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Abstract
The ever-increasing demand for vegetable oil requirement has necessitated increasing the production of oilseeds crops. 
Productivity is compromised in these crops due to biotic and abiotic stresses. Albeit the substantial progress made in this 
direction through conventional breeding approaches, breeding for certain traits like stress tolerance is limited by the non-
availability of genetic variability for these traits in primary germplasm, the time required for selection and the realization 
of a suitable genetic assemblage from the segregating populations, etc. This situation has necessitated adopting alternate 
approaches to achieve the objectives. Genome editing technology offers a solution to modify the genome precisely with least 
genetic perturbation in the least possible time frame and it has been adopted in several crops including oilseeds. Genome 
editing technology depends on the genetic transformation step for introducing the machinery required for altering the genome. 
However, the recalcitrance for in vitro manipulations observed in oilseed crops such as castor, sesame, jatropha, etc. has 
set a limit for exploiting this powerful technology in oilseed crops. In this review, we have summarized the genome editing 
work carried out in oilseed crops and also discuss the possibility of employing such technologies along with the promising 
gene targets that could be manipulated to generate required variants in oilseed crops.
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Abbreviations
ZFNs  Zinc finger nucleases
TALENs  Transcription activator like effector nucleases
CRISPR  Clustered Regularly Interspaced Short Palin-

dromic Repeats
Cas  CRISPR associated system
PAM  Protospacer adjacent motif
NHEJ  Non-homologous end-joining
HDR  Homology-directed repair
SDN  Site directed nuclease
PTC  Plant tissue culture
RNPs  Ribonucleoproteins
MIR  miRNA genes

Introduction

More than twenty oilseed crops are cultivated across the 
world for human consumption as well as industrial uses. 
The major oleiferous crops include soybean [Glycine max 
(L.) Merr.], rapeseed and mustard (Brassica spp.), peanut 
(Arachis hypogaea L.), palm oil (Elaeis guineensis Jack.), 
sunflower (Helianthus annuus L.), coconut (Cocos nucifera 
L.), cottonseed (Gossypium spp.), niger [Guizotia abyssi-
nica (L. f.) Cass.], sesame (Sesamum indicum L.), safflower 
(Carthamus tinctorius L.), camelina (Camelina sativa L.), 
castor bean (Ricinus communis L.), physic nut (Jatropha 
curcas L.), and linseed (Linum usitatissimum L.). In addi-
tion to the conventional oils, rice bran oil and corn kernel 
oil are important non-conventional sources of edible oils. 
Because of their nutritive values, maize kernal oil and rice 
bran oil are growing in popularity. Edible-oils and oilseed 
meals are rich in essential nutrients besides contributing 
up to about 40% of the calories in human diet. Growing 
population, changing dietary patterns, and improved liv-
ing standards are increasing the demand for vegetable oil 
production. On the other hand, global warming, finite agri-
cultural lands, abiotic and biotic stress factors are posing a 
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threat for keeping pace with this demand. Hence, improving 
the quantity and quality of oilseeds is one of the key objec-
tives for modern-day researchers to meet the global demand.
Elite oilseed crop varieties are being created by either tradi-
tional, or mutational breeding methods, or through genomics 
assisted breeding approaches. However, these methods are 
tedious, time consuming and often coupled with undesir-
able trait combinations. Also, the conventional breeding 
approaches are limited by the available genetic variability 
for the traits of interest. Hence, there is a constant search 
for simple and precise methods that could alter the genome 
in a directed way with least or no perturbation to the rest of 
the genome. Site directed nucleases such as meganucleases, 
ZFNs (zinc finger nucleases) and TALENs (transcription 
activator like effector nucleases) have been used for targeted 
editing of the genomic content. However, the complexity of 
functionality as well as the fastidious requirements of these 
SDNs limited their widespread deployment in crops to create 
new directed genome variability. In the light of this, discov-
ery of Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR)/CRISPR associated system (CRISPR/
Cas) a microbial adaptive immune system, has offered a new 
tool for trait modifications (Jiang et al. 2013). The CRISPR/
Cas system has many advantages over other SDN mediated 
modifications due to its diversity, robustness, and flexibility 
(Pickar-Oliver and Gersbach 2019; Walton et al. 2020). The 
ease with which this system could be adopted for precise 
genome editing across a wide variety of organisms including 
plants has opened up new vistas in the world of modern sci-
ence (Zhang et al. 2020b). CRISPR/Cas is an RNA-guided 
endonuclease that specifically targets and cleaves the DNA 
at specific sites recognized through the protospacer adjacent 
motif (PAM) sequence near the edited site. Among several 
Cas genes reported (like Cas9, Cas12, Cas13, etc.), Cas9 
obtained from Streptococcus pyogenes (SpCas9) has been 
codon optimized for various crops and engineered with vari-
ous PAM specificities and used in most of the studies. In this 
review, we discuss the applicability of the CRISPR/SpCas9 
system in oilseed crops.

The double stranded breaks in DNA at the target site created 
by SDNs including Cas9 protein are repaired by two mecha-
nisms, the error-prone, non-homologous end-joining (NHEJ) 
and homology-directed repair (HDR). The NHEJ leads to ran-
dom nucleotide base insertions or deletions (InDels) at the 
cleavage site which in turn leads to the formation of mutated 
and more often non-functional or impaired protein. Based on 
the intended mode of editing, the genome editing has been 
grouped mainly into three groups: site directed nuclease 1 
(SDN1), SDN2 and SDN3. SDN1 involves creation of InDels 
at the targeted sites via the NHEJ route, while SDN2 also cre-
ates specific changes at the target sites via the HDR mecha-
nism. On the other hand, SDN3 introduces specific genes at 
the targeted site using HDR mechanism (Ahmad et al. 2021a). 

