Validation of Biological Testing Methods

Dr. Satyen Kumar Panda ICAR- Central Institute of Fisheries Technology, Cochin-682 029 Email: satyenpanda@gmail.com

There are various biological testing methods in vogue and are associated with varied amount of complexities based up on their application.

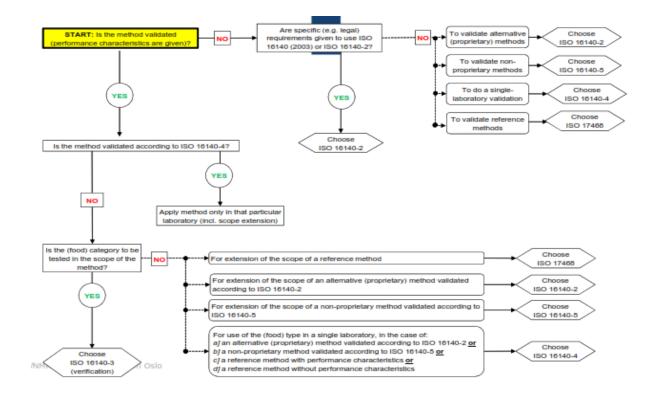
- Screening and Confirmation methods
- Instrumental: Hybrid Methodology, alternate platforms
- Regulatory approved methods
- Elementary vs Technologically perplexed systems

Microbiological Testing Methods are prone to challenges such as logistical complexities in sampling; heterogeneous distribution of contaminant flora; high level of background flora; interfering ingredients; stress-Injury; viable but Non-culturable State; and high dependence on culture-based methods. The 50% of global testing in microbiology is still carried out in traditional media.

Complexities of Target	Complexities of Methods
organisms	• ISO
• Bacteria	• AOAC
• Fungi	• USFDA-BAM
• Virus	• APHA
• Parasites	Health Canada
	Country-specific NSBs

Why do we need Validation/Verification of Rapid Food Testing Kits?

- New tools must perform equal to or better than standard culture based methods
- Rapid tools perform better only in some food matrices


Guidelines and Standards for Validation/Verification of Microbiological Rapid Food Testing Kits

 Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, Edition 3.0, U.S. Food and Drug Administration Foods Program, October 2019

- AOAC® Guidelines for Validation of Microbiological Methods for Food and Environmental Surfaces
- ISO 16140 series of standards

ISO Standards on Microbiology Method Validation

- ISO 16140-1:2016 Microbiology of the food chain Method validation Part 1: Vocabulary
- ISO 16140-2:2016 Microbiology of the food chain Method validation Part 2: Protocol for the validation of alternative (proprietary) methods against a reference method
- ISO 16140-3: 2021 Microbiology of the food chain Method validation Part 3: Protocol for the verification of reference methods and validated alternative methods in a single laboratory
- ISO 16140-4:2020 Microbiology of the food chain Method validation Part 4: Protocol for method validation in a single laboratory
- ISO 16140-5:2020 Microbiology of the food chain Method validation Part 5: Protocol for factorial interlaboratory validation for non-proprietary methods
- ISO 16140-6:2019 Microbiology of the food chain Method validation Part 6: Protocol for the validation of alternative (proprietary) methods for microbiological confirmation and typing procedures
- ISO 17468:2016 Microbiology of the food chain Technical requirements and guidance on establishment or revision of a standardized reference method

Selection of appropriate ISO standard for validation

Validation of Microbiological Testing Methods as per ISO 16140-2

During validation comparison is made between a reference method and an alternative protocol. Both for Qualitative and Quantitative methods can be validated using this standard. This comprises of two phases:

Phase I: method comparison study: using diverse food matrices

Phase II: Interlaboratory study: using single food matrix (reproducibility)

Qualitative Method Comparison Study	Quantitative Method Comparison Study
 Paired/Unpaired study 	Relative Trueness Study
 Sensitivity study 	 5 food categories; 15 samples/category
 5 food categories; 60 samples 	 Accuracy profile study
RLOD study	 5 food categories; 6 samples/category (2low, 2 medium, 2 high)
 1 matrix per category, 20 samples per matrix 	Limit of quantification study
 Inclusivity/exclusivity study 	 Used where indirect detection (fluorescence, turbidity); 10 blank
 Inclusivity: 50 target cultures (100 for 	 Inclusivity/exclusivity study
Salmonella)	 Not required for TPC/Y&M count
 Exclusivity: 30 non-target cultures 	 Inclusivity: 50 /Exclusivity:30

Performance of Interlaboratory Study

- 10 collaborators; 10 valid data sets
- Three different levels of contamination
- Simulate sample stabilization/stress
- At least 8 blind replicates
- Calculate specificity, sensitivity, relative trueness, false positive ratio
- Interpret with respect to specified acceptability limit