated 

over years showed normal distribution patterns, 

indicating the complex inheritance pattern of these 

traits (Fig. 1). Negligible skewness or zero skewness 

in a symmetric distribution shows the presence of 

additive gene interaction, while platykurtic distribution 

indicates the involvement of multiple genes in the 

development of certain grain size characters (Table 1) 

(Azharudheen et al, 2022). Variation analysis, 

skewness and kurtosis results supported the 

composition of the association panel for identification 

of putative QTLs through marker trait association for 

grain size traits using GWAS. The phenotypic 

correlation coefficients between TGW and GL, TGW 

and LWR were found to be positive. These results are 

consistent with reports by Tan et al (2000) and Ponce 

et al (2020). The strong correlation between TGW and 

GL indicates these traits have a significantly higher 

effect on grain weight than on other grain size traits 

(Xing and Zhang, 2010). Whereas, a negligible or 

weak correlation was observed between GW and 

LWR, and GL and GW, while GW and LWR recorded 

a strong negative relationship. These results were 

similar to the results obtained by Qiu et al (2015).  

Genotype analysis  

The marker assay with 142 new cgSSR markers 

showed greater diversity existing within the association 

panel. Upon genotyping, 88 individuals from the 

association panel with 142 markers amplified 715 

alleles. The number of alleles ranged from 2 to 15, 

with an average of 6.3 alleles amplified per locus. 

Thus, the abundance of alleles per locus indicates 

genetic diversity within the association panel coupled 

with low gene flow, and this is consistent with 

previous reports (Rahman et al, 2007; Raju et al, 

2016). The higher PIC values recorded by new cgSSR 

markers suggested the efficiency of these markers 

utilized in marker trait association studies. Since these 

cgSSR markers were generated from genic regions, 

they are more helpful for assaying genetic target traits 

even at smaller numbers. 

It’s crucial to have control over population structure 

in GWAS to prevent spurious marker trait associations. 

The origin, selection pressure and reproductive 

behavior of genotypes all have an impact on familial 

relatedness among individuals in an association panel 

(Atwell et al, 2010). The cgSSR markers applied were 

greatly efficient in controlling the population structure 

of the association panel, since they produced abundant 

allele for each trait. The relatedness among individuals 

in the association panel resulted in the identification of 

three sub-populations at ΔK = 3 and the results are 

similar to earlier reports (Zhang et al, 2013; Wang et al, 

2014). These sub-populations arise due to allelic 

sharing between sub-populations attributed to allelic 

accumulation due to spontaneous mutation over time 

(Agrama et al, 2007). PCA confirmed the presence of 

three sub-populations in the association panel. 

However, the kinship matrix generated by the 

VanRaden algorithm plotted as a heat map showing 

relatedness values between -0.5 to +0.5 indicates poor 

relationships existing between individuals in the 

association panel. These results assisted to understand 

the population structure of the panel before 

proceeding to GWAS for identification of putative 

genomic regions for grain size traits. Based on the 

information about population structure, the MLM with 

the EMMA approach (Mather et al, 2004) has been 

selected for association analysis, which detects marker 

trait associations while simultaneously addresses 
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population structure to reduce the chances of false 

positives (Zhang et al, 2014; Wang et al, 2016). 

Association analysis 

The structured association analysis following the 

MLM approach was performed with four phenotypes 

evaluated over three years and genotyped with 142 

new cgSSR markers. We identified 10 significant 

marker trait associations distributed on five chromosomes. 

The markers M69, Sd14, M55 and Sdi21 are derived 

from OsBC1L4, OsC1, SHO1 and RSR1 genes, 

respectively, associated with TGW (Table 2). Except 

for Sdi21 (9.54%), the other associations explained 

more than 10% of the phenotypic variances, and hence 

they can be considered as major putative QTLs for 

grain weight. OsBC1L4 is reported as responsible for 

leaf development in rice (Gao et al, 2020), and SHO1 

is involved in reproductive organ development (Song 

et al, 2012). RSR1 is reported to be involved in starch 

biosynthesis in rice grain, and a mutation in RSR1 

produces larger seed size, increased seed mass and 

yield (Fu and Xue, 2010). However, markers derived 

from gene sequences of these markers showed 

association with TGW, indicating the contribution of 

genes related to developmental stages to grain weight. 

