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Abstract

The ever-increasing demand for vegetable oil requirement has necessitated increasing the production of oilseeds crops.
Productivity is compromised in these crops due to biotic and abiotic stresses. Albeit the substantial progress made in this
direction through conventional breeding approaches, breeding for certain traits like stress tolerance is limited by the non-
availability of genetic variability for these traits in primary germplasm, the time required for selection and the realization
of a suitable genetic assemblage from the segregating populations, etc. This situation has necessitated adopting alternate
approaches to achieve the objectives. Genome editing technology offers a solution to modify the genome precisely with least
genetic perturbation in the least possible time frame and it has been adopted in several crops including oilseeds. Genome
editing technology depends on the genetic transformation step for introducing the machinery required for altering the genome.
However, the recalcitrance for in vitro manipulations observed in oilseed crops such as castor, sesame, jatropha, etc. has
set a limit for exploiting this powerful technology in oilseed crops. In this review, we have summarized the genome editing
work carried out in oilseed crops and also discuss the possibility of employing such technologies along with the promising
gene targets that could be manipulated to generate required variants in oilseed crops.
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Abbreviations Introduction
ZFNs Zinc finger nucleases
TALENs Transcription activator like effector nucleases More than twenty oilseed crops are cultivated across the
CRISPR  Clustered Regularly Interspaced Short Palin- world for human consumption as well as industrial uses.
dromic Repeats The major oleiferous crops include soybean [Glycine max
Cas CRISPR associated system (L.) Merr.], rapeseed and mustard (Brassica spp.), peanut
PAM Protospacer adjacent motif (Arachis hypogaea L.), palm oil (Elaeis guineensis Jack.),
NHEJ Non-homologous end-joining sunflower (Helianthus annuus L.), coconut (Cocos nucifera
HDR Homology-directed repair L.), cottonseed (Gossypium spp.), niger [Guizotia abyssi-
SDN Site directed nuclease nica (L. f.) Cass.], sesame (Sesamum indicum L.), safflower
PTC Plant tissue culture (Carthamus tinctorius L.), camelina (Camelina sativa L.),
RNPs Ribonucleoproteins castor bean (Ricinus communis L.), physic nut (Jatropha
MIR miRNA genes curcas L.), and linseed (Linum usitatissimum L.). In addi-

tion to the conventional oils, rice bran oil and corn kernel

oil are important non-conventional sources of edible oils.

Because of their nutritive values, maize kernal oil and rice

bran oil are growing in popularity. Edible-oils and oilseed

54 V. Dinesh Kumar meals are rich in essential nutrients besides contributing
vdinesh.kumarl @icar.gov.in up to about 40% of the calories in human diet. Growing
population, changing dietary patterns, and improved liv-
ing standards are increasing the demand for vegetable oil
production. On the other hand, global warming, finite agri-
cultural lands, abiotic and biotic stress factors are posing a
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threat for keeping pace with this demand. Hence, improving
the quantity and quality of oilseeds is one of the key objec-
tives for modern-day researchers to meet the global demand.
Elite oilseed crop varieties are being created by either tradi-
tional, or mutational breeding methods, or through genomics
assisted breeding approaches. However, these methods are
tedious, time consuming and often coupled with undesir-
able trait combinations. Also, the conventional breeding
approaches are limited by the available genetic variability
for the traits of interest. Hence, there is a constant search
for simple and precise methods that could alter the genome
in a directed way with least or no perturbation to the rest of
the genome. Site directed nucleases such as meganucleases,
ZFNs (zinc finger nucleases) and TALENSs (transcription
activator like effector nucleases) have been used for targeted
editing of the genomic content. However, the complexity of
functionality as well as the fastidious requirements of these
SDNs limited their widespread deployment in crops to create
new directed genome variability. In the light of this, discov-
ery of Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/CRISPR associated system (CRISPR/
Cas) a microbial adaptive immune system, has offered a new
tool for trait modifications (Jiang et al. 2013). The CRISPR/
Cas system has many advantages over other SDN mediated
modifications due to its diversity, robustness, and flexibility
(Pickar-Oliver and Gersbach 2019; Walton et al. 2020). The
ease with which this system could be adopted for precise
genome editing across a wide variety of organisms including
plants has opened up new vistas in the world of modern sci-
ence (Zhang et al. 2020b). CRISPR/Cas is an RNA-guided
endonuclease that specifically targets and cleaves the DNA
at specific sites recognized through the protospacer adjacent
motif (PAM) sequence near the edited site. Among several
Cas genes reported (like Cas9, Casi2, Casl3, etc.), Cas9
obtained from Streptococcus pyogenes (SpCas9) has been
codon optimized for various crops and engineered with vari-
ous PAM specificities and used in most of the studies. In this
review, we discuss the applicability of the CRISPR/SpCas9
system in oilseed crops.

The double stranded breaks in DNA at the target site created
by SDNs including Cas9 protein are repaired by two mecha-
nisms, the error-prone, non-homologous end-joining (NHEJ)
and homology-directed repair (HDR). The NHEJ leads to ran-
dom nucleotide base insertions or deletions (InDels) at the
cleavage site which in turn leads to the formation of mutated
and more often non-functional or impaired protein. Based on
the intended mode of editing, the genome editing has been
grouped mainly into three groups: site directed nuclease 1
(SDN1), SDN2 and SDN3. SDNI1 involves creation of InDels
at the targeted sites via the NHEJ route, while SDN?2 also cre-
ates specific changes at the target sites via the HDR mecha-
nism. On the other hand, SDN3 introduces specific genes at
the targeted site using HDR mechanism (Ahmad et al. 2021a).

