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Abstract
Co-occurrence of two devastating foliar-fungal diseases of peanut, viz., late leaf spot (LLS), and rust may cause heavy 
yield loss besides adversely affecting the quality of kernel and fodder. This study reports the mapping of seven novel stress-
related candidate EST-SSRs in a region having major QTLs for LLS and rust diseases using an  F2 mapping population 
(GJG17 × GPBD4) consisting of 328 individuals. The parental polymorphism using 1311 SSRs revealed 84 SSRs (6.4%) 
as polymorphic and of these 70 SSRs could be mapped on 14 linkage groups (LG). QTL analysis has identified a common 
QTL  (LLSQTL1/RustQTL) for LLS and rust diseases in the map interval of 1.41 cM on A03 chromosome, explaining 47.45% 
and 70.52% phenotypic variations, respectively. Another major QTL for LLS  (LLSQTL1), explaining a 29.06% phenotypic 
variation was also found on LG_A03. A major rust QTL has been validated which was found harboring R-gene and resist-
ance-related genes having a role in inducing hypersensitive response (HR). Further, 23 linked SSRs including seven novel 
EST-SSRs were also validated in 177 diverse Indian groundnut genotypes. Twelve genotypes resistant to both LLS and rust 
were found carrying the common (rust and LLS) QTL region, LLS QTL region, and surrounding regions. These identified 
and validated candidate EST-SSR markers would be of great use for the peanut breeding groups working for the improve-
ment of foliar-fungal disease resistance.
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Introduction

Globally, peanut (Arachis hypogaea L.) is one of the most 
important oilseed crops, having multiple economic uses 
like vegetable oil, confectionery, and feed (Nawade et al. 

2019; Bhalani et al. 2019). It is widely cultivated as a grain-
legume in Asia, Africa, and America, especially in the arid 
and semi-arid regions (Nawade et al. 2018). Besides the 
rich source of oil (40–60%), protein (25–30%), and carbo-
hydrate (10–20%), it also contains various cardio-protective 
and anti-carcinogenic compounds (Aggarwal et al. 2004; Ko 
et al. 2017; Pandey et al. 2012). Globally, the peanut is cul-
tivated in 28.52 Mha with 45.95 Mt of yield (FAOSTAT 
2018). Though, India is the second-largest peanut producer 
(6.70 Mt), but its productivity is very low (1.36 t/ha), when 
equated with other major producers like China (3.75 t/ha) 
and USA (4.47 t/ha) (FAOSTAT 2018).

Among biotic constraints, rust, leaf spots, stem rot, and 
collar rot are the major ones restricting the optimum expres-
sion of yield potential (Varshney et al. 2014; Dodia et al. 
2019; Bosamia et al. 2020). Late leaf spot [Phaseoisario-
psis personata (Berk. and Curt) Deighton] and rust (Puc-
cinia arachidis Speg) are the two most prevalent and dev-
astating foliar-fungal disease of peanut which mostly occur 
together and may result in yield loss to the tune of 50–70% 
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(Subrahmanyam et al. 1984; Dwivedi et al. 2002). Further-
more, these diseases also badly affect the quality of both 
kernel and fodder (Dwivedi et al. 2002). The strong linkage 
between fungal disease resistance with low-productivity and 
various undesirable pod related traits poses a challenge for 
the breeding of foliar disease-resistant varieties (Shirasawa 
et al. 2018). Also, due to the non-availability of high yield-
ing foliar disease-resistant cultivars, fungicide application 
seems the only option for disease control. However, chemi-
cal fungicides are not only costly but their application results 
in enhanced environmental pollutions (Monyo et al. 2009). 
Thus, the development of high yielding cultivars with resist-
ance to these fungal diseases is a more eco-friendly approach 
for sustainable agriculture.

Although, conventional breeding approaches have been 
attempted, limited success has been achieved for the imposi-
tion of foliar-fungal disease resistance in peanut. The con-
ventional disease screening methods are facing a serious 
challenge due to the defoliating behavior and co-occurrence 
of these two foliar diseases (Sujay et al. 2012). Further, the 
tetraploid nature, cross-incompatibility with wild relatives, 
and low genetic variability in the cultivated gene pool also 
prevents the sharing of desired alleles from wild and other 
sources (Pandey et al. 2012).

