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A B S T R A C T   

Wheat rusts, caused by pathogenic fungi, are responsible for significant losses in Wheat production. Leaf rust can 
cause around 45–50% crop loss, whereas stem and stripe rust can cause up to 100% crop loss under suitable 
weather conditions. Early treatment is crucial in reducing yield loss and improving the effectiveness of phyto
sanitary measures. In this study, an EfficientNet architecture-based model for Wheat disease identification is 
proposed for automatically detecting major Wheat rusts. We prepared a dataset, referred to as WheatRust21, 
consisting of 6556 images of healthy and diseased leaves from natural field conditions. We attempted several 
classical CNN-based models such as VGG19, ResNet152, DenseNet169, InceptionNetV3, and MobileNetV2 for 
Wheat rust disease identification and obtained accuracy ranging from 91.2 to 97.8%. To further improve ac
curacy, we experimented with eight variants of EfficientNet architecture and discovered that our fine-tuned 
EfficientNet B4 model achieved a testing accuracy of 99.35%, a result that has not been reported in the litera
ture so far to the best of our knowledge. This model can be easily integrated into mobile applications for use by 
stakeholders for image-based wheat disease identification in field conditions.   

1. Introduction 

The traditional approaches to plant disease diagnosis and manage
ment practices are pathologist-oriented, subjective, costly, time- 
consuming, and labor-intensive (Mohanty et al., 2016). Due to the 
shortage of availability of expertise and labor, AI-based computer vision 
approaches need to be explored for cost-effective and timely identifi
cation of disease occurrence for each piece of land under cropping 
(Kamilaris and Prenafeta-Boldú, 2018; Abade et al., 2020; Arnal Bar
bedo, 2013; Haque et al., 2022a). These methods can be adapted to 
monitor plant health regularly, give information about the minimum 
required dosage of pesticides to treat crop diseases, and reduce the un
desirable use of chemicals (Ferentinos, 2018; Nigam and Jain, 2020). 
Currently, deep learning algorithms are at the forefront of AI-based 
computer vision approaches. These algorithms allow computer models 
to understand data by independently extracting features, unlike the 
machine learning algorithms of the previous decade that relied on 
human-engineered feature extraction (LeCun et al., 2015). Well-known 
deep learning architectures such as AlexNet (Krizhevsky et al., 2012), 

VGGNet, InceptionV3 (Szegedy et al., 2016), ResNet, and DenseNet 
(Huang et al., 2017) were used by many researchers in plant disease 
classification. Most researchers used the publicly available PlantVillage 
dataset for horticultural crops (Hughes and Salathé, 2015). On this 
dataset, recent literature reports disease identification accuracies up to 
98% using deep learning models (Naik et al., 2022; Sutaji and Yıldız, 
2022). 

Classical deep learning architectures enable the building of new 
disease identification models using a transfer learning approach. As 
described by Too et al. (2019), transfer learning is a machine learning 
technique in which a model trained on one task is fine-tuned for a 
related but different task. This approach is simple and effective, avoids 
overfitting when training data is scarce and helps reduce computational 
complexity while improving the learning capacity of the new model. 
Mohanty et al. (2016) conducted experiments with 60 configurations 
based on the transfer learning model and also trained the model from 
scratch for comparison. They demonstrated that fine-tuning a pre- 
trained network is better for plant disease classification than training 
a model from scratch. Lee et al. (2020), Chen et al. (2020), Thangaraj 
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et al. (2021), Zhao et al. (2022), and Haque et al. (2022b) also suc
cessfully demonstrated the potential of transfer learning models for 
identifying plant diseases. 

Despite its importance for global food security, there have been few 
studies on computer vision for disease identification in cereal crops due 
to a lack of datasets. Among cereals, Wheat is a crucial staple food crop 
that can suffer a 45–100% reduction in yield due to rusts, depending on 
the level of infestation at the time of diagnosis and treatment. Three 
types of rust can affect wheat: stripe or yellow, stem or black, and a leaf 
or brown rust. Currently, the most common method of diagnosing Wheat 
disease is through a visual assessment by experts using the naked eye. 
Although recent advancements in deep learning algorithms have been 
made, few researchers have attempted to develop a wheat disease 
identification model, likely due to the lack of a wheat disease dataset. 
Recognizing the need for automated wheat rust identification models, 
we have attempted to compile a wheat disease dataset for three seasons 
from 2019 to 2021. We used the same for our experiments in this work. 