@ Springer

Among the three types, SDN1 has been exploited the most
in plants owing to the increased frequency of NHEJ medi-
ated repair compared to the HDR mediated one (Molla et al.
2021). Even though, developing edited lines in crops involves
a genetic transformation step to introduce the editing machin-
ery (CRISPR/Cas9) into the plant, as the site of action of this
machinery is different compared to the site of insertion, in the
subsequent generations the transgene free but genome edited
lines could be realized though Mendelian segregation. Thus,
the resultant edited lines will be without the introduced genes
(transgenes), owing to which many countries including India,
have categorized SDN1 and SDN2 derived genotypes as non-
transgenic and thus exempted from going through cumber-
some regulatory procedures before their release for commer-
cial cultivation.

CRISPR/Cas9 has revolutionized the pace of plant biol-
ogy research (Manghwar et al. 2019) and made precise
plant genome editing a reality (Zhu et al. 2020). Thus, it has
become an attractive and competitive field within a very
short time and has been used to manipulate agronomic traits
in many crops. Many versions of CRISPR/Cas9 with subtle
but effective modifications have opened up novel ways of
genome manipulations using base editors and prime editors
(Molla et al. 2021; Das et al. 2022) and the field is evolving
continuously bringing many more crops and traits under its
fold of benefits. However, there are specific requirements
to adopt genome editing approach in crops (Son and Park
2022) and they mainly include, (1) genome sequence infor-
mation (2) functionally characterized target gene(s) (3) DNA
transfer method (either biological such as Agrobacterium, or
physical such as biolistic, electroporation, or chemical such
as PEG, nanoparticles etc.) (4) suitable expression systems
(either generic, modular or specific) and (5) a suitable regen-
eration system, preferably a genotype independent one to
obtain edited plants from the transformed cells. Strategies
are being developed to address these requirements or chal-
lenges (Son and Park 2022). Readers are referred to compre-
hensive and informative reviews on historical perspective of
CRISPR/Cas system (Lander 2016), mechanism and modi-
fied versions of CRISPR/Cas (Das et al. 2022), applications
in field crops (Zhu et al. 2020), horticultural crops (Kaur
et al. 2021) and in basic research (Ledford 2021). Here our
aim is to summarize the recent developments in the applica-
tion of CRISPR/Cas9 in oilseed crops besides providing a
perspective on future applications.

Present scenario of CRISPR/Cas applied
to oilseed crops

CRISPR/Cas9 has been effectively employed in oilseed rape,
soybean, camelina, peanut, cottonseed, and flax (Subedi
et al. 2020b; He et al. 2021) to realize promising lines. A
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summary of the genome editing work reported in oilseeds
has been provided in Table 1. A perusal of the information
in Table 1 indicates that most of the target genes chosen in
these studies had been functionally validated through dif-
ferent approaches including gene silencing studies, either
in the same crop or in heterologous or model crops, map-
based cloning, transcriptome analysis, pathway analysis,
etc. So far, only SDNI1 type of genome editing has been
adopted for trait manipulation. In oilseed crops, CaMV 35S
has been used in most of the studies to drive the expres-
sion of cas9 while the sgRNA has been driven by promot-
ers of small nuclear RNA (snRNA) genes such as U3/U6
that are typically transcribed by class III RNA polymerases.
In general, in other systems also, it has been opined those
promoters with strong and constitutive expression patterns
are employed to achieve balanced and high-level expression
of Cas and gRNA. However, it has been demonstrated that
crop-specific ubiquitin promoter (Feng et al. 2018) and mei-
otic cell-specific promoter YAO (Wolter et al. 2018) result in
higher gene edits compared to CaMV 35S. In oilseeds also,
some tissue specific promoters like YAO (Wang et al. 2022c),
ECI1.2 (Lee et al. 2021), AtEF1a (Lyzenga et al. 2019) and
pM4 (Zhang et al. 2022b) have been used for driving the
expression of cas9. In almost all the cases, Agrobacterium
mediated transformation has been used to introduce the GE
machinery and usually single to multiple sgRNA cassettes
have been introduced. Homozygosity for the edited sites
have been reported either in T, and T, generation indicating
that biallelic edits have been achieved in T generation. In
a few cases, transgene free edited lines have been reported
whereas in most of the cases the edited lines are reported to
still carry the transgenes. Genome-editing efficiency rang-
ing from 0.1 to 100%, depending on crops and their geno-
types, has been reported. In Brassica species, the efficiency
is reported to be 10-100% while it varied from 47.6 to 100%
in cotton and 37-88% in soybean (Table 1).

In soybean, the main traits targeted have been biotic stress
tolerance (insect, cyst, virus), agronomic (flowering time,
increased yield, male sterility) and qualitative (enhanced fra-
grance). In rapeseed, genome editing efforts have targeted
quality (glucosinolates, altered starch structure), and agro-
nomic traits (self-incompatibility, seed number in siliques,
plant architecture and male sterility). In Camelina, a model
oilseed plant belonging to Brassicaceae family, and a plant
for biodiesel production, GE for quality traits (reduced
PUFA, altered fatty acid composition) has been reported.
Reducing the allergen and increasing the nodule number are
the traits targeted through genome editing in peanut. In cot-
ton, altering the plant architecture has been achieved through
genome editing. Many of the studies have reported testing of
the feasibility of genome editing in respective crops. Allo-
tetraploid oilseed rape and soybean have been successfully
edited for increasing oil quality/quantity and biotic/ abiotic

stress tolerance (Du et al. 2016; Xu et al. 2019; Huang et al.
2020).

Based on the literature available across all the crops and
considering the specific research objectives of oilseed crops
(as enumerated in Table 2), possible target traits and the
genes that could be edited in oilseed crops are illustrated in
Fig. 1 and they are discussed briefly here.