During the last two decades, significant efforts have been 
made in groundnut breeding for the improvement of foliar-
fungal disease resistance (Mishra et al. 2015). Promising 
cultivar such as GPBD4 (Gowda et al. 2002) and breeding 
line VG9514 (Varman et al. 1999) was developed using wild 
species (Arachis cardenasii), through conventional breed-
ing, and was subsequently used for the development of map-
ping populations for resistance to foliar-fungal diseases. 
Substantial efforts have been made for the construction 
of high-density genetic linkage maps using various DNA 
markers (Sujay et al. 2012; Varshney et al. 2009; Khedi-
kar et al. 2010; Gautami et al. 2012; Kolekar et al. 2016). 
The first major genomic region  (QTLrust01) contributing up 
to 55.20% phenotypic variation for rust was identified by 
Khedikar et al. (2010). Subsequently, this genomic region 
was saturated and two QTLs each for LLS and rust resist-
ance were mapped (Sujay et al. 2012). Afterward, a few 
SSR markers linked with these diseases could be validated 
in certain genetic backgrounds (Khedikar et al. 2010; Kole-
kar et al. 2016; Gajjar et al. 2014; Sukruth et al. 2015; Yeri 
et al. 2014; Yol et al. 2016). Recently, using the QTL-seq 
approach, candidate genes imparting resistance to LLS and 
rust diseases were also identified (Shirasawa et al. 2018; 
Pandey et al. 2017; Clevenger et al. 2018) and a major QTL 
for rust resistance on A03 chromosome was mapped (Mon-
dal and Badigannavar 2018).

Although, major QTLs for rust have been fine mapped, 
these need to be validated in a large and diverse set of pea-
nut genotypes. Also, a fine map for QTL(s) controlling LLS 

resistance is not yet available. Thus, scope is there for the 
identification of more polymorphic markers in this QTL 
region for its wider use in different genetic backgrounds for 
marker-assisted selection. In this backdrop, the objectives of 
this investigation were to saturate both LLS and rust QTLs 
using novel EST-SSR markers having functional relevance 
to biotic stresses; and to validate the linked markers in a 
large set of Indian groundnut genotypes including released 
varieties.

Materials and methods

Development of mapping population

An  F2 mapping population, consisting of 328 individu-
als, derived from a cross between two Indian varieties 
(GJG17 × GPBD4) was used for the mapping of rust and 
LLS disease resistance loci. GJG17 is high a yielding Vir-
ginia type, foliar disease susceptible variety developed from 
the cross between JSSP11 × GG6 at Junagadh Agricultural 
University, Junagadh, Gujarat (Rathnakumar et al. 2013). 
Whereas, GPBD4 is a Spanish bunch variety that is highly 
resistant to foliar fungal diseases such as LLS and rust. This 
variety was the second cycle interspecific derivative which is 
derived from the cross between KRG1 × CS16 (ICGV86855) 
(Gowda et al. 2002).

Phenotyping and disease scoring for LLS and rust

Phenotyping of 328  F2 individuals for LLS and rust reaction 
was carried out at ICAR-Directorate of Groundnut Research, 
Junagadh during the year 2014 by the creation of artificial 
disease epiphytotic conditions in the field, using ‘spreader 
row technique’. The  F2 plants along with their parents were 
raised in 5 m rows with 10 cm intra-row and 45 cm inter-
row spacing. Forty-five days after sowing (DAS), the plants 
were inoculated uniformly in the evening with LLS/rust for 
ten days (Sujay et al. 2012). Further, to increase the dis-
ease pressure, sprinkler irrigation was given in the evening 
to maintain sufficient humidity. Disease scoring was done 
at 90 DAS using a modified 9-point scale (Subbarao et al. 
1990). For comparison of the disease reaction, the suscepti-
ble or the spreader row genotype (TMV2) and the resistant 
(GPBD4) genotypes were used.

Parental polymorphism and genotyping of mapping 
population

The genomic DNA was extracted from the tender leaves of 
parents and the  F2 individuals using the modified CTAB 
method (Nawade et al. 2016); its integrity was checked on 
0.8% agarose gel and quantified using Nanodrop ND-1000 



3 Biotech (2020) 10:458 

1 3

Page 3 of 13 458

spectrophotometer (Thermo Scientific, UK). A total of 1311 
SSR markers were used for the parental polymorphism sur-
vey. Of these 900 were developed previously by our group 
(Bosamia et al. 2015), while 411 were selected from the 
previous reports (Sujay et al. 2012; Khedikar et al. 2010; He 
et al. 2003; Mondal and Badigannavar 2010).