At the same time, several other researchers have also undertaken 
similar work for wheat disease identification (Picon et al., 2019; Arnal 
Barbedo, 2019; Mi et al., 2020; Bao et al., 2021). One notable successful 
attempt was made by Lu et al. (2017), who improved VGGNet models, a 
classical deep learning architecture, to develop an in-field wheat disease 
detection and achieved an accuracy of 97.95%. They used their own 
compiled dataset, which is not publicly available for further research. 
Several similar attempts on wheat crops using their own compiled 
datasets and classical deep learning architectures have also been re
ported. For instance, Nigam et al. (2021a) worked on the automated 
classification of infected yellow rust disease from healthy leaves. 
Schirrmann et al. (2021) developed a ResNet-based image classifier for 
detecting stripe rust in winter wheat canopies. Nigam et al. (2021b) also 
carried out the detection and severity assessment of stem rust in wheat 
crops. The commonality between these three studies is that they focused 
mainly on: (i) identifying a single diseased leaf and achieving accuracy 
in the range of 94–97%, (ii) using their own compiled dataset, and (iii) 
classical deep learning architecture. 

Following the success of classical deep learning architectures in 
identifying plant diseases, Tan and Le introduced a new deep learning 
architecture called EfficientNet (Tan and Le, 2020). The effectiveness of 
EfficientNet was evaluated on the PlantVillage dataset by Atila et al. and 
achieved high accuracy levels, ranging from 98.4 to 99.97%, for 
different horticultural crops (Atila et al., 2021). Inspired by this success, 
Genaev et al. applied the EfficientNet architecture to wheat disease 
identification and achieved an accuracy of 94.1% (Genaev et al., 2021). 
They utilized the Wheat Fungi Disease dataset (WFD2020), which con
sisted of 2414 images for five different fungal diseases. One reason for 
the lower accuracy compared to horticultural crops could be the limited 
number of images for each type of Wheat rust disease. To the best of our 
knowledge, no other studies have applied the EfficientNet architecture 
to Wheat rust disease identification. 

The present study experimentally explores the performance of the 
EfficientNet architecture on the Wheat dataset, referred to as Wheat
Rust21, throughout this paper, for three kinds of rust identification. 
Although there have been few attempts in the literature to use transfer 
learning models, serious attempts are necessary to establish a model for 
Wheat disease in real-life conditions. The “No free lunch theorem” ex
ists, meaning that a model developed on some benchmarking datasets 
may not be suitable for other datasets. Therefore, rigorous experimen
tation was necessary to develop a high-performing Wheat disease 
identification model. As the dataset was exhaustive and covered an 
equal proportion of three diseased and one healthy class, our model is 
expected to be directly used on any other Wheat dataset for disease 
identification. We experimented with eight variants of the EfficientNet 
architecture and five available architectures of classical deep learning 
algorithms and fine-tuned each algorithm to get its best performance, 
which is reported in this paper on our WheatRust21 dataset. We ach
ieved the highest testing accuracy of 99.35% on this dataset. 

Our paper presents three significant contributions to the field: (1) 
The Wheat Rust Dataset (WheatRust21), which comprises 6556 rust 
images gathered from actual field conditions for two crop seasons 
(2019–2021); (2) Wheat disease identification models built using clas
sical CNN architecture, and (3) An efficient Wheat disease identification 
model based on the EfficientNet B4 architecture. 

2. Methodology 

2.1. Dataset 

In this study, we investigated three types of Wheat rust diseases: 
Stripe rust (also known as yellow rust), Stem rust (black rust), and Leaf 
rust (brown rust). We collected images of plants affected by each of these 
diseases and images of healthy plants (refer to Table 1 and Fig. 1). 

The images of the WheatRust21 dataset were captured from the Plant 
Pathology Division of ICAR-Indian Agricultural Research Institute in 
New Delhi and its regional centre in Madhya Pradesh over the period of 
2019–2021. The dataset contains 6556 images, which have been divided 
into four categories, as indicated in Table 1. The images were collected 
on sunny days between 12:00 pm and 2:00 pm, at regular intervals of 10 
days after the appearance of the disease symptoms, to ensure that the 
leaves were in similar growth stages. The images were taken using a 
handheld mobile camera with 20 megapixels and a 25 mm wide lens, as 
this type of device is commonly available to farmers. 

Compared to the PlantVillage dataset, WheatRust21 has some 
notable differences:  

a) The class label is associated with each image in the PlantVillage 
dataset.  

b) Each image in PlantVillage is comprised of a single leaf, whereas the 
WheatRust21 images show the entire plant in its natural 
environment.  

c) PlantVillage images have a consistent white paper background, 
while the background in WheatRust21 images varies based on crop 
conditions. 