Increasing the seed oil content and altering the oil
quality

As oilseeds are predominantly cultivated for seed oil pur-
pose, the main breeding objective of these crops is increas-
ing the oil production per unit area. This can mainly be
achieved by increasing the seed yield as well as the oil
content. However, the synthesis and accumulation of oils is
controlled by complex gene networks and the exact interplay
among these networks is still unclear and needs to be further
understood. Nevertheless, there is significant information
regarding the genetic control of seed oil formation and the
genes involved in this process (Kumar et al. 2020; Yang et al.
2022), and these genes are being functionally validated in
the model plant Arabidopsis as well as other oilseed crops
(Subedi et al. 2020b). Oils are stored basically as triacylg-
lycerol (TAG) and key genes involved in oil accumulation
(such as the enzymatic Kennedy pathway genes, Fatty Acid
Synthases, oleosins etc., and the transcription factors like
WRKY, LEC 1, LEC 2, FUS 3, GL 2 etc.) have been identi-
fied and functionally validated using different approaches
including developing transgenic lines that overexpress or
silence these genes. Cotton seed oil content was enhanced
by 7.3% and 16.7% when genes such as PEPCI and PEP-
EC2A, known to play negative role in lipid biosynthesis,
were silenced (Xu et al. 2016b; Zhao et al. 2018). These
genes could be targets of genome editing when oil content
is to be enhanced. There are reports of InDels in TAG bio-
synthesis genes that have led to increased oil content, e.g.,
one amino acid change in DGAT-1 in maize led to increased
oil content (Zheng et al. 2008), and therefore such genes
could be targeted for editing. Interestingly, there are many
transcription factors such as MYB genes (MYB78, MYBS9,
MYBI18, MYB123), WRKY6, AP 2, TT 8, etc. which act as
negative regulators of oil accumulation (Kumar et al. 2020)
and these genes are the possible targets for genome editing
to manipulate the seed oil content trait (Zafar et al. 2019).
Oil quality, which is primarily decided by the fatty acid
profile and the antioxidants present in the oil are also the tar-
gets of specific breeding programmes (Subedi et al. 2020a).
There are reports of developing such lines in oilseed crops
through different approaches including genome editing. Met-
abolic engineering of genes from other plant sources have
also been used to alter the oil content and fatty acid profile
in oilseed crops such as brassica, safflower, cotton, peanut

@ Springer
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Biofortification
FAD; VIT 1/2;

HRZ 1/2; MIPS; IPK 1;
ITPK; LCY¢; HGO

Seed size & Number
CLV 1/2/3; TFL 1;

GW 2/5; TGW 6;

GS3; BS1;

EOD3; GRF 3/4

Plant architecture
DEP 1; Gnla;

GID 1/2; IPA 1;
CCD 8A/B

Flowering
SPL; FT;
SP; SP 5G

Self-incompatibility
S-RNase; SLF; PR55/B;
S-receptor kinase;
M-locus protein kinase;
Sli; FPS2;
HLD1/PGAP1

Fig.1 Promising traits and probable gene targets for editing by
CRISPR/Cas in oilseed crops. MYB, Transcription factors; 7T 8,
Transparent Testa 8; AP 2, Apetala 2; GL 2, Glabra; FUS 3, Fusca
3; LEC 1/2, Leaty Cotyledon 1/2; PDH 1, Pod Dehiscence 1; RPL,
Replumless; FUL, Fruitfull; IND, basic helix-loop-helix gene Inde-
hicent; SHP 1/2, MADS-box genes Shatterproof 1/2; ALC, Alcatraz;
EPSPS, encodes 5’enolpyruvylshikimate 3-phosphate synthase; ALS,
acetolactate synthase; ACC-TI, acetyl-coenzyme A carboxylase;
SPL 14, Squamosa Promoter Binding-Like 14; C287, C287 mutant
of acetolactate synthase; miRNAs, micro RNAs; CKX, cytokinin
oxidase/dehydrogenase; ERF, ethylene responsive factor; OST 2,
Open Stomata 2; CBF/DREB, C-repeat/DRE binding factor/ Dehy-
dration Responsive Binding Element; WRKY, encodes transcrip-
tion factors; DIPM 1/2/3, DspE-interacting proteins of Malus 1/2/4;
LOB 1, Lateral Organ Boundaries 1; SWEET, sugar will eventually
be exported transporter; WAT 1, Wall Are Thin 1; elF4E, eukaryotic
translation initiation factor 4E; MLO, Mildew Resistance Locus O;

and camelina through transgenic approach (Wu et al. 2022;
Porokhovinova et al. 2022). Tinkering the pathway genes
by SDN1 modifications and incorporating novel genes by
SDN3 modifications can be done by genome editing in order
to change the fatty acid composition in oils.

Enhancing biotic stress tolerance
Plants co-exist with a myriad of microbes and pests. Plant

photosynthetic efficiency is drastically impeded by patho-
gens thus causing around 20-40% of yield losses globally.

Biotic stress

MLO; WAT 1; elF4E;
SWEET; LOB 1;
DIPM 1/2/4;

Abiotic stress
WRKY; CBF/DREB;
OST 2; ERF; CKX;
miRNAs

Herbicide tolerance
C287; SPL 14;
ACC-T1; ALS; EPSPS

Pod shatter
ALC; SHP 1/2;
IND; FUL; RPL;
TCP8.C09; PDH1

Oil content & Fatty
acid profile alteration
LEC1/2;

FUS3; GL2;

AP2; TTS;

MYB genes

HGO, homogentisate dioxygenase; LCYe, lycopene epsilon-cyclase;
ITPK, inositol triphosphate kinases; /PK1, inositol-1,3,4,5,6-pentak-
isphosphate 2-kinase 1; MIPS, myo-inositol-3-phosphate synthase;
HRZ 1/2, hemerythrin motif-containing really interesting new gene
(RING)- and zinc-finger protein 1/2; VIT 1/2, Vacuolar Iron Trans-
porter 1/2; FAD, fatty acid desaturases; CLV 1/2/3, Clavata 1/2/3;
TFL 1, Terminal Flower 1; GW 2/3, Grain Weight 2/5; TGW 6, Thou-
sand-Grain Weight 6; GS 3, Grain Size 3; BS I, Big Seed 1; EOD3,
Enhancer 3 Of Da 1; GRF 3/4, Growth Regulating Factor 3/4; DEP
1, Dense And Erect Panicle 1; Gnla, Grain Number la; GID 1/2,
Gibberellin Insensitive Dwarf 1/2; IPA 1, Ideal Plant Architecture
1; CCD 8A/B, carotenoid cleavage dioxygenase 8A/8B; SPL, Squa-
mosa Promoter Binding Protein-like; F7T, Flowering Locus T; SP,
Self-Pruning; SP 5G, Self-Pruning 5G; SLF, F-box protein; PR55/B,
PP2A 55 kDa B regulatory subunit; S/i, S-locus inhibitor; FPS2,
farnesyl pyrophosphate synthase; PGAPI, post-GPI attachment to
proteins 1. Picture created by Biorender.com