The marker M55 is derived from the SHO1 gene, 

associated with GL, indicating the importance of 

SHO1 in grain elongation. Markers M35, Sd1, M99 

and M69, derived from genes NPP1, OsD2, Rd and 

OsBC1L4, showed association with GW. The gene 

NPP1 is responsible for starch biosynthesis (Kaneko 

et al, 2014), and OsD2 is responsible for grain shape 

(Seo et al, 2020) and the Rd gene is responsible for 

seed coat development and pigmentation (Jan et al, 

2020). All these genes are related to grain characters 

and showed association with GW, indicating accuracy 

of association and the importance of new cgSSR 

markers. The marker Sd1 is derived from OsD2 gene, 

associated with LWR and involved in grain shape 

development. The marker is directly associated with 

the grain shape gene. Hence, it can be effectively 

utilized in marker-aided plant breeding. The markers 

M69, M55 and Sd1 showed multiple trait associations, 

suggesting the involvement of respective genes in the 

development of more than one character through 

interaction of gene products in trait expression. These 

markers can be used effectively as surrogates for 

improvement of more than one respective associated 

character. The association results have been depicted 

using Manhattan plots and Q-Q plots. Manhattan plots 

indicate the distribution of markers on chromosomes 

and the significance of association based on -log10P 

values on the y-axis (Fig. 4). Similarly, the Q-Q plot is 

a graphical depiction of the observed P values 

departure from the null hypothesis: each marker’s 

observed P values are ordered from greatest to 

smallest and display against predicted values from a 

theoretical χ
2
 distribution. If the observed and 

expected P values co-inside and fall on the middle line, 

it indicates acceptance of the null hypothesis and no 

significant association. In this study, P values differed 

from those predicted which indicated that those 

markers had a strong association with the trait (Fig. 4). 

Early separation of observed P values from expected 

indicates a large number of moderately significant 

marker trait associations, which is very rare.  

Some grain size related genes have been identified 

and cloned over decades. However, the functional role 

and interaction with other genes in trait expression are 

still in the dark room. Association studies to identify 

markers linked to these traits are limited to random 

markers. Therefore, development and utilization of genic 

markers for association studies assists to understand 

the importance of interaction of genes in trait 

expression and utilize respective genic markers to 

hasten the process of trait improvement. In this study, 

we identified genic markers associated with grain size 

traits, which can be directly utilized for marker-assisted 

plant breeding programs. The markers associated with 

more than one trait and markers derived from genes 

responsible for other developmental processes can be 

used for simultaneous improvement of more than one 

grain related traits via marker-assisted breeding 

programs. Further, these genic markers associated with 

several grain size traits can be used to accumulate several 

causative alleles for enhancing grain size related traits 

through trait introgression breeding programs. At the 

outset, these results of association analysis have greater 

significance in practical plant breeding programs 

focusing on improving grain size-related traits.  

METHODS  

Association panel  

The rice varieties, developed and released over the last three 

decades in India for varied ecologies, along with a modest 

number of diverse germplasm accessions, constituted the 

association panel. A total of 88 genotypes were considered to 

perform GWAS for identification of significant marker-trait 

association with GL, GW, LWR and TGW. The details of 

genotypes are presented in Table S1.  
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Field experimentation and phenotyping  

The field trial for evaluation of the association panel was 

conducted over three seasons, the wet season of 2018, 2019 and 

2020 at experimental plots of ICAR-National Rice Research 

Institute, Cuttack, India. Prior to starting the experiment, 

genotypes were tested for purity by planting a single row of 

true to type panicle in the previous season, and the procedure 

has been repeated every season to preserve genotype purity 

(Sahu et al, 2020). The genotypes were initially planted in 

nursery beds to ensure uniform germination, and healthy 

seedlings of 21-day-old were transplanted to the main field. 

The main field experiment was laid out in a randomized 

complete block design with two replications. Each genotype 

was planted in three-meter rows having a 20 cm gap between 

rows accommodating thirty plants in each row. The 

recommended inputs were provided to grow a healthy crop 

under irrigated conditions. At maturity, paddy from all the 

genotypes was harvested separately and dried under natural 

sunlight for 2 d, and then oven dried to reduce moisture content 

to 12%–14%. After equilibrating moisture content, a sample of 

20 g paddy from each genotype was considered for measuring 

grain phenotypes. GL, GW and LWR were measured using 

Annadarpan (CDAC and RRS, West Bengal). Two sets of 50 

grains from each genotype were considered for measuring these 

traits. A thousand random grains of each genotype taken from 

each replication were weighed on a high precision analytical 

balance (Sartorius Secura analytical balance, with readability to 

0.1 mg to 320 g) to record TGW.  

Molecular assay and genotyping  

Genomic DNA of individuals in the association panel was 

estimated using the CTAB method (Doyle and Doyle, 1987). 