The WheatRust21 dataset was divided into three subsets: training 
set, validation set, and test set, in a ratio of 70:20:10. This split ratio was 
chosen based on previous research, which found that 70:30 ratios were 
optimal for building machine learning models (Nguyen et al., 2021; 
Seidu et al., 2022). 

2.2. Data augmentation 

Augmentation is a technique used to enhance images in order to 
prevent neural networks from picking up on unimportant patterns and 
improving overall performance. The software package Augmentor was 
used to achieve this goal, ensuring a balanced distribution of classes in 
the dataset. The process involved rotating the images by 90◦, rescaling, 

Table 1 
A summary of Wheat Rust disease, including its symptoms and the number of 
relevant images.  

Class Symptoms Affected area Collected 
images 

Augmented 
images 

Stripe 
rust 

Small yellow to 
light orange 
pustules 

Leaf veins, 
spikes, and leaf 
sheaths 

1536 2500 

Stem 
rust 

Large dark orange 
to red oval-shaped 
pustules 

Lower leaf 
surface, plant 
stem, and spikes 

1990 2500 

Leaf 
rust 

Circular and 
orange to brown 
spore pustules 

Upper leaf 
surface and leaf 
sheath 

1330 2500 

Healthy – – 1700 2500 
Total number of images 6556 10,000  
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Fig. 1. Sample images of a Wheat plant, including healthy and diseased leaves.  

Fig. 2. Samples of augmented dataset images.  
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distorting, zooming, flipping horizontally and vertically, and adjusting 
the brightness. The end result was a dataset that evenly distributed 25% 
of each class. We conducted separate experiments using both the orig
inal and augmented datasets.(Fig. 2) 

2.3. EfficientNet architecture 

Tan and Le introduced a novel baseline network architecture that 
balances both accuracy and computational efficiency in terms of 
floating-point operations (Tan, 2018; Tan and Le, 2020). The backbone 
of the baseline architecture is the Mobile Inverted Bottleneck Convolu
tion (MBConv), which is similar to MobileNetV2 (Sandler et al., 2018) 
and MnasNet (Tan, 2018). Despite being larger than these previous 
models, it is designed to be more efficient in terms of FLOPs. To further 
enhance efficiency, Tan and Le proposed a compound scaling method for 
their EfficientNet models (B0-B7) that uses coefficients to adjust 
network depth, width, and resolution uniformly. The method is defined 
as follows: 

Depth (d) = αφ  

Width (w) = βφ  

Resolution (r) = γφ  

Such that α.β2.γ2 ≈ 2 and α ≥ 1, β ≥ 1, γ ≥ 1 (1)  

where α, β, γ are the constants obtained by a small grid search. Addi
tionally, the amount of resources that can be used for model scaling is 
determined by the compound coefficient (φ). The constants α, β, γ 
determine more resource allocation to network depth, width, and res
olution. The FLOPS of a normal convolution operation are proportional 
to d, w2, and r2, meaning that doubling network depth will result in a 
doubling of FLOPS, but doubling network width or resolution will result 
in a four-times increase in FLOPS. Since Convolution operations typi
cally account for most of the computation costs in ConvNets, scaling a 
ConvNet with Eq. (1) will roughly increase total FLOPS by(α. β2. γ2)φ. 
Also, under the constraint of α. β 2. γ 2 ≈ 2, any new φ, the total flops will 
increase by 2φ approximately. The compound scaling method scales this 
model in two steps as follows, starting from Baseline EfficientNet-B0 
(Tan and Le, 2020): 

Step 1: This step assumes that there are twice as many resources 
available. A grid search is done by fixing φ = 1, and the best values α =

1.2, β =1.1, γ =1.15 are discovered for EfficientNet B0, under the lim
itations of α. β 2. γ2 ≈ 2. 

Step 2: By fixing values for the constants α, β, γ and, using Eq. (1) the 
baseline network is scaled up with various values of φ to create 
EfficientNet-B1 to B7. 

A comparison of the conventional and compound scaling methods is 
shown in Fig. 3. Fig. 3(a) depicts the primary baseline network, while 
Figs. 3(b) through (d) illustrate the increase in width, depth, and reso
lution with conventional scaling. Fig. 3(e) presents the proposed com
pound scaling method schematically. 

The compound scaling in EfficientNet prioritizes the most crucial 
features in the relevant regions, resulting in a more comprehensive 
representation of the object details compared to other models that may 
fail to capture all essential features in images (Tan and Le, 2020). This 
approach results in a reduction of parameters, making EfficientNet more 
efficient compared to other models. 