Among the three types, SDN1 has been exploited the most 
in plants owing to the increased frequency of NHEJ medi-
ated repair compared to the HDR mediated one (Molla et al. 
2021). Even though, developing edited lines in crops involves 
a genetic transformation step to introduce the editing machin-
ery (CRISPR/Cas9) into the plant, as the site of action of this 
machinery is different compared to the site of insertion, in the 
subsequent generations the transgene free but genome edited 
lines could be realized though Mendelian segregation. Thus, 
the resultant edited lines will be without the introduced genes 
(transgenes), owing to which many countries including India, 
have categorized SDN1 and SDN2 derived genotypes as non-
transgenic and thus exempted from going through cumber-
some regulatory procedures before their release for commer-
cial cultivation.

CRISPR/Cas9 has revolutionized the pace of plant biol-
ogy research (Manghwar et al. 2019) and made precise 
plant genome editing a reality (Zhu et al. 2020). Thus, it has 
become an attractive and competitive field within a very 
short time and has been used to manipulate agronomic traits 
in many crops. Many versions of CRISPR/Cas9 with subtle 
but effective modifications have opened up novel ways of 
genome manipulations using base editors and prime editors 
(Molla et al. 2021; Das et al. 2022) and the field is evolving 
continuously bringing many more crops and traits under its 
fold of benefits. However, there are specific requirements 
to adopt genome editing approach in crops (Son and Park 
2022) and they mainly include, (1) genome sequence infor-
mation (2) functionally characterized target gene(s) (3) DNA 
transfer method (either biological such as Agrobacterium, or 
physical such as biolistic, electroporation, or chemical such 
as PEG, nanoparticles etc.) (4) suitable expression systems 
(either generic, modular or specific) and (5) a suitable regen-
eration system, preferably a genotype independent one to 
obtain edited plants from the transformed cells. Strategies 
are being developed to address these requirements or chal-
lenges (Son and Park 2022). Readers are referred to compre-
hensive and informative reviews on historical perspective of 
CRISPR/Cas system (Lander 2016), mechanism and modi-
fied versions of CRISPR/Cas (Das et al. 2022), applications 
in field crops (Zhu et al. 2020), horticultural crops (Kaur 
et al. 2021) and in basic research (Ledford 2021). Here our 
aim is to summarize the recent developments in the applica-
tion of CRISPR/Cas9 in oilseed crops besides providing a 
perspective on future applications.

Present scenario of CRISPR/Cas applied 
to oilseed crops

CRISPR/Cas9 has been effectively employed in oilseed rape, 
soybean, camelina, peanut, cottonseed, and flax (Subedi 
et al. 2020b; He et al. 2021) to realize promising lines. A 
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summary of the genome editing work reported in oilseeds 
has been provided in Table 1. A perusal of the information 
in Table 1 indicates that most of the target genes chosen in 
these studies had been functionally validated through dif-
ferent approaches including gene silencing studies, either 
in the same crop or in heterologous or model crops, map-
based cloning, transcriptome analysis, pathway analysis, 
etc. So far, only SDN1 type of genome editing has been 
adopted for trait manipulation. In oilseed crops, CaMV 35S 
has been used in most of the studies to drive the expres-
sion of cas9 while the sgRNA has been driven by promot-
ers of small nuclear RNA (snRNA) genes such as U3/U6 
that are typically transcribed by class III RNA polymerases. 
In general, in other systems also, it has been opined those 
promoters with strong and constitutive expression patterns 
are employed to achieve balanced and high-level expression 
of Cas and gRNA. However, it has been demonstrated that 
crop-specific ubiquitin promoter (Feng et al. 2018) and mei-
otic cell-specific promoter YAO (Wolter et al. 2018) result in 
higher gene edits compared to CaMV 35S. In oilseeds also, 
some tissue specific promoters like YAO (Wang et al. 2022c), 
EC1.2 (Lee et al. 2021), AtEF1α (Lyzenga et al. 2019) and 
pM4 (Zhang et al. 2022b) have been used for driving the 
expression of cas9. In almost all the cases, Agrobacterium 
mediated transformation has been used to introduce the GE 
machinery and usually single to multiple sgRNA cassettes 
have been introduced. Homozygosity for the edited sites 
have been reported either in  T0 and  T1 generation indicating 
that biallelic edits have been achieved in  T0 generation. In 
a few cases, transgene free edited lines have been reported 
whereas in most of the cases the edited lines are reported to 
still carry the transgenes. Genome-editing efficiency rang-
ing from 0.1 to 100%, depending on crops and their geno-
types, has been reported. In Brassica species, the efficiency 
is reported to be 10–100% while it varied from 47.6 to 100% 
in cotton and 37–88% in soybean (Table 1).

In soybean, the main traits targeted have been biotic stress 
tolerance (insect, cyst, virus), agronomic (flowering time, 
increased yield, male sterility) and qualitative (enhanced fra-
grance). In rapeseed, genome editing efforts have targeted 
quality (glucosinolates, altered starch structure), and agro-
nomic traits (self-incompatibility, seed number in siliques, 
plant architecture and male sterility). In Camelina, a model 
oilseed plant belonging to Brassicaceae family, and a plant 
for biodiesel production, GE for quality traits (reduced 
PUFA, altered fatty acid composition) has been reported. 
Reducing the allergen and increasing the nodule number are 
the traits targeted through genome editing in peanut. In cot-
ton, altering the plant architecture has been achieved through 
genome editing. Many of the studies have reported testing of 
the feasibility of genome editing in respective crops. Allo-
tetraploid oilseed rape and soybean have been successfully 
edited for increasing oil quality/quantity and biotic/ abiotic 

stress tolerance (Du et al. 2016; Xu et al. 2019; Huang et al. 
2020).

Based on the literature available across all the crops and 
considering the specific research objectives of oilseed crops 
(as enumerated in Table 2), possible target traits and the 
genes that could be edited in oilseed crops are illustrated in 
Fig. 1 and they are discussed briefly here.

