QUALITY AND SAFETY ISSUES IN FISH AND FISH PRODUCTS

Laly, S. J.

Quality Assurance and Management Division ICAR-Central Institute of Fisheries Technology, Kochi -29

Introduction

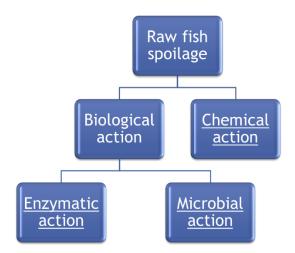
Fish and other seafood are highly important as they cover a part of protein demand for humans. The nutrient composition of fish is rich in health beneficial polyunsaturated fatty acids, vitamins and minerals. Fresh fish spoilage can be very rapid after it is caught. Freshness makes a major contribution to the quality of fish and fishery products. Nutritional values, color, texture, and edibility of foods are susceptible to spoilage. Improper pre and post-harvest handling conditions can enhance exacerbation of indigenous bacteria that could cause spoilage of fish.

Freshness is the most important attribute when assessing the quality of seafood and is of great concern. The quality of seafood degrades after death due to the chemical reactions [changes in protein and lipid fractions, the formation of biogenic amines and hypoxanthine (Hx)] and microbiological spoilage. This leads to the deterioration of sensory quality of seafood during inadequate storage. The factors contributing to spoilage of fish are

- High fat content
- High protein content
- High moisture content
- Weak muscle tissue
- Extent of bacterial contamination
- Unhygienic handling etc.

Quality of fish

Quality is "The degree of excellence to which a product meets all of the attributes, characteristics and features that the buyer or consumer of the product, and the regulatory agencies expect". In case of fish, quality refers to the aesthetic appearance and freshness or degree of spoilage that the fish has undergone. Freshness makes a major contribution to the quality of fish and fishery products. Quality of harvested fish depends upon both extrinsic and intrinsic factors. Intrinsic factors are species, size, sex, composition, spawning, and cultivation practice. Extrinsic factors are location of catch, season, methods of catch (gill net, handline,


longline, or trap, etc), on-board handling, hygienic conditions of vessel, processing and storage conditions. 'There is no control over intrinsic qualities, which are part of the fish, however extrinsic qualities, can be controlled by handling fish properly and by cleaning and chilling them as soon as possible. Today food safety remains a major concern facing the seafood industry, and it is a critical component in ensuring food and nutrition security worldwide.

Fish quality is lost because of

- Bacterial spoilage
- Enzyme activity
- Chemical changes
- Physical damage
- Dehydration
- Contamination

Spoilage of fish

Seafood is highly perishable food commodity and spoilage of fish involves three separate processes such as enzymatic spoilage, bacterial spoilage and chemical decomposition. "Spoilage refers to any change in the condition of food in which the food becomes less palatable, or even toxic; these changes may be accompanied by alterations in taste, smell, appearance or texture."

Spoilage of fish is also called "Putrefaction". It refers to the contamination of fish, resulting in an undesirable change in the colour, texture, flavour, odour, appearance, etc.

Enzymatic spoilage

Shortly after capture of fish chemical and biological changes take place in dead fish due to enzymatic breakdown of major fish molecules. The changes textural quality during early stages of deterioration but did not produce the characteristic spoilage off-odors and off-flavors. The digestive enzymes cause extensive autolysis which results in meat softening, rupture of the belly wall and drain out of the blood water which contains both protein and oil. During improper storage of whole fish, proteolysis is responsible for degradation of proteins and is followed by a process of solubilization. Belly bursting is caused by leakage of proteolytic enzymes from pyloric caeca and intestine to the ventral muscle.

Table 1. Enzymes involved in spoilage of fish

Enzyme(s)	Substrate	Effect	Prevention
Glycolytic enzymes	Glycogen	Lactic acid production resulting in pH drop.	Avoid pre-rigor stress
Autolytic enzymes involved in nucleotide breakdown	ATO, ADP, AMP, IMP	Gradual production of Hypoxanthine	Avoid pre-rigor stress and improved handling.
Cathepsins	Proteins, peptides	Softening of tissue	Avoid rough handling during storage
Chymotrypsin, trypsin, carboxy-peptidases	Proteins, peptides	Belly-bursting	Problem increased with freezing/ thawing or long-term chill storage
Calpain	Myofibrillar proteins	Softening	Removal of calcium
Collagenases	Connective tissue	Softening and gaping of tissue	Time and temperature of chilled storage
Trimethylamine Oxide (TMAO) demethylase	TMAO	Formaldehyde	Storage temperature less than -30°C, physical abuse, freeze/thawing

^{*}FAO 2005

Oxidative spoilage

Lipid oxidation is a major cause of deterioration and spoilage for the pelagic fish species such as mackerel and herring with high oil/fat content stored fat in their flesh. Fish lipids which consist of polyunsaturated fatty acids are highly susceptible to oxidation. Lipid oxidation involves a three-stage free radical mechanism: initiation, propagation and termination. Initiation involves the formation of lipid free radicals through catalysts such as heat, metal ions and irradiation. This free radical which reacts with oxygen to form peroxyl radical. During propagation, the peroxyl radicals reacting with other lipid molecules to form hydroperoxides and a new free radical. Termination occurs when a buildup of these free radicals interacts to form non radical products. In fish, lipid oxidation can occur enzymatically or non-enzymatically. Enzymatic hydrolysis by lipases is called as lipolysis (fat deterioration) in which lipases split the glycerides forming free fatty acids resulting off flavor. Non-enzymatic oxidation is caused by hematin compounds (hemoglobin, myoglobin and cytochrome).