Fig. 4, as described by Tan and Le (2020), depicts a graphical rep
resentation of the EfficientNet-B0 baseline architecture. The architec
ture is then uniformly scaled up using fixed scaling coefficients to 
generate a family of eight models (B1–B7) that have been proven to 
surpass classical CNN models in terms of accuracy and efficiency (Atila 
et al., 2021). Each block represents a layer consisting of operators such 
as Conv 3 × 3, MBConv1, and MBConv6, and the resolution (HxW) and 
output channels are indicated between the layers. 

In order to scale up to the B1-B7 architectures, the blocks of the 
EfficientNet B0 architecture (as shown in Fig. 4) were expanded with 
additional sub-blocks. These sub-blocks were added to systematically 
increase the number of feature maps, layers, and input resolution of the 
image, resulting in each subsequent variant of EfficientNet. Further in
formation on these sub-blocks can be found in Ahmed and Sabab (2022). 
The pre-trained EfficientNet models B0-B7 were used for training and 
fine-tuning on the WheatRust21 dataset to develop a wheat crop disease 
classification model. However, due to limitations in GPU memory and 
other hardware constraints, B5-B7 were not feasible to pursue. The 
performance of B0-B4 is discussed in Section 3. 

2.4. Transfer learning-based proposed disease identification model 

The central idea behind the experiments in this study is to develop a 
new network using transfer learning and pre-trained parameters from 
the ImageNet dataset. As depicted in Fig. 5(a), the layers of EfficientNet 
were pre-trained by Tan and Le (2020) for the classification of 1000 
classes from the ImageNet dataset (Deng et al., 2009). Transfer learning 

Fig. 3. Comparison of conventional and compound scaling.  
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allows researchers to utilize these parameters to perform image classi
fication on other related tasks. In this study, the last layer of the pre- 
trained network was replaced with new layers and fine-tuned for the 
classification of four classes of diseased leaves on the WheatRust21 
dataset (Fig. 5b). The pre-trained weights from Fig. 5a served as default 
values in Fig. 5b, except for the last layer. In our proposed transfer 
learning approach, the final layer of each EfficientNet architecture (B0- 
B7) was replaced with a batch normalization layer, an additional fully 
connected layer, a dropout, and a SoftMax layer, as illustrated in Fig. 5. 
The SoftMax layer in the last layer classified the input leaf images into 
four classes: healthy, yellow, brown, and stem rust. 

2.5. State-of-the-art CNN models 

During the experimentation process, the proposed model was 
compared with several classical deep learning models, including 
VGGNet (Simonyan and Zisserman, 2014), ResNet152 (He et al., 2016), 
MobileNetV2 (Sandler et al., 2018), DenseNet121 (Huang et al., 2017), 
and InceptionV3 (Szegedy et al., 2016). The networks were trained to 
reset the network parameters, and later, the last layer of the trained 
networks was modified with a new SoftMax layer consisting of four 
classes from the WheatRust21 dataset (as described in Section 2.1). 

2.6. Experimental implementation 

The experimental implementation was carried out with GPU support 
on an NVIDIA DGX server system, using the Ubuntu operating system 
and an Intel® Xeon® CPU E5–2698 v4 with 32 GB of RAM and an 
NVIDIA Tesla V100-SXM2 with 528 GB of memory. The models were 
built using Keras with Tensorflow as the backend. 

2.7. Hyperparameters tuning 

Hyperparameters are essential components in training a machine 
learning model and are manually set by the programmer to optimize its 
performance. The hyperparameters used in this study for the Effi
cientNet models are presented in Table 2. The Adam optimization al
gorithm was used in all models with a basic learning rate of 0.001. The 
batch size was set to 32 in the B0-B5 models, but it was reduced to 8 in 
the B6-B7 models due to computational limitations. An early stopping 
technique with patience of 3 was employed to prevent overfitting, and 
the training epochs for the EfficientNet models ranged from 15 to 25, 
with a maximum defined epoch of 50. Additionally, a dropout rate of 
0.20 was applied to all B0-B7 models, and the momentum was adjusted 
to 0.9. 

Fig. 4. Baseline architecture of EfficientNetB0.  

Fig. 5. Transfer learning-based proposed model framework.  
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2.8. Performance metrics 

The Confusion Matrix is a tool used to compare the predicted and 
actual values of a classification model for each class (Ting, 2017). To 
perform a comprehensive evaluation of the models, various metrics 
were used, including accuracy, precision, F1 score, and recall, as pre
sented in Eqs. (2)–(5) (Hossin and Sulaiman, 2015).  

