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Foreword 

Meeting the food demands in the 21st century seems to be a continued story of catch-
up. It has become increasingly clear that the breathing time Norman Borloug and 
colleagues afforded us with the Green Revolution has not been effectively used to 
harness food demand. Although over that past half century significant progress has 
been achieved in reducing hunger and poverty as well as improving food security and 
nutrition, in the process we have seriously degraded the natural resource base (soils, 
water, and biodiversity), on which our food production is based. Climate change is 
adding an extra threat to food security. Calls are getting louder to shift to sustainable 
and regenerative food production systems that will feed an ever-increasing popula-
tion. The agricultural science and development communities are looking to expand 
the technologies and toolbox that will help create efficient agricultural systems that 
are economically, socially, and environmentally sustainable. 

One of the modern technologies that might help address the complex prob-
lems facing agriculture may be found in the innovative application of data science, 
big data analytics, remote sensing, Internet of Things, computer vision, machine 
learning, cloud computing, artificial intelligence, etc. Technologies are in place to 
capture big data in real-time manner, and modern farmers in advanced economies 
are increasingly providing and using such data for farm and resource management. 
In the upcoming decade, an increasing number of farms will partake in this farm 
modernization process. Policymakers as well as farmers will benefit from it to make 
better decisions. The challenge will lie in involving the resource-poor farmers in this 
transformative process. 

This book intends to provide the reader with an overview of the frame-
works and technologies involved in the digitalization of agriculture, as well 
as the data processing methods, decision-making processes, and innovative 
services/applications for enabling digital transformations in agriculture. This book 
has two broad sections: (1) Frameworks, Tools, and Technologies for Trans-
forming Agriculture and (2) Problems and Applications of Digital Agricultural 
Transformations.
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viii Foreword

The first part offers an overview of the challenges and opportunities in trans-
forming agriculture through efficient and cost-effective digital services and appli-
cations. The chapters in this part discuss the key aspects of building a framework 
for allocating digital resources necessary for developing digital services and appli-
cations in agriculture. It also discusses some of the key principles and concepts as 
well as technologies and tools in AI and machine learning useful for the creation of 
resource-efficient services and applications on these platforms. 

The second part presents key principles and concepts in computer vision, machine 
learning, remote sensing, and artificial intelligence (AI). They demonstrate their use 
in developing intelligent services and applications to solve agricultural problems that 
arise in the context of plant phonemics, sustainable agriculture, yield prediction, and 
farm data integration. It also presents some analytical tools for analyzing policies for 
allocating farm resources and measuring farm productivity. 

The value and relevance of any book can be measured by the range and depth 
of topics and the quality of its chapters. This book meets those criteria. The editors 
of this book were successful in assembling a valuable collection of chapters on 
technological advances to help address a key and essential challenges in agriculture. 
The chapters are well written by competent authors associated with globally reputed 
organizations. This book provides qualitative and relevant reference content on digital 
infrastructure for innovation in sustainable agriculture. This book offers an excellent 
source of knowledge and information that will help a range of professionals, from 
policymakers to scientists to technology developers and end-users. I congratulate the 
editors and authors of this book for their commendable contribution. 

Austin, TX, USA 
December 2022 

Paul Vlek 
Professor Emeritus 

Former Director 
Center for Development Research (ZEF) 

Division of Ecology and Natural Resources 
University of Bonn 

Bonn, Germany 

Former Executive Director of WASCAL 
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Change and Adapted Land Use 
Accra, Ghana



Preface 

This book on Digital Ecosystem for Innovation in Agriculture is an attempt to provide 
the reader with an accessible big picture of technologies and innovations for the 
digital transition of agriculture, as well as the key challenges and research trends in 
the development of data analytical frameworks, tools, and their applications in the 
context of Digital Augmentation in Agriculture. “Digital Agriculture,” here we refer 
to leveraging the digital technological advances in agriculture and agroecosystems 
to improve the functional productivity of processes involved in agri-food systems. 
Furthermore, the transformation should be economically viable and ecologically 
sustainable. 

The increased availability of sophisticated remote sensing satellite services, 
widespread use of unmanned aerial vehicles (UAVs), better access to quality of data, 
power of cyber infrastructure, and the easy deployment of inexpensive Internet of 
Things (IoT) sensors, standardized interfaces, operations, and programmable frame-
works have propelled applications in agricultural ecosystems. It is coupled with 
significant advances in data science (tools and techniques for filtering, compressing, 
processing, and analyzing) and big data analytics (capturing, storing, retrieving, 
and visualizing big data). In addition, machine learning (tools and algorithms for 
building models, making predictions, and performing statistical analysis on data) 
has accelerated the development of various niche services in Digital Agriculture. 