Plants do harbour a set of genes called susceptibility genes
(S-genes) that predispose the plants for pathogen attack and
they could be edited or modified to make plants resist the
pathogens. It has been demonstrated that the S-gene products
are essential for initial establishment, growth and prolifera-
tion of phytopathogens (van Schie and Takken 2014). Hence,
disrupting these genes can break the host—pathogen com-
patibility and render resistance to plants (Garcia-Ruiz et al.
2021). This phenomenon has been demonstrated using gene
silencing or knock-out studies, for e.g., gene knock-out of
Mildew Resistance Locus O (MLO) has conferred resistance
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to various powdery mildew causing fungus in crop species
like wheat, grape and tomato (Zaidi et al. 2018). Mutation
of Walls Are Thinl (WATI) enhances broad-range resistance
to vascular pathogens such as Ralstonia solanacearum and
Verticillium dahliae in Arabidopsis and cotton respectively
(Denancé et al. 2013; Tang et al. 2019). Knocking-out of the
eukaryotic translation initiation factor, elF4E and SWEET
genes conferred resistance to virus and bacterial pathogens
respectively in several crops (Zaidi et al. 2018). Promoter
disruption of Lateral Organ Boundaries 1 (CsLOB 1) gene
decreased the citrus-canker disease severity by 83.2-98.3%
in Citrus sinensis (Peng et al. 2017). Similarly, gene edit-
ing of DIPM-1, DIPM-2, and DIPM-4 in Apple conferred
resistance to fire blight disease caused by Erwinia amylovora
(Malnoy et al. 2016). S-gene homologs have been reported in
many crops including oilseeds. The SWEET gene and WAT 1
orthologs have been identified and validated for their role as
S-genes in both soybean and cotton respectively (Koseoglou
et al. 2022). Apart from S-genes, there are many other genes
that could be targeted for disease resistance (Schenke and
Cai 2020). Still, the pleiotropic effects and to what extent
these S-genes identified in model crops are functionally con-
served in other oilseed crops are unanswered questions and
only after these issues are addressed could they be used as
targets for genome editing in oilseed crops. Therefore, it is
likely that the CRISPR/Cas-mediated targeting of homologs
of such S-genes may confer resistance to pathogens in oil-
seed crops (Ali et al. 2022).

Enhancing abiotic stress tolerance

Abiotic stress like drought, temperature and salinity causes
major threat for oilseed production especially in India as
more than 70% of oilseed cultivation in India is under rain-
fed condition and in marginal lands. As indicated by several
basic studies earlier, there are negative regulators of abiotic
stress tolerance in crops and if these genes are silenced or
disrupted, it might lead to abiotic stress tolerance (Singh
et al. 2019). Many attempts have been made to edit signalling
cascade genes for abiotic stress responses in model crops
(Kaur et al. 2022). Editing of gene encoding Open Stomata
2 (OST 2), a proton pump in Arabidopsis increased drought
tolerance (Osakabe et al. 2016; Joshi et al. 2020). Manipula-
tion of the cytokinin levels by silencing of cytokinin oxidase/
dehydrogenase (CKX) gene in roots is shown to increase
the drought tolerance in many crops (Zalabak et al. 2013).
Several cis-regulatory sequences act as negative regulators
of abiotic stress tolerance. Transcription factors (TFs) like
WRKY (GhWRKY17, GmWRKY13, and ZmWRKY17), ethyl-
ene responsive factor (ERF) and CBF/DREB, bind to these
sequences and negatively regulate abiotic stress tolerance
(Zafar et al. 2020). Such genes have been reported in bras-
sica, cotton, and peanut (Luo et al. 2021; Shazadee et al.
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2022; Wang et al. 2022a). Several genes such as GENAC?79,
GhRaf19, GhWRKY6, GhABF2, GhRafl19, GhMKK3,
GhWRKY27a, GhMAP3K65, G18431620 (GH 3.5) and
AtHUB?2 were successfully confirmed by virus-induced gene
silencing (VIGS) in cotton for their role in heat, drought, salt
and cold stress (Singh et al. 2019). VIGS mediated silencing
of AhABI4s conferred the salt tolerance in peanut (Luo et al.
2021). All these genes are potential target genes for confer-
ring abiotic stress tolerance. MicroRNAs are also known
to mediate abiotic stress tolerance (Begum 2022). Usually,
microRNAs silence the target genes by binding to their tar-
gets and marking them for cleavage. Such target genes could
be the candidate genes for genome editing (Gao et al. 2022).
Apart from this, the MIR genes (microRNA encoding genes)
can be a potential target for genome editing if these micro-
RNAs are negative regulators of stress tolerance (Basso
et al. 2019). Some miRNAs such as miR414, ghr-miR399,
ghr-156e, miR319, ghr-miR5272a, miR156a/d/e, miR167a,
miR169, miR397a/b, miR399a, miR535a/b, miR827b and
many more are playing a role in various abiotic stress tol-
erance in cotton, brassica, and soybean (Chaudhary et al.
2021; Tiwari and Rajam 2022; Begum 2022). Therefore,
editing the main target genes of these miRNAs would confer
tolerance in oilseed crops.