Precision =
True Positive(TP)

True Positive(TP) + False Positive (FP)
(3)  

Recall =
True Positive(TP)

True Positive(TP) + False Negative (FN)
(4)  

F1 =
2*True Positive(TP)

2*True Positive(TP) + False Positive(FP) + False Negative(FN)

(5) 

True positives refer to the number of images that were correctly 
identified in a specific rust category. True negatives represent the total 
number of images that were correctly classified across all rust categories 
except for the rust category to which it belongs. False negatives refer to 
the number of images incorrectly categorized within the relevant rust 
class. False positives describe the number of images that were incor
rectly identified as belonging to another rust category. The F1 score is a 
summary metric that represents the overall predictive performance of a 
model. 

3. Results 

As outlined in Section 2, the performance of the proposed CNN and 
EfficientNet models was evaluated using a confusion matrix and accu
racy curves. 

3.1. Performance of state-of-the-art CNN models 

The input image size for all models in Table 3 was set to 224 × 224 
pixels, with the exception of InceptionV3, which had an input size of 
299 × 299 pixels. The batch size and epoch count were set to 32 and 30, 

respectively, during the experiment. The MobileNetV2 model showed 
the highest training and testing accuracy on the original dataset, with 
96.34% and 95.67%, respectively. The InceptionV3 model had better 
performance on the augmented datasets, with a training accuracy of 
97.89% and a testing accuracy of 97.11% (Table 3). 

It was observed that the testing accuracy was significantly lower than 
the training accuracy, as is commonly seen in machine learning algo
rithms for both original and augmented datasets. Additionally, the 

augmented datasets showed higher accuracy than the original, un
transformed dataset, which is consistent with findings from other deep 
learning studies (Atila et al., 2021; Naik et al., 2022). 

3.2. Performance of EfficientNet models 

The results of each EfficientNet model (B0-B7) on both the original 
and augmented datasets are shown in Table 4. To improve learning ef
ficiency and speed up the training process, early stopping and learning 
rate scheduler approaches were utilized. The total training time was 
considered to be the period until the model loss values started to in
crease. The training time per epoch was calculated by dividing the total 
training time by the number of epochs. All hyperparameters were kept 
the same for both the original and augmented dataset experiments (as 
shown in Table 2). 

Table 4 demonstrates that EfficientNet B4 achieves the highest 
training and testing accuracy for both the original and augmented 
datasets. The accuracy of the augmented dataset surpasses that of the 
training dataset in all instances. The increased time required for the 
augmented dataset is due to its larger number of images. Among the 
hardware limitations, EfficientNet B4 on the augmented dataset exhibits 
the best training and testing accuracy, with results of 99.91% and 
99.35%, respectively. It is noted that models B5 to B7 have larger input 
image sizes compared to models B0 to B4. Due to GPU memory con
straints, models B5 to B7 were trained with a batch size of 8, rather than 
32 after experimentation with intermediate values through a trial and 
error process. As a result, models B5 to B7 have lower accuracy and 
longer training times. In the future, improved GPU memory resources 
may lead to increased accuracy for models B5 to B7. 

Table 5 displays the results of our experiments with various 
augmentation techniques. It is evident that individual augmentation 
techniques, such as flipping, zooming, and adjusting brightness, have a 

Table 2 
Set of Hyperparameters identified for training model.  

Hyperparameters Training epochs Batch sizes Learning Rate Loss function Momentum Dropout Optimizer 

Values 15–25 32 and 8 0.001 Categorical cross-entropy 0.9 0.2 Adam  

Table 3 
Performance of State-of-the-art CNN models.  

Model Parameters (Batch size = 32, Epochs = 30) Original dataset accuracy (%) Augmented dataset accuracy (%) Original Augmented 

Model Train Val Test Train Val Test Training time (s)/epoch Training time (s)/epoch 

VGGNet19 90.36 90.65 90.12 91.28 91.04 90.89 15 33 
ResNet152 94.12 92.71 93.91 95.95 95.69 94.25 30 90 
MobileNetV2 96.34 96.12 95.67 97.47 97.13 96.91 25 55 
MobileNetV3 96.57 96.03 95.12 96.88 96.37 96.04 32 64 
DenseNet169 95.59 95.06 94.21 96.74 96.50 95.64 34 81 
InceptionV3 96.31 95.77 95.47 97.89 97.45 97.11 41 98  

Accuracy =
True Positive(TP) + True Negative (TN)

True Positive(TP) + True Negative(TN) + False Positive(FP) + False Negative (FN)
(2)   
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limited impact on the testing accuracy of our dataset. However, rotating 
the images by 90 and 270◦ resulted in testing accuracy that approached 
the overall accuracy of the B4 model, as shown in Table 4. Using a 
combination of all four augmentation methods resulted in faster training 
times compared to individual techniques and the highest accuracy for 
the dataset. 