Increasing the seed oil content and altering the oil 
quality

As oilseeds are predominantly cultivated for seed oil pur-
pose, the main breeding objective of these crops is increas-
ing the oil production per unit area. This can mainly be 
achieved by increasing the seed yield as well as the oil 
content. However, the synthesis and accumulation of oils is 
controlled by complex gene networks and the exact interplay 
among these networks is still unclear and needs to be further 
understood. Nevertheless, there is significant information 
regarding the genetic control of seed oil formation and the 
genes involved in this process (Kumar et al. 2020; Yang et al. 
2022), and these genes are being functionally validated in 
the model plant Arabidopsis as well as other oilseed crops 
(Subedi et al. 2020b). Oils are stored basically as triacylg-
lycerol (TAG) and key genes involved in oil accumulation 
(such as the enzymatic Kennedy pathway genes, Fatty Acid 
Synthases, oleosins etc., and the transcription factors like 
WRKY, LEC 1, LEC 2, FUS 3, GL 2 etc.) have been identi-
fied and functionally validated using different approaches 
including developing transgenic lines that overexpress or 
silence these genes. Cotton seed oil content was enhanced 
by 7.3% and 16.7% when genes such as PEPC1 and PEP-
EC2A, known to play negative role in lipid biosynthesis, 
were silenced (Xu et al. 2016b; Zhao et al. 2018). These 
genes could be targets of genome editing when oil content 
is to be enhanced. There are reports of InDels in TAG bio-
synthesis genes that have led to increased oil content, e.g., 
one amino acid change in DGAT-1 in maize led to increased 
oil content (Zheng et al. 2008), and therefore such genes 
could be targeted for editing. Interestingly, there are many 
transcription factors such as MYB genes (MYB78, MYB89, 
MYB118, MYB123), WRKY6, AP 2, TT 8, etc. which act as 
negative regulators of oil accumulation (Kumar et al. 2020) 
and these genes are the possible targets for genome editing 
to manipulate the seed oil content trait (Zafar et al. 2019).

Oil quality, which is primarily decided by the fatty acid 
profile and the antioxidants present in the oil are also the tar-
gets of specific breeding programmes (Subedi et al. 2020a). 
There are reports of developing such lines in oilseed crops 
through different approaches including genome editing. Met-
abolic engineering of genes from other plant sources have 
also been used to alter the oil content and fatty acid profile 
in oilseed crops such as brassica, safflower, cotton, peanut 
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and camelina through transgenic approach (Wu et al. 2022; 
Porokhovinova et al. 2022). Tinkering the pathway genes 
by SDN1 modifications and incorporating novel genes by 
SDN3 modifications can be done by genome editing in order 
to change the fatty acid composition in oils.

Enhancing biotic stress tolerance

Plants co-exist with a myriad of microbes and pests. Plant 
photosynthetic efficiency is drastically impeded by patho-
gens thus causing around 20–40% of yield losses globally. 

Plants do harbour a set of genes called susceptibility genes 
(S-genes) that predispose the plants for pathogen attack and 
they could be edited or modified to make plants resist the 
pathogens. It has been demonstrated that the S-gene products 
are essential for initial establishment, growth and prolifera-
tion of phytopathogens (van Schie and Takken 2014). Hence, 
disrupting these genes can break the host–pathogen com-
patibility and render resistance to plants (Garcia-Ruiz et al. 
2021). This phenomenon has been demonstrated using gene 
silencing or knock-out studies, for e.g., gene knock-out of 
Mildew Resistance Locus O (MLO) has conferred resistance 

Fig. 1  Promising traits and probable gene targets for editing by 
CRISPR/Cas in oilseed crops. MYB, Transcription factors; TT 8, 
Transparent Testa 8; AP 2, Apetala 2; GL 2, Glabra; FUS 3, Fusca 
3; LEC 1/2, Leafy Cotyledon 1/2; PDH 1, Pod Dehiscence 1; RPL, 
Replumless; FUL, Fruitfull; IND, basic helix-loop-helix gene Inde-
hicent; SHP 1/2, MADS-box genes Shatterproof 1/2; ALC, Alcatraz; 
EPSPS, encodes 5’enolpyruvylshikimate 3-phosphate synthase; ALS, 
acetolactate synthase; ACC-T1, acetyl-coenzyme A carboxylase; 
SPL 14, Squamosa Promoter Binding-Like 14; C287, C287 mutant 
of acetolactate synthase; miRNAs, micro RNAs; CKX, cytokinin 
oxidase/dehydrogenase; ERF, ethylene responsive factor; OST 2, 
Open Stomata 2; CBF/DREB, C-repeat/DRE binding factor/ Dehy-
dration Responsive Binding Element; WRKY, encodes transcrip-
tion factors; DIPM 1/2/3, DspE-interacting proteins of Malus 1/2/4; 
LOB 1, Lateral Organ Boundaries 1; SWEET, sugar will eventually 
be exported transporter; WAT 1, Wall Are Thin 1; eIF4E, eukaryotic 
translation initiation factor 4E; MLO, Mildew Resistance Locus O; 