Introducing herbicide tolerance

Herbicides are used to restrict weeds which affect produc-
tivity owing to competitiveness with crops. Establishment
of oilseed crops is affected badly by the weeds especially
during the initial phase of crop establishment and removal
of them at that stage is crucial for crop growth. This is more
pronounced in small seeded crops like sesame, niger, and
mustard. Manual weed control is not only costly but also
time consuming. Herbicide application is a viable alterna-
tive if there are herbicide tolerant genotypes in oilseeds. As
most of the herbicides inhibit specific enzymes involved
in amino acid metabolism pathways, if the target enzymes
are modified in such a way that they are not acted upon by
herbicides, then the plants become herbicide tolerant. Such
mutant forms of target enzymes have been reported in dif-
ferent crops and they are being exploited by deploying them
as transgenes conferring herbicide tolerance. CRISPR/Cas9
system has been successfully employed to introduce her-
bicide tolerance in model crops like rice, wheat, tomato,
potato, brassica and watermelon by editing the key genes
such as 5-enolpyruvylshikimate- 3-phosphate synthase
(EPSPS) and acetolactate synthase (ALS) gene (Hussain
et al. 2018) in such a way that they are not affected by her-
bicides. Genome editing approach needs to be explored
for other classes of herbicides including those inhibiting
protoporhyrinogen oxidase and 4-hydroxyphenyl pyruvate
dioxygenase (Kaur et al. 2022). Herbicide tolerance has
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been demonstrated in soybean against chlorsulfuron (Li
et al. 2015) and in flax against glyphosate (Sauer et al. 2016;
Hussain et al. 2021). Base-editing of genes like C287, SPL
14 and ACC-T1 has been successfully exploited to introduce
herbicide resistance in rice (Mishra et al. 2020) and this
could be adopted successfully in oilseed crops (Fig. 1).

Minimizing pod shattering damage

Pod dehiscence accounts for a major pre-harvesting as well
as post harvesting yield loss in oilseed crops such as soy-
bean, sesame, and oilseed rape. Minimizing the shattering
loss is an important objective in breeding of oilseed crops
and mutant studies have identified the underlying genes for
shattering resistance. Biotechnological efforts to minimize
the pod shattering is a pressing priority. The genetic net-
work that expresses in silique dehiscence zone (DZ) is well
documented in Arabidopsis (Ballester and Ferrandiz 2017,
Ogutcen et al. 2018). Four TFs i.e., Shatterproof 1 (SHP
1) and SHP 2 upregulate downstream TFs i.e., Indehiscent
(IND) and Alcatraz (ALC) at DZ zone. Mutation in shpl
shp2 and ind genes led to the production of fully indehis-
cent silique in Arabidopsis (Liljegren et al. 2000). Editing
of ALC resulted in more shatter resistance in oilseed rape
(Braatz et al. 2017). Additionally, two transcription factors,
Fruitfull (FUL) and Replumless (RPL) that express in the
valves and replum respectively, also regulate the expression
of the DZ genes. However, there is a need for understanding
or deciphering the genes involved in pod dehiscence so that
it will provide a handle for manipulations. For example, in
Brassica napus, an integrated approach led to identification
of BnTCP8.C09 as the gene responsible for pod shattering
(Chu et al. 2021). Elimination of Pod dehiscence 1 (PDH 1)
gene resulted in pod shattering tolerance in soybean (Zhang
et al. 2022b). Overall, tweaking of the homologs of any of
the genes reported to be associated with pod shattering in
other crops, could minimize the pod shattering in oilseed
crops (Fig. 1).

Tuning the genes related to seed size and number

Oilseeds are a storehouse of oils and manipulating the traits
such as inflorescence branching, silique structure, size and
number of grains produced by plant will have a huge impact
on the quantity of seeds produced. Multilocular phenotype
has been achieved by precise editing of homologues of
development related genes Clavata (CLV 1/2/3) in B. napus
(Yang et al. 2018). Similarly editing the gene BnnEOD3 led
to increased number of seeds in silique in rapeseed (Khan
et al. 2020). The loss-of-function of Arabidopsis mobile
regulator Terminal Flower 1 (TFL 1) produced large seeds
compared to wild type (Zhang et al. 2020a). Knock-out of
four rice genes i.e., Grain Size 3 (GS 3), Grain Weight 2/5

(GW 2/5), and Thousand-Grain Weight 6 (TGW 6), that neg-
atively regulate rice grain weight led to the improvement of
the grain weight (Xu et al. 2016a). Deletion of Big Seeds
1 (BS 1), a negative regulator of organ size, significantly
enhanced the grain size in both leguminous plants Medicago
and soybean (Ge et al. 2016). Base-editing of GRF 3/4 by
adenine base editor (ABE) resulted in increasing grain size
and yield in rice (Hao et al. 2019). Thus, there is enormous
scope for increasing the sink capacity in oilseeds, espe-
cially in crops like sesame, mustard, niger and linseed if the
homologs of the genes negatively controlling seed size are
disrupted (Fig. 1).