According to a paired t-test comparison, our results show that the 
performance of the augmented dataset is significantly superior to that of 
the original dataset for all training, testing, and validation datasets 
(Table 6 and Fig. 6). This is due to the augmentation's introduction of 
variation among images from different angles, which enhances the 
model's training. Therefore, we strongly advise augmenting the original 
dataset to improve the training of the model. 

3.3. EfficientNet vs classical CNN models 

EfficientNet B4 maintains its top position even when compared to 
other traditional CNN models (Fig. 6). Our results reveal that VGGNet19 
had the lowest testing accuracy of 90.89%, whereas EfficientNet B4 
achieved the highest testing accuracy of 99.35%. Additionally, each of 
the EfficientNet models (B0-B7) performed better than all of the classical 
CNN models. 

3.4. Transfer learning and learning from scratch 

In transfer learning, a pre-trained model for one task is utilized as a 
starting point to train a new model for a similar task (Too et al., 2019). 
We utilized this concept in our study by reusing the initial few hundred 
layers of the pre-trained model and adding four fine-tuned layers for 
disease identification. The hyperparameters of the added layers vary 
depending on the specific disease or domain. Theoretical research on 
transfer learning indicates that such models provide higher accuracy in 
fewer epochs (Section 2.4). To verify these findings empirically, we 
trained models from scratch on the WheatRust21 dataset using 30 
epochs, both for the original and augmented datasets. Our model from 
scratch consisted of seven convolution layers, five max-pooling layers, 
and three fully connected layers, with a total of fifteen layers. The 
testing accuracy of the model from scratch was 89.88% for the original 
dataset and 95.05% for the augmented dataset. 

Building a model from scratch, similar to the EfficientNet models, 
with several hundred layers is challenging. However, it may be an 
interesting area for future research to train all of the EfficientNet models 
B0-B7 from scratch on the WheatRust21 dataset. Our findings, including 
estimates of accuracy and longer training times, suggest that building a 
model from scratch for image classification should be avoided in favor of 
transfer learning-based models, which provide better accuracy, require 
less training time, and use less intensive hardware and training data. 

Therefore, we conclude that training a model from scratch is more 
challenging and yields lower testing accuracy compared to transfer 
learning-based models for the same number of epochs. Similar conclu
sions were also reported by Mohanty et al. (2016) and Lee et al. (2020) 
in their comparisons of various transfer learning models and models 
trained from scratch. 

3.5. Confusion matrix and other performance measures 

The confusion matrices of the EfficientNet B4 model on both the 
original and augmented datasets are depicted in Fig. 7. The numbers on 
the diagonal demonstrate the number of correctly classified images, 
while the off-diagonal numbers indicate misclassification. For instance, 
in the case of the original dataset (Fig. 7a), two of the 266 brown rust 
images were misclassified as healthy, and four were misclassified as 

Table 4 
Performance comparison of EfficientNet models.  

EfficientNet 
model 

Size Original dataset accuracy 
(%) 

Training Time 
taken per epoch 
(sec) 

Time to 
predict one 
image (sec) 

Augmented Dataset 
Accuracy (%) 

Training Time 
taken per epoch 
(sec) 

Time to 
predict one 
image (sec) 

Input 
(pixels) 

Batch 
(#images) 

Train Test Val Train Test Val 

B0 224 32 97.73 96.55 97.79 32 0.19 97.88 98.10 97.60 48 0.39 
B1 240 32 98.84 96.70 97.93 78 0.19 98.82 98.29 98.60 71 0.41 
B2 260 32 98.52 97.09 97.47 108 0.20 98.91 98.63 98.60 84 0.42 
B3 300 32 99.78 97.10 98.32 122 0.22 98.91 98.85 98.70 129 0.47 
B4 380 32 99.83 98.93 98.47 171 0.30 99.91 99.35 99.49 249 0.55 
B5 456 8 98.82 97.10 97.23 361 0.36 98.94 98.30 98.09 584 0.60 
B6 528 8 98.89 97.70 98.77 443 0.55 98.89 98.70 98.77 840 0.76 
B7 600 8 98.91 97.80 97.83 1480 0.61 98.91 98.80 98.83 1674 0.84  

Table 5 
Performance of EfficientNet B4 model according to the augmentation method.  