The main focus of this book is on (i) Frameworks and Systems: Handling Big 
Data, employing remote sensing technology, making provisions for providing and 
accessing computing, storage, and services over the cloud, and the Internet of 
Things for collecting, filtering, storing, retrieving, integrating, and visualizing farm 
data; (ii) Tools and Techniques in Data Science and Machine Learning for devel-
oping models, algorithms, and services for providing niche agricultural services that 
involve data analytics, making predictions and providing statistical guarantees on 
their predictions. 

The book chapters are divided into two parts. The book’s first part, Frameworks, 
Tools, and Technologies for Transforming Agriculture, focuses on the critical issues 
in developing platforms/frameworks for effectively allocating digital infrastructure 
for building digital services/applications in agriculture. One of the vital issues is

ix
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climate change which is now touching our daily life. It is also threatening agriculture 
and needs mitigation. The first chapter “A Brief Review of Tools to Promote Trans-
disciplinary Collaboration for Addressing Climate Change Challenges in Agriculture 
by Model Coupling” suggests increasing agriculture efficiencies and making room for 
renewable bioenergy crops. The chapter summarizes the tools that promote collabora-
tion for developing sustainable and climate-resilient agriculture and discusses model 
coupling about plant and agri-sciences. The second chapter “Machine Learning 
and Deep Learning in Crop Management—A Review” provides a survey of the tools 
and techniques of machine and deep learning employed in agriculture. It discusses 
algorithms for crop management activities like crop yield prediction, diseases, and 
pest and weed detection. Satellites, drones, and on-ground sensors are essential in 
providing data for the digital ecosystem for agriculture innovation. However, all three 
modes of data collection are executed in isolation. Therefore, the need for an orches-
tration platform to exploit the potential of remote sensing data is presented in the 
third chapter “Need for an Orchestration Platform to Unlock the Potential of Remote 
Sensing Data for Agriculture”. 

However, it is crucial to develop strategies to connect multimodal data. In 
that context, the fourth chapter “An Algorithmic Framework for Fusing Images 
from Satellites, Unmanned Aerial Vehicles (UAV), and Farm Internet of Things (IoT) 
Sensors” shows an algorithmic framework for constructing higher-dimensional maps 
through data fusion of satellite images and unmanned aerial vehicles with multi-
sensor farm data. Remote sensing plays a critical role in mapping and monitoring 
crops on a large scale. The availability of open-source data and cloud resources 
play a significant role in developing remote sensing-based solution. Therefore, the 
fifth chapter “Globally Scalable and Locally Adaptable Solutions for Agriculture” 
focuses on using open-source high-resolution spectral, spatial, and temporal reso-
lution satellite data, open-source cloud-based platforms, and big data algorithms 
for agriculture. Continuous knowledge management (KM) can trigger innovation in 
agriculture. Therefore, developing a theoretical framework to guide the KM process 
is crucial. The sixth chapter “A Theoretical Framework of Agricultural Knowledge 
Management Process in the Indian Agriculture Context”, the last chapter of the 
part, uses the famous Indian milk cooperative sector as an example, derives various 
systemic factors, and guides agri-organization through KM processes. 