Tweaking the genes related to plant architecture

The principle behind the success of green-revolution is plant
architecture. The structure of crops affects many important
agricultural traits, especially yield. Plant ideotype concept
has been developed in many crops to suit different conditions
of cultivation. The central theme in such manipulations is to
alter the plant architecture by increasing or decreasing the
number of branches, altered height, basal or top branching
types, reduced duration, etc. to suit the resource availabil-
ity during the length of growing period. In oilseed crops
like castor, there is a requirement to develop plant archi-
tecture suitable for mechanical harvesting. In other crops,
like sesame, no branching types with erect plant type to
encourage high density planting is a requirement. There are
genes reported in crops that are known to alter the plant
architecture. Plant hormone gibberellic acid (GA) plays a
vital role in growth and development. GA acts by degrading
the DELLA protein which in turn is regulated by two pro-
teins i.e., the gibberellin receptor GID 1 (Gibberellin Insen-
sitive Dwarf 1) and the F-box protein GID 2 (Gibberellin
Insensitive Dwarf 2). Loss-of-function of GID I and GID
2 displayed a greater number of branches and leaves in rice
(Wu et al. 2020). In another report, editing of carotenoid-
cleavage dioxygenase 8A and 8B (CCD 8A, CCD 8B) also
produced similar patterns in rice and N. tabacum (Gao et al.
2018; Liu et al. 2020). Similarly, deletion of Grain Number
la (Gnla), Dense And Erect Panicle 1 (DEP 1), and Ideal
Plant Architecture 1 (IPA 1) lead to the improvement of
grain number, panicle architecture, grain size, and architec-
ture in rice (Li et al. 2016). In an interesting study in castor
bean, candidate gene involved in dwarfism has been identi-
fied (Wang et al. 2021). Any of these target genes could be
used for modifying the plant architecture through genome
editing.

Tinkering the flowering

Duration taken for flowering as well as determinate v/s
indeterminate flowering habits, both are very crucial in crop
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plants to enable them to fit into different cropping seasons
and systems. Since oilseeds are grown predominantly as
rainfed crops in India, these traits are very crucial in breed-
ing programmes. Also, in some crops like sesame, breeding
for thermo and photo-insensitive genotypes is important
to allow the cultivation of the crop in different seasons as
well as regions. Therefore, depending on the case, genome
editing of appropriate gene(s) would help in accomplishing
these objectives. With respect to inducing early flowering,
editing of two genes Self-Pruning (SP) and Self-Pruning 5G
(SP 5G), that work as floral repressors, led to early flowering
genotypes in tomato (Soyk et al. 2017). Interestingly, in soy-
bean double mutants of GmFT2a/GmFT5a, the homologs of
Flowering Locus T (FT) and transcription factor Squamosa
Promoter Binding Protein-like (SPL), displayed more seed
number (~250%) compared to wild type under short day
condition. But the results were opposite when the same was
adopted in B. napus and B. juncea. So, careful empirical
assessment of the target genes would be crucial in translating
the work from one system to the other (Subedi et al. 2020b).

Biofortification

Nutritionally enhanced food crops with increased bioavail-
ability of the essential nutrients, both microminerals (e.g.,
Minerals such as iron, zinc, copper, etc.) and macronutrients
(such as amino acids and macrominerals like Ca, K, S, etc.)
are expected to address the malnutrition of human popula-
tion in a very effective way. Bio-fortification of commercial
crops for these nutrients is gaining importance and they
are being addressed through breeding, biotechnology and
agronomy practices. Transgenics have been used for biofor-
tification of crops with respect to vitamins, minerals, essen-
tial fatty acids and amino acids, antioxidants, and starch
(Garg et al. 2018). Gene(s) involved in increasing either the
quantity of the nutrients or their bioavailability have been
the targets for manipulation. The gene FAD encodes fatty
acid desaturases that convert high value oleic-acid to low
value product linoleic acid. Researchers have commercially
exploited this gene in camelina, peanut, soybean, cotton,
rice and brassica for creating high oleic acid crops (Abe
et al. 2018; Chen et al. 2021b; Siddique 2022). The existence
of the fad2 gene in the maize genome suggests a potential
future possibility to produce maize kernel oil rich in oleic
acid (Mikkilineni and Rocheford 2003). Editing of phytic
acid metabolism genes such as myo-inositol-3-phosphate
synthase (MIPS), inositol-1,3,4,5,6-pentakisphosphate
2-kinase (IPK) and inositol triphosphate kinases (ITPK)
augmented micronutrients such as zinc, calcium, phosphate
and magnesium in rapeseed and soybean (Tian et al. 2022;
Jianing et al. 2022; Siddique 2022). In soybean, researchers
successfully enhanced the Vitamin-E content by mutating
homogentisate dioxygenase (HGO) gene (Stacey et al. 2016).
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In cotton, RNA interference (RNAi) mediated attenuation of
the expression of genes encoding stearoyl-ACP desaturase 1
(SAD1), and ketoacyl-acyl carrier protein synthase (KASII)
led to a considerable change in the fatty acid composition
of seed oil (Wu et al. 2022). Similarly, down-regulation of
cadinene synthase led to gossypol-free (gossypol is an anti-
nutritional factor that naturally present in cotton plant) cot-
tonseed (Sunilkumar et al. 2006). Apart from oilseed crops,
functional disruption of Vacuolar Iron Transporter 1 and 2
(VIT 1/2) displayed increased Fe/Zn accumulation in rice
seeds (Zhang et al. 2012). Hemerythrin motif-containing
Really Interesting New Gene (RING)- and Zinc-finger pro-
tein 1 (OsHRZ 1) and OsHRZ 2 edited rice plants accumu-
lated iron in their shoots and grains (Kobayashi et al. 2013).
With the accumulating information on genes that could be
manipulated for biofortification in different crops, there is a
large scope for adopting genome editing for improving this
trait in oilseed crops.

Self-incompatibility

Pollination and fertilization lead to seed production, which
is the economic part in oilseeds. Self-incompatibility (SI)
hampers the creation of inbred lines and breaking of Sl is a
breeding objective in oilseed crops such as niger, and bras-
sica. Self-compatibility (SC) has been successfully achieved
by editing some of the crucial genes like, S-RNase, F-box
protein (SLF), PR55/B, S-receptor kinase and M-locus pro-
tein kinase in potato, cabbage and oilseed rape (Ahmad
et al. 2021b; Shin et al. 2022; Kardile et al. 2022) as well
as through introgression of S-locus inhibitor (Sli) in potato
(Kardile et al. 2022). Knocking out of PGAP I, post-GPI
attachment to proteins 1 genes disrupted SI in Arabidopsis
without developmental defects (Lin et al. 2022). In contrast,
self-incompatibility was restored in citrus by tweaking the
FPS2 gene to trigger parthenocarpy (Qin et al. 2018). Pre-
sent gene-editing technologies have widened the possibili-
ties to overcome the SI/SC in oilseed crops to create novel
breeds.