Augmentation 
Method 

Train Acc 
(%) 

Val Acc 
(%) 

Test Acc 
(%) 

Training time per 
epoch (s) 

Rotation (90◦ & 
270◦) 

99.87 98.94 99.31 262 

Flip (left-right, top- 
bottom) 

99.83 98.90 98.69 238 

Zoom 99.81 98.50 98.60 265 
Brightness 99.70 98.52 98.55 235 

All combined 99.91 99.49 99.35 249 

Note: Dataset 10,000 images, Train: Test: Val:70:20:10. 

Table 6 
Comparison of performance of original vs augmented dataset.  

Paired samples test 

Pairwise comparison Paired differences t df Sig. (2-tailed) 

Mean Std. Deviation Std. error mean 95% Confidence interval of the 
difference 

Lower Upper 

Pair 3 Original_Training - Augmented_Training 0.2870 0.4144 0.1465 − 0.0595 0.6335 1.958 7 0.091 
Pair 1 Original_validation - Augmented_validation − 0.6087 0.4959 0.1753 − 1.0233 − 0.1941 − 3.472 7 0.010 
Pair 2 Original_Testing - Augmented_Testing − 0.9312 0.3823 0.1351 − 1.2508 − 0.6116 − 6.889 7 0.000  
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yellow rust. The F1 score is a metric that combines Precision and Recall, 
and a model with an F1 score close to one is considered appropriate. 

As shown in Fig. 7(b), in the case of the augmented dataset, only a 
few images were misclassified out of the 500 images in each category. 
For example, two brown rust images were misclassified, one as healthy 

and one as stem rust. All stem rust-infected leaves were correctly 
identified. 

The confusion matrices led to the classification report, which in
cludes the F1, precision, and recall measures for the EfficientNet B4 
model, as shown in Table 7. The comparison of these performance 
measures highlights the following observations: (i) all measures in the 
augmented dataset are better or comparable to the original dataset, (ii) 
precision, recall, and F1 measures for stem rust identification using the 
augmented dataset are 100%, (iii) for brown rust, recall is 100%, while 
precision and F1 measure 99% each, (iv) in the case of yellow rust, 
precision is 100%, while recall and F1 are 99% each. 

3.6. Accuracy and loss curves 

The training-validation accuracy and loss curves for the EfficientNet 

Fig. 6. Comparison of all CNN-based models testing accuracy on Original and augmented dataset.  

(a)
(b)

Fig. 7. Confusion Matrix (a) original dataset (b) augmented dataset.  

Table 7 
Classification report for EfficientNetB4 model on both datasets.  

Disease classes Augmented dataset Original dataset 

Precision Recall F1 Precision Recall F1 

Brown rust 0.99 1.00 0.99 0.99 0.98 0.98 
Healthy 0.99 0.99 0.99 0.99 0.99 0.99 
Stem rust 1.00 1.00 1.00 1.00 0.99 1.00 
Yellow rust 1.00 0.99 0.99 0.98 0.99 0.98  
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B4 model are shown in Figs. 8a and 8b. According to Hossin and 
Sulaiman (2015), a model can be considered good and efficient if the 
training and validation accuracy curves increase steadily without sig
nificant fluctuations. The results of the EfficientNet B4 model indicate 
that it is a suitable option for the automatic identification of wheat 
diseases. The EfficientNet architecture outperforms other existing ar
chitectures due to its compound scaling method and reduced number of 
parameters (Tan and Le, 2020). The compound scaling approach in
volves simultaneous scaling of the model's depth, width, and resolution, 
as opposed to conventional scaling, where only one dimension is scaled 
at a time. 

3.7. Qualitative representation of the incorrect classification of wheat 
diseases 

The unsuccessful cases of disease classification, as depicted in Fig. 7, 
are presented visually in Fig. 9. The figure provides examples of leaf 
images from each class that were incorrectly categorized into other 

classes. The potential reasons for these misclassifications (Fig. 9) are 
discussed in Table 8. 

4. Discussion 

The study presents a deep transfer learning model for the image- 
based identification of major wheat diseases using the EfficientNet B4 
architecture. A comprehensive dataset of wheat diseases and healthy 
plants was required for this task. However, to the best of our knowledge, 
no publicly available dataset of wheat rust diseases was found. Some 
previous studies on wheat rust disease identification generated their 
datasets for specific rusts (as listed in Table 9 by Genaev et al., 2021; 
Schirrmann et al., 2021; Picon et al., 2019; Mi et al., 2020; Lu et al., 
2017). Therefore, a comprehensive dataset of all three rusts of the wheat 
crop was generated for the experiments in this study. While Genaev et al. 
(2021) reported 2414 images of wheat diseases and Picon et al. (2019) 
generated 8178 images of individual leaves, Lu et al. (2017) collected 
9230 images of both leaves and plants under field conditions. 