The book’s second part, Problems and Applications of Digital Agricultural 
Transformations, presents specific challenges for Digital Agriculture that employs 
computer vision, machine learning, and remote sensing tools and techniques. This 
part spans from chapter “Simple and Innovative Methods to Estimate Gross Primary 
Production and Transpiration of Crops: A Review” to “Computer Vision Approaches 
for Plant Phenotypic Parameter Determination”. The most significant carbon and 
water fluxes in agroecosystems are gross primary production (GPP) and transpira-
tion (TR) of crops. Crop yield estimate using GPP and transpiration measurement can 
improve irrigation in cropland. The seventh chapter “Simple and Innovative Methods 
to Estimate Gross Primary Production and Transpiration of Crops: A Review” 
reviews simple and innovative methods to estimate gross primary production and 
transpiration. It reviews the state of the science, including in situ and remote sensing
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methods, while focusing on the biophysical foundation. The growth of computation 
power has facilitated the creation of 3D models of plants or trees. Virtual plants can 
simulate crop growth (in silico) compared to the natural environment. The eighth 
chapter “Role of Virtual Plants in Digital Agriculture” overviews the role of virtual 
plants in Digital Agriculture, showcasing that in silico implementation is an alter-
native to time-consuming, labor-intensive actual field trials. Finally, this chapter 
covers the concept of VP modeling, its applications, and some challenges in its 
application. Anthropogenic activities can impact soil carbon pools and phytomass 
on a vast scale. Orchards and plantations can affect the carbon pool, which needs 
to be carefully studied. The ninth chapter “Remote Sensing for Mango and Rubber 
Mapping and Characterization for Carbon Stock Estimation—Case Study of Mali-
habad Tehsil (UP) and West Tripura District, India” provides a case study involving 
remote sensing for mango and rubber mapping and characterization for carbon stock 
estimation. It uses Sentinel-2 data and machine learning to classify tree species. It 
demonstrates that simultaneous high-resolution phytomass and soil mapping with 
geospatial techniques significantly enhances India’s capability to monitor and model 
terrestrial carbon pools. 

Deep learning (DL) and computer vision (CV) advances are penetrating agri-
culture and natural resource management. The next set of chapters showcases such 
use cases of DL. The tenth chapter “Impact of Vegetation Indices on Wheat Yield 
Prediction Using Spatio-Temporal Modeling” presents the use of spatial-temporal 
modeling to study the impact of vegetation indices on wheat yield prediction. It 
showcases the use of convolutional neural networks (CNNs) and long short-term 
memory (LSTM) for yield prediction. Irrigation is a crucial phase of crop cultiva-
tion, and its scheduling and water management play essential roles in arid regions. 
Therefore, estimating the crop-specific water requirement at the farm and a more 
significant level is necessary. The eleventh chapter “Farm-Wise Estimation of Crop 
Water Requirement of Major Crops Using Deep Learning Architecture” illustrates 
the use of deep learning in evaluating farm-wise crop water requirements of major 
crops. It showcases platform development for adequately managing water resources 
across states in India. 

Usually, remote sensing satellite data is available as multispectral images. More 
spectral information can increase the accuracy of the machine learning algorithms 
used in Digital Agriculture. Hyperspectral sensing (HyS) provides very high spectral 
resolution and is useful in land use and land cover classification (LULC). The twelfth 
chapter “Hyperspectral Remote Sensing for Agriculture Land Use and Land Cover 
Classification” presents LULC using hyperspectral sensing. A review of current 
algorithms for processing HyS datasets is carried out in this article. It includes 
validating various atmospheric correction (AC) models, dimensionality reduction 
techniques, and classification methods. In plant breeding, phenotypic trait measure-
ment, i.e., morphological and physiological characteristics, is necessary to develop 
improved crop varieties. Computer vision-based techniques have emerged as an effi-
cient method for non-invasive and non-destructive plant phenotyping. The thirteenth



xii Preface

chapter “Computer Vision Approaches for Plant Phenotypic Parameter Determina-
tion” presents Computer Vision Approaches for Plant Phenotypic Parameter Deter-
mination. A deep learning-based encoder-decoder network is developed to recognize 
and count the number of spikes from visual images of wheat plants. 
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Abstract Climate change and the growing population are major challenges in the 
global agriculture scenario. High-quality crop genotypes are essential to counter the 
challenges. In plant breeding, phenotypic trait measurement is necessary to develop 
improved crop varieties. Plant phenotyping refers to studying the plant’s morpho-
logical and physiological characteristics. Plant phenotypic traits like the number of 
spikes/panicle in cereal crops and senescence quantification play an important role 
in assessing functional plant biology, growth analysis, and net primary production. 
However, conventional plant phenotyping is time-consuming, labor-intensive, and 
error-prone. Computer vision-based techniques have emerged as an efficient method 
for non-invasive and non-destructive plant phenotyping over the last two decades. 
Therefore to measure these traits in high-throughput and non-destructive way, 
computer vision-based methodologies are proposed. For recognition and counting of 
number of spikes from visual images of wheat plant, a deep learning-based encoder-
decoder network is developed. The precision, accuracy, and robustness (F1-score) 
of the approach for spike recognition are found as 98.97%, 98.07%, and 98.97%, 
respectively. For spike counting, the average precision, accuracy, and robustness 
are 98%, 93%, and 97%, respectively. The performance of the approach demon-
strates that the encoder-decoder network-based approach is effective and robust for
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spike detection and counting. For senescence quantification, machine learning-based 
approach has been proposed which segments the wheat plant into different senes-
cence and greenness classes. Six machine learning-based classifiers: decision tree, 
random forest, KNN, gradient boosting, naïve Bayes, and artificial neural network 
(ANN) are trained to segment the senescence portion from wheat plants. All the 
classifiers performed well, but ANN outperformed with 97.28% accuracy. After 
senescence segmentation, percentage of senescence area is also calculated. A GUI-
based desktop application, m—Senescencica has been developed, which processes 
the input images and generates output for senescence percentage, plant height, and 
plant area. 