HGO, homogentisate dioxygenase; LCYε, lycopene epsilon-cyclase; 
ITPK, inositol triphosphate kinases; IPK1, inositol-1,3,4,5,6-pentak-
isphosphate 2-kinase 1; MIPS, myo-inositol-3-phosphate synthase; 
HRZ 1/2, hemerythrin motif-containing really interesting new gene 
(RING)- and zinc-finger protein 1/2; VIT 1/2, Vacuolar Iron Trans-
porter 1/2; FAD, fatty acid desaturases; CLV 1/2/3, Clavata 1/2/3; 
TFL 1, Terminal Flower 1; GW 2/3, Grain Weight 2/5; TGW 6, Thou-
sand-Grain Weight 6; GS 3, Grain Size 3; BS 1, Big Seed 1; EOD3, 
Enhancer 3 Of Da 1; GRF 3/4, Growth Regulating Factor 3/4; DEP 
1, Dense And Erect Panicle 1; Gn1a, Grain Number 1a; GID 1/2, 
Gibberellin Insensitive Dwarf 1/2; IPA 1, Ideal Plant Architecture 
1; CCD 8A/B, carotenoid cleavage dioxygenase 8A/8B; SPL, Squa-
mosa Promoter Binding Protein-like; FT, Flowering Locus T; SP, 
Self-Pruning; SP 5G, Self-Pruning 5G; SLF, F-box protein; PR55/B, 
PP2A 55  kDa B regulatory subunit; Sli, S-locus inhibitor; FPS2, 
farnesyl pyrophosphate synthase; PGAP1, post-GPI attachment to 
proteins 1. Picture created by Biorender.com
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to various powdery mildew causing fungus in crop species 
like wheat, grape and tomato (Zaidi et al. 2018). Mutation 
of Walls Are Thin1 (WAT1) enhances broad-range resistance 
to vascular pathogens such as Ralstonia solanacearum and 
Verticillium dahliae in Arabidopsis and cotton respectively 
(Denancé et al. 2013; Tang et al. 2019). Knocking-out of the 
eukaryotic translation initiation factor, eIF4E and SWEET 
genes conferred resistance to virus and bacterial pathogens 
respectively in several crops (Zaidi et al. 2018). Promoter 
disruption of Lateral Organ Boundaries 1 (CsLOB 1) gene 
decreased the citrus-canker disease severity by 83.2–98.3% 
in Citrus sinensis (Peng et al. 2017). Similarly, gene edit-
ing of DIPM-1, DIPM-2, and DIPM-4 in Apple conferred 
resistance to fire blight disease caused by Erwinia amylovora 
(Malnoy et al. 2016). S-gene homologs have been reported in 
many crops including oilseeds. The SWEET gene and WAT 1 
orthologs have been identified and validated for their role as 
S-genes in both soybean and cotton respectively (Koseoglou 
et al. 2022). Apart from S-genes, there are many other genes 
that could be targeted for disease resistance (Schenke and 
Cai 2020). Still, the pleiotropic effects and to what extent 
these S-genes identified in model crops are functionally con-
served in other oilseed crops are unanswered questions and 
only after these issues are addressed could they be used as 
targets for genome editing in oilseed crops. Therefore, it is 
likely that the CRISPR/Cas-mediated targeting of homologs 
of such S-genes may confer resistance to pathogens in oil-
seed crops (Ali et al. 2022).

Enhancing abiotic stress tolerance

Abiotic stress like drought, temperature and salinity causes 
major threat for oilseed production especially in India as 
more than 70% of oilseed cultivation in India is under rain-
fed condition and in marginal lands. As indicated by several 
basic studies earlier, there are negative regulators of abiotic 
stress tolerance in crops and if these genes are silenced or 
disrupted, it might lead to abiotic stress tolerance (Singh 
et al. 2019). Many attempts have been made to edit signalling 
cascade genes for abiotic stress responses in model crops 
(Kaur et al. 2022). Editing of gene encoding Open Stomata 
2 (OST 2), a proton pump in Arabidopsis increased drought 
tolerance (Osakabe et al. 2016; Joshi et al. 2020). Manipula-
tion of the cytokinin levels by silencing of cytokinin oxidase/
dehydrogenase (CKX) gene in roots is shown to increase 
the drought tolerance in many crops (Zalabak et al. 2013). 
Several cis-regulatory sequences act as negative regulators 
of abiotic stress tolerance. Transcription factors (TFs) like 
WRKY (GhWRKY17, GmWRKY13, and ZmWRKY17), ethyl-
ene responsive factor (ERF) and CBF/DREB, bind to these 
sequences and negatively regulate abiotic stress tolerance 
(Zafar et al. 2020). Such genes have been reported in bras-
sica, cotton, and peanut (Luo et al. 2021; Shazadee et al. 

2022; Wang et al. 2022a). Several genes such as GhNAC79, 
GhRaf19, GhWRKY6, GhABF2, GhRaf19, GhMKK3, 
GhWRKY27a, GhMAP3K65, G18431620 (GH 3.5) and 
AtHUB2 were successfully confirmed by virus-induced gene 
silencing (VIGS) in cotton for their role in heat, drought, salt 
and cold stress (Singh et al. 2019). VIGS mediated silencing 
of AhABI4s conferred the salt tolerance in peanut (Luo et al. 
2021). All these genes are potential target genes for confer-
ring abiotic stress tolerance. MicroRNAs are also known 
to mediate abiotic stress tolerance (Begum 2022). Usually, 
microRNAs silence the target genes by binding to their tar-
gets and marking them for cleavage. Such target genes could 
be the candidate genes for genome editing (Gao et al. 2022). 
Apart from this, the MIR genes (microRNA encoding genes) 
can be a potential target for genome editing if these micro-
RNAs are negative regulators of stress tolerance (Basso 
et al. 2019). Some miRNAs such as miR414, ghr-miR399, 
ghr-156e, miR319, ghr-miR5272a, miR156a/d/e, miR167a, 
miR169, miR397a/b, miR399a, miR535a/b, miR827b and 
many more are playing a role in various abiotic stress tol-
erance in cotton, brassica, and soybean (Chaudhary et al. 
2021; Tiwari and Rajam 2022; Begum 2022). Therefore, 
editing the main target genes of these miRNAs would confer 
tolerance in oilseed crops.