The absorbance ratio at 260 : 280 nm under spectrometer was 

employed for testing the quality of genomic DNA. Further, 

isolated DNA was quantified using Nanodrop (Thermo 

Scientific, USA) and the final concentration was adjusted to 20 

ng/μL with 1× TE. The cgSSR markers derived from seed 

dimensions, grain yield and yield related characters (unpublished) 

were used. A total of 142 cgSSR markers distributed over 12 

chromosomes (Fig. S1) were assayed on the association panel 

to generate genotype data. These markers were developed from 

genic sequences of grain weight and other yield related traits in 

rice. Simple sequence identification tool was applied to identify 

SSRs within the gene sequences, appropriate motif length and 

number of repeats was customized to minimum four bases with 

five repeats. The 10 μL final volume of the PCR reaction 

mixture was constituted of 1 μL of genomic DNA, 4 μL of 

premix, 1 μmol/L each of forward and reverse primers and 3 

μL of nuclease free water. Amplification was done using a 384 

well Thermocycler (Agilent technologies® Surecycler8800) by 

adopting the following PCR program. Initial template denaturation 

at 94 ºC for 4 min followed by 40 cycles of amplification each 

with 40 s of denaturation at 94 ºC, 40 s of primer annealing (at 

appropriate Tm) and 1 min of elongation at 72 ºC, and 7 min of 

final extension. PCR amplified products of all genotypes were 

separated on a 3.5% agarose gel following a standard 

electrophoresis procedure. Gel documentation system (Zenith 

Gel.Pro9 CCD gel doc, Biozen Laboratories, India) was 

employed for gel image scanning and amplicons were 

phenotyped using CLIQS Gel image analysis software, version 

1.0 from Totallab® by comparing each amplicon with a 50 bp 

DNA ladder.   

Statistical analysis 

Phenotype analysis 

Observation of grain size traits recorded from each replication 

as replication mean over three years were considered for 

estimation of BLUP values. The BLUP estimates help to reduce 

mean squared error under multi-season evaluation trials by 

shrinking phenotypes over seasons (Hill and Rosenberger, 1985; 

Piepho et al, 2008). The BLUP values for genotypes across 

seasons were estimated using META-R software developed by 

CIMMYT (Alvarado et al, 2020). Only BLUP values estimated 

for each trait were considered for further analysis. To ensure the 

best suitability of the panel for association analysis, phenotypic 

distribution patterns and descriptive statistics were analyzed 

using RStudio version 1.4.17 (R Core Team, 2021). The 

correlation coefficients among traits were calculated following 

Pearson’s correlation approach and plotted using the ‘corrplot’ 

package in R software (Wei and Simko, 2021). 

Allele diversity and population structure analysis 

Higher level of allele diversity, PIC of markers and appropriate 

population structure are most important for perfect association 

analysis to avoid false positives. The allelic diversity, allele 

frequency and PIC of markers on the GWAS panel were 

assessed using PowerMarker V3.25 (Liu and Muse, 2005). 

Population structure was estimated from genotypic data of 142 

cgSSR markers using Bayesian model based software 

STRUCTURE 2.2 developed by Pritchard et al (2000). The 

length of the burn-in period and MCMC were set at 10 000 and 

100 000, respectively. To identify the optimum sub-populations 

in the panel, an admixture ancestry model of an ad hoc statistic 

ΔK (Evanno et al, 2005) starting from K = 1 to K = 10 was 

applied with five replications in each K. By harvesting results 

from structure harvester (Earl and vonHoldt, 2012), the 

optimum value for K = 3 was determined, thus indicating the 

association panel could be divided into three sub-populations. 

Further, PCA was performed using the R package ‘factoextra’ 

(Kassambara and Mundt, 2017) to confirm the number of 

sub-populations. The familial relationship among individuals of 

the association panel was assessed using the VanRaden kinship 

algorithm (VanRaden, 2008) and the heat map of the kinship 

matrix was plotted using the GAPIT package of R software 

(Lipka et al, 2012).  

Association analysis  

Association analysis between BLUP estimates of four 

phenotypes and cgSSR marker genotype data on the association 
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panel was performed using the GAPIT package (Lipka et al, 

2012), implemented in R software. GAPIT analyses the 

association between markers and traits while addressing 

population structure and kinship (Yu et al, 2006). To guarantee 

appropriate association, MLM method applying the EMMA 

algorithm (Kang et al, 2008) coupled with population structure 

adjustment was used. The marker P < 0.05 was considered to 

declare a significant association between marker and trait. 
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