Keywords Computer vision · Deep learning · Image analysis ·Machine 
learning · m—Senescencica · Plant phenomics 

1 Introduction 

Food grain production must be doubled by 2050 to meet the demand of growing 
population (Ray et al., 2013). This is a major challenge due to climate change 
induced stresses and slow rate of genetic gain in conventional crop improvement 
programs. High-quality crop varieties are crucial to counter the challenges. Plant 
phenotypic trait measurement is necessary to develop improved crop varieties. In 
this connection, plant phenomics refers to studying the plant’s morphological and 
physiological characteristics. Plant phenotypic traits quantification of germplasm 
lines and mapping population in a given environment is necessary for gene mapping 
and trait pyramiding. Manual recording of physiological traits is used in traditional 
methods, which is time-consuming and labor-intensive, and may be error-prone when 
recording a large number of genotypes. Computer vision-based techniques have 
recently emerged as an efficient framework for non-destructive plant phenotyping. 
Plant phenotypic traits like number of spikes/panicle in cereal crops and senescence 
quantification play an important role in assessing functional plant biology, growth 
analysis, and net primary production. Conventional techniques of measuring these 
traits are tedious, time-consuming, and error-prone for phenotyping large dataset. 
In this chapter, computer vision-based approaches for measuring the phenotypic 
traits (number of spikes/panicle in cereal crops and senescence quantification) are 
presented. 

2 Recognizing and Counting of Spikes in Visual Images 
of a Wheat Plant 

Wheat spike is the grain-bearing organ, and spike number is the key measure in yield 
determination of the plant. Manual or conventional technique of counting number
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of spikes based on naked-eye observation is tedious and time-consuming to record 
large number of genotypes. Recently, computer vision (integration of image analysis 
and machine learning techniques)-based technologies acquire strong attention in 
recognition and counting of spikes through image processing. A computer vision-
based approach is presented in this chapter for identifying spikes in visual images 
(VIS) of wheat plants. 

2.1 Image Acquisition 

In this study, visual images of the plant were taken using 6576 × 4384 pixel RGB 
camera from three different side view directions (angles: 0°, 120°, and 240°) with 
respect to the initial position of the plant. To reduce the issue of spikes overlapping, 
three side view directions were taken into consideration. This LemnaTec imaging 
facilities (LemnaTec GmbH, Aachen, Germany) are installed at Nanaji Deshmukh 
Plant Phenomics Center at Indian Agriculture Research Institute (IARI), New Delhi 
(Misra et al., 2020). Hundred wheat plants were grown in pot under controlled envi-
ronmental condition with recommended cultural practices. Images were captured 
during reproductive stage of the plant by maintaining a uniform background for 
better image processing and stored in PNG format. After image acquisition, spikes 
number per plant pot was recorded manually to validate the developed approach. 

2.2 Architecture of the Deep Learning Approach 

The developed approach consists of two deep learning networks: Patchify Network 
(PN) and Refinement Network (RN). PN extracts spatial and local contextual features 
at patch level (a small area of the image that overlaps), while RN refines the segmented 
output of PN (as it sometimes contain segments spikes inaccurately) (Fig. 1). The 
convolutional encoder-decoder deep learning network with hourglasses serves as 
the approach’s backbone and bottleneck network for pixel-by-pixel segmentation 
of objects (here, spikes). For retrieving the feature map depiction clutching the 
spatial and factual information from the instruction digital representation, an encoder 
network with three encoder blocks (each encoder block consisting of two convolu-
tion layers followed by a ReLU and Max-pooling layer of window size 2 × 2) was 
constructed. Three encoder blocks each had 16 filters, 64 filters, and 128 filters to 
encode the features. Three decoder blocks make up the decoder network, and each 
block’s two-transpose convolution layers are, used to upsample the incoming feature 
maps. In contrast to the encoder network used to renew the features, there were 128, 
64, and 16 filters in each of the three-decoder blocks, correspondingly. For better 
localization of the segmented features, the upsampled feature maps are combined 
with the appropriate encoded feature maps. The hourglass network is made of three 
hourglasses, each of which is made of a series of residual blocks that have three
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Fig. 1 Input image is split into patches before entering into PN. Patch-wise segmented mask images 
are the output of PN and are concatenated which contains some erroneous segmentation of spikes. 
The output are then refined using RN network. Refined mask image contains spike regions only 