Introducing herbicide tolerance

Herbicides are used to restrict weeds which affect produc-
tivity owing to competitiveness with crops. Establishment 
of oilseed crops is affected badly by the weeds especially 
during the initial phase of crop establishment and removal 
of them at that stage is crucial for crop growth. This is more 
pronounced in small seeded crops like sesame, niger, and 
mustard. Manual weed control is not only costly but also 
time consuming. Herbicide application is a viable alterna-
tive if there are herbicide tolerant genotypes in oilseeds. As 
most of the herbicides inhibit specific enzymes involved 
in amino acid metabolism pathways, if the target enzymes 
are modified in such a way that they are not acted upon by 
herbicides, then the plants become herbicide tolerant. Such 
mutant forms of target enzymes have been reported in dif-
ferent crops and they are being exploited by deploying them 
as transgenes conferring herbicide tolerance. CRISPR/Cas9 
system has been successfully employed to introduce her-
bicide tolerance in model crops like rice, wheat, tomato, 
potato, brassica and watermelon by editing the key genes 
such as 5-enolpyruvylshikimate- 3-phosphate synthase 
(EPSPS) and acetolactate synthase (ALS) gene (Hussain 
et al. 2018) in such a way that they are not affected by her-
bicides. Genome editing approach needs to be explored 
for other classes of herbicides including those inhibiting 
protoporhyrinogen oxidase and 4-hydroxyphenyl pyruvate 
dioxygenase (Kaur et al. 2022). Herbicide tolerance has 
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been demonstrated in soybean against chlorsulfuron (Li 
et al. 2015) and in flax against glyphosate (Sauer et al. 2016; 
Hussain et al. 2021). Base-editing of genes like C287, SPL 
14 and ACC-T1 has been successfully exploited to introduce 
herbicide resistance in rice (Mishra et al. 2020) and this 
could be adopted successfully in oilseed crops (Fig. 1).

Minimizing pod shattering damage

Pod dehiscence accounts for a major pre-harvesting as well 
as post harvesting yield loss in oilseed crops such as soy-
bean, sesame, and oilseed rape. Minimizing the shattering 
loss is an important objective in breeding of oilseed crops 
and mutant studies have identified the underlying genes for 
shattering resistance. Biotechnological efforts to minimize 
the pod shattering is a pressing priority. The genetic net-
work that expresses in silique dehiscence zone (DZ) is well 
documented in Arabidopsis (Ballester and Ferrándiz 2017; 
Ogutcen et al. 2018). Four TFs i.e., Shatterproof 1 (SHP 
1) and SHP 2 upregulate downstream TFs i.e., Indehiscent 
(IND) and Alcatraz (ALC) at DZ zone. Mutation in shp1 
shp2 and ind genes led to the production of fully indehis-
cent silique in Arabidopsis (Liljegren et al. 2000). Editing 
of ALC resulted in more shatter resistance in oilseed rape 
(Braatz et al. 2017). Additionally, two transcription factors, 
Fruitfull (FUL) and Replumless (RPL) that express in the 
valves and replum respectively, also regulate the expression 
of the DZ genes. However, there is a need for understanding 
or deciphering the genes involved in pod dehiscence so that 
it will provide a handle for manipulations. For example, in 
Brassica napus, an integrated approach led to identification 
of BnTCP8.C09 as the gene responsible for pod shattering 
(Chu et al. 2021). Elimination of Pod dehiscence 1 (PDH 1) 
gene resulted in pod shattering tolerance in soybean (Zhang 
et al. 2022b). Overall, tweaking of the homologs of any of 
the genes reported to be associated with pod shattering in 
other crops, could minimize the pod shattering in oilseed 
crops (Fig. 1).

Tuning the genes related to seed size and number

Oilseeds are a storehouse of oils and manipulating the traits 
such as inflorescence branching, silique structure, size and 
number of grains produced by plant will have a huge impact 
on the quantity of seeds produced. Multilocular phenotype 
has been achieved by precise editing of homologues of 
development related genes Clavata (CLV 1/2/3) in B. napus 
(Yang et al. 2018). Similarly editing the gene BnnEOD3 led 
to increased number of seeds in silique in rapeseed (Khan 
et al. 2020). The loss-of-function of Arabidopsis mobile 
regulator Terminal Flower 1 (TFL 1) produced large seeds 
compared to wild type (Zhang et al. 2020a). Knock-out of 
four rice genes i.e., Grain Size 3 (GS 3), Grain Weight 2/5 

(GW 2/5), and Thousand-Grain Weight 6 (TGW 6), that neg-
atively regulate rice grain weight led to the improvement of 
the grain weight (Xu et al. 2016a). Deletion of Big Seeds 
1 (BS 1), a negative regulator of organ size, significantly 
enhanced the grain size in both leguminous plants Medicago 
and soybean (Ge et al. 2016). Base-editing of GRF 3/4 by 
adenine base editor (ABE) resulted in increasing grain size 
and yield in rice (Hao et al. 2019). Thus, there is enormous 
scope for increasing the sink capacity in oilseeds, espe-
cially in crops like sesame, mustard, niger and linseed if the 
homologs of the genes negatively controlling seed size are 
disrupted (Fig. 1).

Tweaking the genes related to plant architecture

The principle behind the success of green-revolution is plant 
architecture. The structure of crops affects many important 
agricultural traits, especially yield. Plant ideotype concept 
has been developed in many crops to suit different conditions 
of cultivation. The central theme in such manipulations is to 
alter the plant architecture by increasing or decreasing the 
number of branches, altered height, basal or top branching 
types, reduced duration, etc. to suit the resource availabil-
ity during the length of growing period. In oilseed crops 
like castor, there is a requirement to develop plant archi-
tecture suitable for mechanical harvesting. In other crops, 
like sesame, no branching types with erect plant type to 
encourage high density planting is a requirement. There are 
genes reported in crops that are known to alter the plant 
architecture. Plant hormone gibberellic acid (GA) plays a 
vital role in growth and development. GA acts by degrading 
the DELLA protein which in turn is regulated by two pro-
teins i.e., the gibberellin receptor GID 1 (Gibberellin Insen-
sitive Dwarf 1) and the F-box protein GID 2 (Gibberellin 
Insensitive Dwarf 2). Loss-of-function of GID 1 and GID 
2 displayed a greater number of branches and leaves in rice 
(Wu et al. 2020). In another report, editing of carotenoid-
cleavage dioxygenase 8A and 8B (CCD 8A, CCD 8B) also 
produced similar patterns in rice and N. tabacum (Gao et al. 
2018; Liu et al. 2020). Similarly, deletion of Grain Number 
1a (Gn1a), Dense And Erect Panicle 1 (DEP 1), and Ideal 
Plant Architecture 1 (IPA 1) lead to the improvement of 
grain number, panicle architecture, grain size, and architec-
ture in rice (Li et al. 2016). In an interesting study in castor 
bean, candidate gene involved in dwarfism has been identi-
fied (Wang et al. 2021). Any of these target genes could be 
used for modifying the plant architecture through genome 
editing.