Domestication of wild oilseed crops

Crop wild relatives (CWRs) form a treasure trove of many
important agronomic traits but as such these CWRs are not
suitable for intensive cultivation due to the presence of a few
undesirable characteristics including wild and weedy nature,
lower harvest index, etc. To make the CWRs suitable for
extensive cultivation, scientists have started modifying the
domestication traits in them using genome-editing tools that
results in the development of new variants or genotypes that
have the required agronomic traits compared to CWRs. Pres-
ently, de novo domestication of wild crops has been shown
as an innovative crop breeding strategy to address future
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food challenge (Kumar et al. 2022). Wild tomato (Solanum
pimpinellifolium), groundcherry (Physalis pruinosa), and,
most recently, allotetraploid rice (Oryza alta) have all been
successfully bred for a variety of agronomic traits (Lemmon
et al. 2018; Zsogon et al. 2018; Yu et al. 2021). The domesti-
cation of the day neutral wild tomato is closely examined by
editing of SELF-PRUNING 5G (SP5G) gene that led to the
creation of compact growth habit and rapid flowering variety
(Soyk et al. 2017). De novo domestication may be enabled
by mutations in the SP5G gene in day-neutral wild relatives
of oilseed crops like groundnut, sunflower, and safflower.
To create neo-domesticated cultivars, it may be possible to
target genes that are related to survival, spread, and fitness
related traits like pod shattering, plant architecture, grain
size and number, flowering, and photoperiodism. Among
all oilseed crops, high-quality whole-genome assemblies of
CWRs of soybean (Glycine soja), peanut (Arachis duran-
ensis and Arachis ipaensis), and pangenome assemblies are
available for Brassica sp., sunflower, and cotton (Bohra et al.
2022). It might not be a simple path for all oilseed crops to
achieve de novo domestication, because, an annotated refer-
ence genome of CWRs, knowledge of domestication-related
genes, are still unavailable for many wild relatives of oilseed
crops sesame, linseed, niger, and safflower, just to cite as
examples.

Caveats and challenges for applying CRISPR/
Cas9 mediated GE in oilseed crops

All the genome editing approaches depend on the transfor-
mation procedure for delivering the editing machinery into
plant cells and are thus dependent on plant tissue culture
(PTC) and transformation procedures. Therefore, the biggest
bottleneck in genome-editing of oilseed crops is efficient
delivery of gene editing reagents into the plant regenera-
tive cells. PTC is a lengthy, costly, labour-intensive and is
possible in limited number of plant species (Anjanappa and
Gruissem 2021). Even though, there are reports of genetic
transformation and regeneration in each of the oleiferous
crops, repeatable and genotype independent protocols for
routine applications of in vitro manipulations as adoptable
by different labs are still missing in many of these oilseed
crops (eg. sunflower, Darqui et al. 2021; cotton, Kalbande
and Patil 2016; coconut, Nguyen et al. 2015; linseed, Beyaz
et al. 2016; camelina, Sitther et al. 2018; sesame, Teklu
et al. 2022; castorbean, Xiao et al. 2022; safflower, Nitna-
ware et al. 2021; jatropha, Al-Khayri et al. 2022) (Table 2).
Therefore, developing repeatable and efficient transforma-
tion protocols should be the primary line of activities in
successfully adopting GE technology in these crops. The
bottlenecks of regeneration and transformation are specific

to crops and delving into all these aspects is beyond the
scope of this review article and therefore, not elaborated.

Among the different genome editing tools reported,
CRISPR/Cas9 system is the most followed method due to
its versatility and options. However, it has some limitations
as well. Large size of Cas nucleases is not much suitable for
Agrobacterium mediated transformations thus discovering
or engineering smaller Cas variants is inevitable. Limiting
PAM specificity, random off-target mutations, selection of
sgRNA, balanced in-vivo expression of sgRNA and Cas cas-
settes in host are some of the concerns/limitations and they
need to be addressed for realizing high editing efficiency.
Identification and optimization of promoters suitable for
crop is needed for effective expression of Cas and sgRNA.
Genome sequenced oilseed crops and their immediate tar-
getable traits have been listed in Table 2. Selecting the spe-
cific functionally characterized target genes for manipulating
the trait is crucial. In oilseeds, availability of such character-
ized genes has been a limitation and therefore, either this has
to be empirically determined or they need to be taken from
the heterologous systems as indicated in Table 1.

Construct design is a vital step in genome-editing (Has-
san et al. 2021). Three components i.e., (1) selection of Cas
nucleases, (2) design of gRNA, and (3) promoters that are
used to express Cas protein and gRNAs need to be selected
carefully. Despite the wide-ranging use of SpCas9, it does
come with certain limitations such as off-targets, limited
5'-NGG-3' PAM sequence, and bigger in size (Nadakuduti
et al. 2018). To address this, several natural and engineered
variants of Cas9 have been developed (Cebrian-Serrano and
Davies 2017). Codon optimized Cas genes for each host spe-
cies work better than wild type as demonstrated in soybean
(Michno et al. 2015). Design of effective gRNA is another
crucial step in genome-editing. There are many web tools
available for gRNA design among which CRISPOR (Con-
cordet and Haeussler 2018), CRISPR-P (Liu et al. 2017),
RGEN Cas designer (Park et al. 2015), and CHOPCHOP
(Labun et al. 2019) are widely used and suitable for oilseed
crops. Availability of whole genome sequence of the crop
is necessary for designing the effective sgRNA using online
web tools. As the editing efficiency is mainly dependent on
sgRNA selection and promoters used for expressing Cas-
nuclease and sgRNA, these need to be empirically deter-
mined in crops.