Fig. 8. (a). Training and Validation accuracy curves (Original Dataset). 
(b). Training and Validation accuracy curves (Augmented Dataset). 
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Unfortunately, our proposed model could not be tested on these datasets 
from different countries due to the unavailability of data. 

Many studies on disease identification have used deep learning 
models with the PlantVillage dataset, which only includes images of 
horticultural crops (Atila et al., 2021; Mohanty et al., 2016). These 
studies have reported accuracy up to 99% on horticultural crops using 

the PlantVillage dataset, which has over 55,000 images of multiple fruits 
and 38 classes. However, despite the significance of cereal crops, there 
are relatively few studies on wheat disease identification using deep 
learning (Genaev et al., 2021). A summary of previous studies on wheat 
disease identification is presented in Table 9. 

Previous studies have reported accuracy rates ranging from 94 to 
97% for the identification of wheat diseases using classical CNN models. 
Genaev et al. (2021) achieved the best accuracy of 94.2% on their wheat 
fungi disease dataset using EfficientNet B0. However, our proposed 
EfficientNet B4 architecture-based model achieved a much higher ac
curacy rate of 99.35%, surpassing the results reported by other authors 
(as listed in Table 9). Our approach was evaluated on two datasets 
(Genaev et al., 2021; Nigam et al., 2021a) and showed an improvement 
in test accuracy of 1.72% and 3.3%, respectively, compared to previ
ously reported results in the literature (as listed in Table 9-10). Unfor
tunately, other datasets were not publicly available for evaluation using 
our proposed methodology. 

The limitations of deep learning-based models include the need for 
powerful computational resources. In this study, we were limited by 
hardware constraints and GPU memory issues, which prevented us from 
experimenting with B5-B7 models using a batch size of 32. Despite these 
limitations, the EfficientNet B4 architecture achieved the highest testing 
accuracy compared to other classical CNN models. 

This model has the potential to be useful for agricultural extension 
workers and farmers by deploying it on a mobile application. Stake
holders can upload an image of their Wheat plant to the app to receive 
timely and accurate recommendations. This will also create a large 

Fig. 9. Sample leaf images in each failed case of disease identification.  

Table 8 
Qualitative representation of failed cases in disease identification.  

Failed 
case 

Actual 
class 

Predicted 
Class 

Possible reason for failure 

a) Brown 
rust 

Healthy On the leaf, there are only a few brown rust 
pustules, and 99% of the leaf is healthy. 

b) Stem rust More stems are visible in the image. Less 
brown rust pustules can be seen on the leaf. 

c) Yellow rust The pustules on the leaf image resemble 
yellow rust pustules. 

d) Healthy Brown rust Presence of yellowness in the background 
leaves 

e) Yellow rust Leaf chlorophyll content makes the leaf 
appear more yellow due to brightness, 
similar to the symptoms of yellow rust. 

f) Yellow 
rust 

Brown rust Due to the drying of the leaf, later stages of 
the yellow pustules grew darker over time 
and resembled the brown rust 

g) Healthy Minor yellow pustules can be seen, and rest 
99% of the leaf area is healthy 

h) Stem rust Brown rust The pustule present on the stem looks 
similar to the brown rust symptom  
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database of images that can further improve automated models. The 
automated system can promote sustainable and eco-friendly agriculture 
by reducing the excessive use of plant protection chemicals and pre
venting crop losses. 

Future research can focus on identifying the severity level of Wheat 
diseases. This information can be used to estimate the correct amount of 
pesticides, which is currently lacking in the literature. 

5. Conclusion 

The diagnosis and classification of diseases have been crucial con
tributions of deep learning algorithms in recent years. These algorithms 
have the capability to automatically extract phenotypic traits of diseased 
plant leaves, providing a significant improvement over traditional 
methods. To fully harness the potential of these algorithms and to make 
them accessible to farmers, it is essential to develop mobile applications 
that can identify cereal diseases. Currently, a comprehensive dataset of 
cereal crops is lacking, hindering research in this area. 

In this study, we collected 6556 images of Wheat crops infected with 
rust over a three-year period. We evaluated two deep learning models - 
EfficientNet and classical CNN-based - for Wheat disease identification 
and found that the EfficientNet B4-based model was the most accurate, 
achieving a precision of 99.35%. We also observed that augmenting the 
original dataset improved model performance. 

Moving forward, our aim is to expand the scope of this study by 
incorporating more classes and severity levels of Wheat diseases. We 
believe this research will further advance the field of deep learning for 
disease diagnosis and classification. 
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