convolution layers with the filter sizes 1 × 1, 3 × 3, and 1 × 1. This allows for more 
confident spike segmentation by focusing on the key features that are affected by 
scale, viewpoints, and occlusions. Based on the optical performances, the number of 
encoders, decoders, and hourglasses was estimated on empirical evidence. 

2.3 Training of the Deep Learning Model 

For developing the deep learning model, image dataset comprising 300 images (3 
direction images of 100 plants) was divided randomly into training dataset and test 
dataset at 85% and 15% ratio, respectively. The deep learning model was developed 
on Linux operating system with 32 GB RAM and NVIDIA GeForce GTX 1080 Ti 
graphics card (with memory 11 GB). The training dataset consists of 255 images 
(i.e., 85% of the total dataset). The images were divided into patches before entering 
into the PN. The popular optimizer “Adam” with learning rate 0.0005 was used to 
update the weight of the network, and “binary cross-entropy” (Misra et al., 2021, 
2022) loss function was utilized to for predicting the spikes and non-spikes pixels. 
As it is a binary class classification problem (spike pixels or not), “binary cross-
entropy” is used to calculate the loss function at pixel level. Both the networks (PN 
and RN) were trained separately for 100 epochs with batch size 32 (due to the system
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Table 1 List of hyperparameters 

Optimizer Learning rate Epoch Batch size Loss function 

Adam 0.0005 100 32 Binary cross-entropy 

Table 2 Performance of SpikeSegNet in spike segmentation 

E1 E2 JI Accuracy Precision Recall F-measure 

0.0016 0.0487 0.9982 0.9807 0.9897 0.9889 0.9897 

constraints) and then merged to confine a single network. The hyperparameters used 
in developing the model are given in Table 1. 

2.4 Result 

SpikeSegNet, which consists of both networks (PN and RN), was trained sequentially. 
The pixel-wise segmentation performance of the developed model was measured by 
the performance metrics (Type I classification error (E1), Type II classification error 
(E2), Jaccard index (JI), accuracy, precision, recall, and F-measure) presented in 
Table 2. 

Precision = TP/(TP + FP); Recall = TP/(TP + FN); Accuracy = (TP + TN)/(TP 
+ TN + FP + FN); TP: True positive; TN: True negative; FP: False positive; FN: 
False negative. 

E1 indicates that a very small number of pixels were incorrectly identified. The 
created model’s accuracy is almost 99%, and spikes can be identified with an average 
precision of 98.97%. For spike counting, the “analyze particles”—function of imageJ 
(Abràmoff et al., 2004)—was applied on the output of SpikeSegNet network, i.e., 
binary image containing spike region only. For spike counting, the average preci-
sion, accuracy, and robustness are 98%, 93%, and 97%, respectively. The perfor-
mance of SpikeSegNet indicates that it is an important advance forward toward 
high-throughput phenotyping of wheat plant. 

In the next section, another approach has been presented for the senescence 
quantification. 

3 Machine Learning-Based Plant Senescence 
Quantification 

Senescence is the last stage of the wheat crop cycle, and it is at this time that nutrients 
start to flow back into the developing grain from the plant. The first and most signif-
icant change in wheat senescence is the damaging of chloroplasts, which result in
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breakdown of photosynthetic pigments such as chlorophyll in leaf (Nikolaeva et al., 
2010). Due to damage in chlorophyll, color of the leaf changes from the usual deep 
green to yellow and finally brown (Fig. 3). 

Measuring of plant senescence is an important aspect as this helps to select the 
best genotypes tolerable to senescence in the stressed conditions. Conventionally, 
senescence is measured by manual scoring, in which an expert assign senescence 
score by observing the plant. But this method has many drawbacks, first of all it 
is subjective in nature and highly biased. This method is time-consuming as in any 
breeding program, there is a large population of grown plants. Manually measuring 
senescence for such a large population of plants is time-consuming and prone to 
errors. With the availability of image data, image-based measuring of plant pheno-
typic parameters is gaining the interest of researchers. It is high throughput and 
non-destructive in nature. 