Tinkering the flowering

Duration taken for flowering as well as determinate v/s 
indeterminate flowering habits, both are very crucial in crop 
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plants to enable them to fit into different cropping seasons 
and systems. Since oilseeds are grown predominantly as 
rainfed crops in India, these traits are very crucial in breed-
ing programmes. Also, in some crops like sesame, breeding 
for thermo and photo-insensitive genotypes is important 
to allow the cultivation of the crop in different seasons as 
well as regions. Therefore, depending on the case, genome 
editing of appropriate gene(s) would help in accomplishing 
these objectives. With respect to inducing early flowering, 
editing of two genes Self-Pruning (SP) and Self-Pruning 5G 
(SP 5G), that work as floral repressors, led to early flowering 
genotypes in tomato (Soyk et al. 2017). Interestingly, in soy-
bean double mutants of GmFT2a/GmFT5a, the homologs of 
Flowering Locus T (FT) and transcription factor Squamosa 
Promoter Binding Protein-like (SPL), displayed more seed 
number (~ 250%) compared to wild type under short day 
condition. But the results were opposite when the same was 
adopted in B. napus and B. juncea. So, careful empirical 
assessment of the target genes would be crucial in translating 
the work from one system to the other (Subedi et al. 2020b).

Biofortification

Nutritionally enhanced food crops with increased bioavail-
ability of the essential nutrients, both microminerals (e.g., 
Minerals such as iron, zinc, copper, etc.) and macronutrients 
(such as amino acids and macrominerals like Ca, K, S, etc.) 
are expected to address the malnutrition of human popula-
tion in a very effective way. Bio-fortification of commercial 
crops for these nutrients is gaining importance and they 
are being addressed through breeding, biotechnology and 
agronomy practices. Transgenics have been used for biofor-
tification of crops with respect to vitamins, minerals, essen-
tial fatty acids and amino acids, antioxidants, and starch 
(Garg et al. 2018). Gene(s) involved in increasing either the 
quantity of the nutrients or their bioavailability have been 
the targets for manipulation. The gene FAD encodes fatty 
acid desaturases that convert high value oleic-acid to low 
value product linoleic acid. Researchers have commercially 
exploited this gene in camelina, peanut, soybean, cotton, 
rice and brassica for creating high oleic acid crops (Abe 
et al. 2018; Chen et al. 2021b; Siddique 2022). The existence 
of the fad2 gene in the maize genome suggests a potential 
future possibility to produce maize kernel oil rich in oleic 
acid (Mikkilineni and Rocheford 2003). Editing of phytic 
acid metabolism genes such as myo-inositol-3-phosphate 
synthase (MIPS), inositol-1,3,4,5,6-pentakisphosphate 
2-kinase (IPK) and inositol triphosphate kinases (ITPK) 
augmented micronutrients such as zinc, calcium, phosphate 
and magnesium in rapeseed and soybean (Tian et al. 2022; 
Jianing et al. 2022; Siddique 2022). In soybean, researchers 
successfully enhanced the Vitamin-E content by mutating 
homogentisate dioxygenase (HGO) gene (Stacey et al. 2016). 

In cotton, RNA interference (RNAi) mediated attenuation of 
the expression of genes encoding stearoyl-ACP desaturase 1 
(SAD1), and ketoacyl-acyl carrier protein synthase (KASII) 
led to a considerable change in the fatty acid composition 
of seed oil (Wu et al. 2022). Similarly, down-regulation of 
cadinene synthase led to gossypol-free (gossypol is an anti-
nutritional factor that naturally present in cotton plant) cot-
tonseed (Sunilkumar et al. 2006). Apart from oilseed crops, 
functional disruption of Vacuolar Iron Transporter 1 and 2 
(VIT 1/2) displayed increased Fe/Zn accumulation in rice 
seeds (Zhang et al. 2012). Hemerythrin motif-containing 
Really Interesting New Gene (RING)- and Zinc-finger pro-
tein 1 (OsHRZ 1) and OsHRZ 2 edited rice plants accumu-
lated iron in their shoots and grains (Kobayashi et al. 2013). 
With the accumulating information on genes that could be 
manipulated for biofortification in different crops, there is a 
large scope for adopting genome editing for improving this 
trait in oilseed crops.

Self‑incompatibility

Pollination and fertilization lead to seed production, which 
is the economic part in oilseeds. Self-incompatibility (SI) 
hampers the creation of inbred lines and breaking of SI is a 
breeding objective in oilseed crops such as niger, and bras-
sica. Self-compatibility (SC) has been successfully achieved 
by editing some of the crucial genes like, S-RNase, F-box 
protein (SLF), PR55/B, S-receptor kinase and M-locus pro-
tein kinase in potato, cabbage and oilseed rape (Ahmad 
et al. 2021b; Shin et al. 2022; Kardile et al. 2022) as well 
as through introgression of S-locus inhibitor (Sli) in potato 
(Kardile et al. 2022). Knocking out of PGAP 1, post-GPI 
attachment to proteins 1 genes disrupted SI in Arabidopsis 
without developmental defects (Lin et al. 2022). In contrast, 
self-incompatibility was restored in citrus by tweaking the 
FPS2 gene to trigger parthenocarpy (Qin et al. 2018). Pre-
sent gene-editing technologies have widened the possibili-
ties to overcome the SI/SC in oilseed crops to create novel 
breeds.