Many of the cultivated oilseed crops are polyploids (soy-
bean, rapeseed, peanut, cotton and camelina). In comparison
to diploid crops, the editing effectiveness has varied greatly,
in particular, in polyploid crops owing to the genome com-
plexity. The challenge of simultaneous elimination of all
copies of genes including the homoeologs with the same
function is necessary especially when paralogs and orthologs
have redundant functions (Zaman et al. 2019). Alebit this
perceived difficulty, thanks to the cutting-edge technologies
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(Li et al. 2021a), genome editing has been successfully car-
ried out in rapeseed, soybean, peanut, cotton, and camelina
(Table 1). The editing effectiveness may be directly influ-
enced by the careful design of gRNA, choice of promoter,
optimized/newly discovered Cas nucleases, and multiplexing
(Zaman et al. 2019).

Future prospects of genome editing
in oilseed crops

As outlined in this review, genome editing has been demon-
strated in a few oilseed crops for a few agronomic traits. But,
considering the success seen in other crops, genome editing
could become a main tool in the armoury of genetic engi-
neering options for oilseed crops as well. Genome sequence
of many oilseed crops have been deciphered (Table 2) and
thus offers a platform to select the target gene sequences.
There are crop specific traits (as listed in Table 2) that could
be improved through genome editing in oilseed crops.
Establishing repeatable transformation protocols, dissect-
ing the plant/cellular processes involved in trait manipula-
tion, understanding the functionality of the implicated genes
thoroughly to obtain expected phenotype, overcoming the
limitations of off-target effects would all lead to harnessing
the benefits of GE in oilseed crops. Among these limitations,
the biggest bottleneck in genome-editing of oilseed crops is
the efficient delivery of gene editing reagents into the plant
regenerative cells. To circumvent this limitation, PTC-free
genome editing has been achieved through many methods
such as polyethylene glycol (PEG) mediated delivery of pre-
assembled Cas/gRNA, ribonucleoproteins (RNPs) to proto-
plasts (Banakar et al. 2020), particle bombardment delivery
of CRISPR/Cas reagents (Demirer et al. 2020; Banakar et al.
2020), de-novo meristematic microinjection of developmen-
tal regulators with gene-editing reagents (Maher et al. 2020),
use of viral vectors (Ellison et al. 2020) and CRISPR-combo
system (Pan et al. 2022). Furthermore, as our understanding
of regulatory genes' functions in plant genetic transforma-
tion and regeneration expands, we may someday be able to
harness these genes to develop a single universal genotype-
independent plant tissue culture approach for all oilseed
crops (Maren et al. 2022). As has been demonstrated in
recent studies, nanovectors/nanocarriers promise to offer a
solution to the issue of delivering the elements of CRISPR/
Cas mediated genome editing directly to the target tissue(s)
in plants. Nanomaterials like mesoporous silica particles
(MSNs), gold nanoparticles (AuNPs), carbon nanotubes
(CNTs), and layer double hydroxides (LDHs) have been used
as promising cargo carriers and deliver the editing reagents
in a highly effective and species-independent manner and
bring in the editing of the target genes (Vats et al. 2022; Zhi
et al. 2022; Savage 2022). These methods are technically
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challenging, less effective, and have not yet been adopted
for oilseed crops on a large scale. Once these techniques are
well established, many of the legislative and public concerns
raised due to transgene integration (Teferra 2021) will also
be allayed. This is only the beginning of PTC free GE and
we can expect to see a rapid advance in this field in future
and this will help oilseed researchers to a great extent.

Functionality of genes and their role in trait develop-
ment are being established through many approaches such
as allele mining, phenotypic analysis of chemical induced,
T-DNA, and transposon mutants, map-based cloning of
QTLs, candidate gene-based phenotyping, transgenics—both
silencing and overexpressing types, transcriptome studies,
pathway analysis, and others in both model and related plant
species. This information could be used for selecting the
target genes for manipulation through gene editing.

There is an urgent need to develop climate smart high-
yielding oilseed crop varieties owing to many snags chal-
lenged by dynamic climate. There is immense scope to apply
state-of-the-art technologies like CRISPR/Cas to improve
their productivity. Editing of many genes that act as nega-
tive regulators for growth and development offer a great
potential. Knowledge accrued from related model crops like
Arabidopsis, tobacco, tomato and rice might help in devel-
oping suitable strategies to realize high yielding varieties
in other oilseed crops as well. There is substantial literature
available on genes and non-coding RNAs which play piv-
otal role as negative regulators of growth, yield and stress
responses in model crops (Ojolo et al. 2018; Begum 2022)
and this information shall be effectively used in genome edit-
ing to manipulate the traits.

Another important area of future development would be
to exploit editing to modify MIR genes. It is well known that
miRNAs that are up-regulated under stress (biotic/abiotic)
conditions are expected to downregulate the target genes
which in turn are negative regulators of the stress tolerance
whereas the miRNAs that are down-regulated under stress
conditions are expected to up-regulate the target genes which
are positive regulators of the stress tolerance (Zhang 2015).
Hence, if miRNAs are up-regulated in the given stress, the
target gene of that cognate miRNA could be edited and if
miRNAs are down-regulated during a particular stress, then
MIR genes encoding them could be edited to enhance the
stress tolerance. Therefore, literature on the role of miR-
NAs in stress responses offer a great potential for creation
of climate-smart crops by genome-editing (Begum 2022).

The continuous methodological improvements of
CRISPR/Cas toolbox particularly, discovery of tiny Cas
variants (Savage 2019), reducing off-targets (Movahedi
et al. 2022), epigenetic modifications (Gardiner et al. 2022),
base-editing, prime-editing (Molla et al. 2021), CRISPR-
combo system (Pan et al. 2022) and near-PAMless (Walton
et al. 2020) specificity should expand the scope of genome
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editing. Taken together, it clearly hints that genome-editing
approaches have opened up exciting possibilities for improv-
ing oilseed crops and in future we are expected to reap rich
dividends from this research.
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