Here, a computer vision-based approach has been proposed for plant senescence 
quantification (Kumar, 2020). This is the plant pixels classification problem to clas-
sify plant pixels into each of the defined classes. Six classes were decided for the 
senescence dry, yellow, pale yellow, dark green, and light green and one background 
class by observing the senescence pattern in Fig. 2. Around 1000 pixels values were 
sampled from the image data. Sampled dataset was divided in two training and test 
sets with 75–25% ratio, respectively. Six machine learning-based classifiers (ANN, 
naïve Bayes, random forest, gradient boosting classifier, decision tree, K-nearest 
neighbors) were trained on training data by using scikit-learn library. In order to get 
the best models parameters, tuning with tenfold cross-validation was used to select 
the best-performing models. 

Fig. 2 Changes in leaf color due to senescence. Initially, the leaf is green, but due to senescence, 
it results in change in leaf color. It changes to pale yellow to yellow and at last to brown
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Fig. 3 Flowchart for senescence quantification 

Precision, recall, and F1-scores were measured on test data. Among all the trained 
classifiers, ANN outperformed with 97.28% test accuracy. After pixel classification, 
the total number of pixels in each class was counted. Sum of all the pixels provides 
the total number of plant pixels (Fig. 3). Upon dividing total pixels in each class 
by total plant pixels gives the percentage of pixels in each class. Division by zero 
in Python causes zero division error, and this exception is handled by using try and 
catch block. 

Among the six defined classes, yellow, pale yellow, and brown account for senes-
cence classes. Hence, the percentage sum for those three classes gave the senescence 
percentage. 

In this study, four approaches have been presented based on artificial intelligence 
in the area of plant phenomics. All these approaches gave promising results in the 
area of phenomics. Artificial intelligence techniques have tremendous potential in 
determination of other plant phenomics parameters with the ultimate goal for yield 
estimation. 

4 Conclusion 

In the era of modern plant phenotyping, computer vision-based technologies are 
much needed to counter the challenges that exist in traditional plant phenotyping of 
recognizing and counting spikes and senescence quantification in wheat plant. In this 
study, a deep learning approach has been developed for recognizing and counting 
spikes form visual images of wheat plant with satisfactory precision, accuracy, and 
robustness performances. Besides, machine learning-based approaches also performs 
a promising result in plant senescence quantification. As conventional phenotyping is
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the rate limiting step in utilization of vast genomics resources generated in different 
crops, hence, development of these techniques is critical for utilization of germplasm 
resources to develop high yielding and climate-resilient crop varieties. The methods 
developed in this study are cost—and time-effective and will be useful in both crop 
improvement and crop management. These approaches are significant step forward 
in the area of high-throughput wheat yield phenotyping and can be extended to other 
cereal crops also. 

References 

Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotons 
Intention, 11(7), 36–42. 

Kumar, M. (2020). Wheat Plant Senescence Quantification using Machine Learning Algorithms 
(Master’s thesis). Indian Agricultural Statistics Research Institute, IARI, New Delhi. 

Misra, T., Arora, A., Marwaha, S., Chinnusamy, V., Rao, A. R., Jain, R., ... & Goel, S. (2020). 
SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for 
spike segmentation and counting in wheat plant from visual imaging. Plant Methods, 16(1): 
1–20. 

Misra, T., Arora, A., Marwaha, S., Jha, R. R., Ray, M., Varghese, E., Kumar, S., Nigam, A., Sahoo, 
R. N., & Chinnusamy, V. (2021). Web-SpikeSegNet: Deep learning framework for recognition 
and counting of spikes from visual images of wheat plants. IEEE Access, 9, 76235–76247. 

Misra, T., Arora, A., Marwaha, S., Ranjan Jha, R., Ray, M., Kumar, S., & Chinnusamy, V. 
(2022). Yield-SpikeSegNet: An extension of SpikeSegNet deep-learning approach for the yield 
estimation in the wheat using visual images. Applied Artificial Intelligence, 36(1), 2137642. 

Nikolaeva, M. K., Maevskaya, S. N., Shugaev, A. G., & Bukhov, N. G. (2010). Effect of drought on 
chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying 
in productivity. Russian Journal of Plant Physiology, 57(1), 87–95. 

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double 
global crop production by 2050. PloS one, 8(6), e66428.