Domestication of wild oilseed crops

Crop wild relatives (CWRs) form a treasure trove of many 
important agronomic traits but as such these CWRs are not 
suitable for intensive cultivation due to the presence of a few 
undesirable characteristics including wild and weedy nature, 
lower harvest index, etc. To make the CWRs suitable for 
extensive cultivation, scientists have started modifying the 
domestication traits in them using genome-editing tools that 
results in the development of new variants or genotypes that 
have the required agronomic traits compared to CWRs. Pres-
ently, de novo domestication of wild crops has been shown 
as an innovative crop breeding strategy to address future 
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food challenge (Kumar et al. 2022). Wild tomato (Solanum 
pimpinellifolium), groundcherry (Physalis pruinosa), and, 
most recently, allotetraploid rice (Oryza alta) have all been 
successfully bred for a variety of agronomic traits (Lemmon 
et al. 2018; Zsogon et al. 2018; Yu et al. 2021). The domesti-
cation of the day neutral wild tomato is closely examined by 
editing of SELF-PRUNING 5G (SP5G) gene that led to the 
creation of compact growth habit and rapid flowering variety 
(Soyk et al. 2017). De novo domestication may be enabled 
by mutations in the SP5G gene in day-neutral wild relatives 
of oilseed crops like groundnut, sunflower, and safflower. 
To create neo-domesticated cultivars, it may be possible to 
target genes that are related to survival, spread, and fitness 
related traits like pod shattering, plant architecture, grain 
size and number, flowering, and photoperiodism. Among 
all oilseed crops, high-quality whole-genome assemblies of 
CWRs of soybean (Glycine soja), peanut (Arachis duran-
ensis and Arachis ipaensis), and pangenome assemblies are 
available for Brassica sp., sunflower, and cotton (Bohra et al. 
2022). It might not be a simple path for all oilseed crops to 
achieve de novo domestication, because, an annotated refer-
ence genome of CWRs, knowledge of domestication-related 
genes, are still unavailable for many wild relatives of oilseed 
crops sesame, linseed, niger, and safflower, just to cite as 
examples.

Caveats and challenges for applying CRISPR/
Cas9 mediated GE in oilseed crops

All the genome editing approaches depend on the transfor-
mation procedure for delivering the editing machinery into 
plant cells and are thus dependent on plant tissue culture 
(PTC) and transformation procedures. Therefore, the biggest 
bottleneck in genome-editing of oilseed crops is efficient 
delivery of gene editing reagents into the plant regenera-
tive cells. PTC is a lengthy, costly, labour-intensive and is 
possible in limited number of plant species (Anjanappa and 
Gruissem 2021). Even though, there are reports of genetic 
transformation and regeneration in each of the oleiferous 
crops, repeatable and genotype independent protocols for 
routine applications of in vitro manipulations as adoptable 
by different labs are still missing in many of these oilseed 
crops (eg. sunflower, Darqui et al. 2021; cotton, Kalbande 
and Patil 2016; coconut, Nguyen et al. 2015; linseed, Beyaz 
et al. 2016; camelina, Sitther et al. 2018; sesame, Teklu 
et al. 2022; castorbean, Xiao et al. 2022; safflower, Nitna-
ware et al. 2021; jatropha, Al-Khayri et al. 2022) (Table 2). 
Therefore, developing repeatable and efficient transforma-
tion protocols should be the primary line of activities in 
successfully adopting GE technology in these crops. The 
bottlenecks of regeneration and transformation are specific 

to crops and delving into all these aspects is beyond the 
scope of this review article and therefore, not elaborated.

Among the different genome editing tools reported, 
CRISPR/Cas9 system is the most followed method due to 
its versatility and options. However, it has some limitations 
as well. Large size of Cas nucleases is not much suitable for 
Agrobacterium mediated transformations thus discovering 
or engineering smaller Cas variants is inevitable. Limiting 
PAM specificity, random off-target mutations, selection of 
sgRNA, balanced in-vivo expression of sgRNA and Cas cas-
settes in host are some of the concerns/limitations and they 
need to be addressed for realizing high editing efficiency. 
Identification and optimization of promoters suitable for 
crop is needed for effective expression of Cas and sgRNA. 
Genome sequenced oilseed crops and their immediate tar-
getable traits have been listed in Table 2. Selecting the spe-
cific functionally characterized target genes for manipulating 
the trait is crucial. In oilseeds, availability of such character-
ized genes has been a limitation and therefore, either this has 
to be empirically determined or they need to be taken from 
the heterologous systems as indicated in Table 1.

Construct design is a vital step in genome-editing (Has-
san et al. 2021). Three components i.e., (1) selection of Cas 
nucleases, (2) design of gRNA, and (3) promoters that are 
used to express Cas protein and gRNAs need to be selected 
carefully. Despite the wide-ranging use of SpCas9, it does 
come with certain limitations such as off-targets, limited 
5′-NGG-3′ PAM sequence, and bigger in size (Nadakuduti 
et al. 2018). To address this, several natural and engineered 
variants of Cas9 have been developed (Cebrian-Serrano and 
Davies 2017). Codon optimized Cas genes for each host spe-
cies work better than wild type as demonstrated in soybean 
(Michno et al. 2015). Design of effective gRNA is another 
crucial step in genome-editing. There are many web tools 
available for gRNA design among which CRISPOR (Con-
cordet and Haeussler 2018), CRISPR-P (Liu et al. 2017), 
RGEN Cas designer (Park et al. 2015), and CHOPCHOP 
(Labun et al. 2019) are widely used and suitable for oilseed 
crops. Availability of whole genome sequence of the crop 
is necessary for designing the effective sgRNA using online 
web tools. As the editing efficiency is mainly dependent on 
sgRNA selection and promoters used for expressing Cas-
nuclease and sgRNA, these need to be empirically deter-
mined in crops.