Microbial spoilage

Composition of the micro flora on newly caught fish depends on the microbial contents of the water in which the fish live. Fish micro flora includes bacterial species such as *Pseudomonas*, *Alcaligenes*, *Vibrio*, *Serratia* and *Micrococcus*. Microbial growth and metabolism are a major cause of fish spoilage which produce amines, biogenic amines such as putrescine, histamine and cadaverine, organic acids, sulphides, alcohols, aldehydes and ketones with unpleasant and unacceptable off-flavors. For unpreserved fish, spoilage is a result of Gramnegative, fermentative bacteria (such as *Vibrionaceae*), whereas psychrotolerant Gramnegative bacteria (such as *Pseudomonas* spp. And *Shewanella* spp.) tend to spoil chilled fish.

Safety of fish

Food safety can be termed as the assurance that the food will not cause an adverse health effect for the consumer when it is prepared and/or consumed in accordance with its intended use. Safety of fish is a major concern and critical factor for ensuring food and nutritional security globally. It is a measure of the acceptability in terms of its ability to support both nutrition and health of consumer. In the manufacturing process it is vital to ensure that the products delivered to consumers do not interfere with the consumers' health adversely. The assurance that the food will not cause an adverse health effect for the consumer when it is prepared and/or consumed in accordance with its intended use.

The objective of handling, processing and preservations is to control or reduce the spoilage process so that the final product is wholesome and safe for the consumer.

Quality and safety issues in fish products

Quality and safety issues in Live/fresh/chilled/frozen fishes, Dried fish, Fish mince and surimi, Smoked fish, Canned fish, convenient, coated products and fermented fish products are listed below.

Quality issues	Safety issues		
Live/fresh/chilled/frozen fishes			
Belly bursting	Pesticide residues and Other		
Discoloration	Persistent organic pollutants		
Blackening/ melanosis in crustaceans	Residues of veterinary drugs and		
Pink discoloration in squid and cuttlefish	extra label chemicals		

Freezer burn/ dehydration	Unapproved additives	
Off flavors	Presence of adulterants	
	Growth of pathogenic bacteria	
	Allergens	
Dried fish]	
Shrinkage	Growth of pathogenic bacteria	
Casehardening	Clostridium botulinum toxin	
Protein denaturation and rehydration	production (for uneviscerated	
Maillard reaction	products)	
Rancidity	Staphylococcus aureus toxin	
Dun, Pink/Red	Pesticide residues	
Insect infestation	Unapproved additives	
Fragmentation	Allergens	
Fish mince and surimi	<u> </u>	
Dehydration	Parasites	
Presence of foreign matter	Growth of pathogenic bacteria	
Denaturation of protein	Pathogenic bacteria survival	
	Heavy metals	
	Natural toxins	
	Allergens and Food intolerance	
	substances	
	Metal inclusion	
Smoked fish	<u>I</u>	
Presence of pathogens	Growth of pathogenic bacteria	
Decomposition	Clostridium botulinum toxin	
Parasites	production	
	Pathogenic bacteria survival	
	Allergens and Food intolerance	
	substances	
	Metal inclusion	
	Natural toxin	
	Polyaromatic hydrocarbons	
Canned fish	1	

Struvite formation	Growth of pathogenic bacteria	
Sulphide blackening	Clostridium botulinum toxin	
Blue discoloration	production	
Curd and adhesion	Pathogenic bacteria survival	
Honey combing	Allergens and Food intolerance	
Retort burn	substances	
Case hardening	Metal inclusion	
Softening and mush		
Convenient products		
Discoloration	Growth of pathogenic bacteria	
Rancidity	Clostridium botulinum toxin	
Protein denaturation	production	
Loss of nutrients	Pathogenic bacteria survival	
	Allergens and Food intolerance	
	substances	
	Metal inclusion	
Coated products		
Shelling	Clostridium botulinum toxin	
Blow off	production (Reduced Oxygen	
Poor adhesion	Packaging -ROP)	
Gummy interface	Staphylococcus aureus toxin (ROP &	
	other than ROP)	
	Allergens and Food intolerance	
	substances	
	Metal inclusion	
Fish pickles		
Soft, slippery slimy/dark appearance	Growth of pathogenic bacteria	
Shriveled/bitter tasty pickle	Clostridium botulinum toxin	
Yeast and mold growth	production	
Presence of pathogenic bacteria	Allergens and Food intolerance	
	substances	
	Metal inclusion	
	Glass inclusion	

Fermented fishery products		
Parasites	Growth of pathogenic bacteria	
Natural toxins	Clostridium botulinum toxin	
Histamine	production	
Presence of pathogenic bacteria	Allergens and Food intolerance	
Rancidity	substances	
Dehydration/ dryness and discoloration	Metal inclusion	
Presence of extraneous matter	Glass inclusion	