Many of the cultivated oilseed crops are polyploids (soy-
bean, rapeseed, peanut, cotton and camelina). In comparison 
to diploid crops, the editing effectiveness has varied greatly, 
in particular, in polyploid crops owing to the genome com-
plexity. The challenge of simultaneous elimination of all 
copies of genes including the homoeologs with the same 
function is necessary especially when paralogs and orthologs 
have redundant functions (Zaman et al. 2019). Alebit this 
perceived difficulty, thanks to the cutting-edge technologies 
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(Li et al. 2021a), genome editing has been successfully car-
ried out in rapeseed, soybean, peanut, cotton, and camelina 
(Table 1). The editing effectiveness may be directly influ-
enced by the careful design of gRNA, choice of promoter, 
optimized/newly discovered Cas nucleases, and multiplexing 
(Zaman et al. 2019).

Future prospects of genome editing 
in oilseed crops

As outlined in this review, genome editing has been demon-
strated in a few oilseed crops for a few agronomic traits. But, 
considering the success seen in other crops, genome editing 
could become a main tool in the armoury of genetic engi-
neering options for oilseed crops as well. Genome sequence 
of many oilseed crops have been deciphered (Table 2) and 
thus offers a platform to select the target gene sequences. 
There are crop specific traits (as listed in Table 2) that could 
be improved through genome editing in oilseed crops. 
Establishing repeatable transformation protocols, dissect-
ing the plant/cellular processes involved in trait manipula-
tion, understanding the functionality of the implicated genes 
thoroughly to obtain expected phenotype, overcoming the 
limitations of off-target effects would all lead to harnessing 
the benefits of GE in oilseed crops. Among these limitations, 
the biggest bottleneck in genome-editing of oilseed crops is 
the efficient delivery of gene editing reagents into the plant 
regenerative cells. To circumvent this limitation, PTC-free 
genome editing has been achieved through many methods 
such as polyethylene glycol (PEG) mediated delivery of pre-
assembled Cas/gRNA, ribonucleoproteins (RNPs) to proto-
plasts (Banakar et al. 2020), particle bombardment delivery 
of CRISPR/Cas reagents (Demirer et al. 2020; Banakar et al. 
2020), de-novo meristematic microinjection of developmen-
tal regulators with gene-editing reagents (Maher et al. 2020), 
use of viral vectors (Ellison et al. 2020) and CRISPR-combo 
system (Pan et al. 2022). Furthermore, as our understanding 
of regulatory genes' functions in plant genetic transforma-
tion and regeneration expands, we may someday be able to 
harness these genes to develop a single universal genotype-
independent plant tissue culture approach for all oilseed 
crops (Maren et al. 2022). As has been demonstrated in 
recent studies, nanovectors/nanocarriers promise to offer a 
solution to the issue of delivering the elements of CRISPR/
Cas mediated genome editing directly to the target tissue(s) 
in plants. Nanomaterials like mesoporous silica particles 
(MSNs), gold nanoparticles (AuNPs), carbon nanotubes 
(CNTs), and layer double hydroxides (LDHs) have been used 
as promising cargo carriers and deliver the editing reagents 
in a highly effective and species-independent manner and 
bring in the editing of the target genes (Vats et al. 2022; Zhi 
et al. 2022; Savage 2022). These methods are technically 

challenging, less effective, and have not yet been adopted 
for oilseed crops on a large scale. Once these techniques are 
well established, many of the legislative and public concerns 
raised due to transgene integration (Teferra 2021) will also 
be allayed. This is only the beginning of PTC free GE and 
we can expect to see a rapid advance in this field in future 
and this will help oilseed researchers to a great extent.

Functionality of genes and their role in trait develop-
ment are being established through many approaches such 
as allele mining, phenotypic analysis of chemical induced, 
T-DNA, and transposon mutants, map-based cloning of 
QTLs, candidate gene-based phenotyping, transgenics–both 
silencing and overexpressing types, transcriptome studies, 
pathway analysis, and others in both model and related plant 
species. This information could be used for selecting the 
target genes for manipulation through gene editing.

There is an urgent need to develop climate smart high-
yielding oilseed crop varieties owing to many snags chal-
lenged by dynamic climate. There is immense scope to apply 
state-of-the-art technologies like CRISPR/Cas to improve 
their productivity. Editing of many genes that act as nega-
tive regulators for growth and development offer a great 
potential. Knowledge accrued from related model crops like 
Arabidopsis, tobacco, tomato and rice might help in devel-
oping suitable strategies to realize high yielding varieties 
in other oilseed crops as well. There is substantial literature 
available on genes and non-coding RNAs which play piv-
otal role as negative regulators of growth, yield and stress 
responses in model crops (Ojolo et al. 2018; Begum 2022) 
and this information shall be effectively used in genome edit-
ing to manipulate the traits.

Another important area of future development would be 
to exploit editing to modify MIR genes. It is well known that 
miRNAs that are up-regulated under stress (biotic/abiotic) 
conditions are expected to downregulate the target genes 
which in turn are negative regulators of the stress tolerance 
whereas the miRNAs that are down-regulated under stress 
conditions are expected to up-regulate the target genes which 
are positive regulators of the stress tolerance (Zhang 2015). 
Hence, if miRNAs are up-regulated in the given stress, the 
target gene of that cognate miRNA could be edited and if 
miRNAs are down-regulated during a particular stress, then 
MIR genes encoding them could be edited to enhance the 
stress tolerance. Therefore, literature on the role of miR-
NAs in stress responses offer a great potential for creation 
of climate-smart crops by genome-editing (Begum 2022).

The continuous methodological improvements of 
CRISPR/Cas toolbox particularly, discovery of tiny Cas 
variants (Savage 2019), reducing off-targets (Movahedi 
et al. 2022), epigenetic modifications (Gardiner et al. 2022), 
base-editing, prime-editing (Molla et al. 2021), CRISPR-
combo system (Pan et al. 2022) and near-PAMless (Walton 
et al. 2020) specificity should expand the scope of genome 
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editing. Taken together, it clearly hints that genome-editing 
approaches have opened up exciting possibilities for improv-
ing oilseed crops and in future we are expected to reap rich 
dividends from this research.
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