The polymerase chain reaction (PCR) was set with a 
reaction mixture volume of 10 µL including, 1.0 µL (20 ng) 
template DNA, 2.0 μL of 5 × PCR buffer (Promega, USA), 
2.5 mM  MgCl2 (Promega, USA), 0.2 μM dNTP (Thermo 
Fisher Scientific, USA), 20 μM of each forward and reverse 
primer, 1.0 U of Taq DNA polymerase (Promega, USA) and 
sterile double distilled water to make up the final volume. 
The touchdown PCR program was set with initial denatura-
tion for 3 min at 94 ºC, five cycles of 30 s denaturation at 
94 ºC, 30 s annealing at 65 ºC (with 1 ºC decrement per 
cycle for remaining four cycles), and extension for 1 min at 
72 ºC. The remaining 30 cycles were performed to amplify 
only specific DNA fragments with denaturation for 30 s at 
94 ºC, annealing for 30 s at 60 ºC and extension for 1 min 
at 72 ºC. In the end, the final extension was done at 72 ºC 
for 5 min. The amplified products were resolved on 6% non-
denaturing polyacrylamide gel electrophoresis (PAGE) gels 
which were stained and visualized using an automated gel 
documentation system (Fujifilm FLA-5000) (Bosamia et al. 
2015).

Bulked segregant analysis (BSA)

The BSA was performed to find the EST-SSRs putatively 
linked to LLS and rust resistance gene(s)/QTLs. As the  F2 
population size was quite large (328 plants), so we could 
easily identify ten plants each which showed extreme phe-
notypes (susceptible and resistance) for both LLS and rust. 
These were used to prepare bulks viz. bulk-1 (susceptible 
bulk) and bulk-2 (resistant bulk) by pooling the equal quan-
tity (50 ng/µL) of genomic DNA from the ten selected  F2 
plants each. All the polymorphic EST-SSR markers were 
used to check the bulks along with the parents.

Construction of the genetic map

The genotypic data were used for the Chi square (χ2) analysis 
to test the null hypothesis of 1:2:1 expected polymorphic 
marker ratio. The linkage analysis was carried out using 
QTL IciMapping ver 4.1 (Wang et al. 2016) with LOD (loga-
rithm of odds) cutoff value as 3.0 and Kosambi map func-
tion was used to express the map distance in centiMorgan 
(cM) (Kosambi 1944). The novel EST-SSR markers were 
also integrated into the existing linkage map of Sujay et al. 
(2012).

QTL analysis for LLS and Rust

The LLS and rust score and genotyping data of polymor-
phic SSR markers were generated for the  F2 population and 
QTL analysis was performed using the Inclusive Composite 
Interval Mapping (ICIM) algorithm (Li et al. 2007). QTL 
IciMapping software ver. 4.1 (Wang et al. 2016) was used 
to detect the significant main effect QTLs. Moreover, for 
additive QTLs, the scanning speed of 1.0 cM and threshold 
LOD value of 2.5 was set and a significant LOD threshold 
was determined by 1000 permutations with a probability of 
type I error as 0.01 (Doerge 2002).

Physical mapping of linked markers and its 
collinearity assessment

EST sequences of all the markers on A03 chromosome were 
used as query sequences and using nucleotide BLAST (https 
://peanu tbase .org/blast /nucle otide /nucle otide ) against cul-
tivated peanut genome database, the physical position of 
each SSR was retrieved and the linkage map was integrated 
to the physical map. The order and positions of the markers 
mapped on the A03 chromosome containing major QTL for 
LLS and rust were compared with the previous maps using 
Strudel 1.15.08.25 (Bayer et al. 2011).

Validation of identified markers

A total of 177 genotypes, consisting of 171 Indian varieties 
and 06 advanced breeding lines (Table S1) were phenotyped 
for rust and LLS disease reactions using a modified 9-point 
scale (Subbarao et al. 1990) during kharif seasons of the year 
2015 and 2016. A set of 23 SSR markers located between the 
marker interval GM2009 and GM1954 on the A03 chromo-
some (Table S2) were selected for the validation in these 
diverse genotypes.

Results

Phenotypic evaluation, BSA and construction 
of genetic map

The phenotyping of 328  F2 individuals and parental lines 
for LLS and rust diseases under artificial epiphytotic condi-
tions revealed significant variations (Fig. S1), and frequency 
distribution of the disease revealed normal distribution 
(Fig. S2). Among 1311 SSR markers screened, 84 (6.4%) 
showed polymorphism in the parental genotypes (GJG17 
and GPBD4); of which, 43 (51%) were novel EST-SSRs 
developed by our lab (Table S3). The BSA identified 04 
novel SSRs namely, DGR329 (Genbank accession No. 
XM_025836111.1), DGR508 (XM_025784199.1), DRG800 

https://peanutbase.org/blast/nucleotide/nucleotide
https://peanutbase.org/blast/nucleotide/nucleotide
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(XM_025835763.1), and DGR2409 (XM_025836145.1) 
which clearly distinguished the bulks (Fig. S3). Seventy 
SSRs could be mapped on 14 linkage groups (LGs) cover-
ing a total map distance of 797.55 cM with an average inter-
marker distance of 11.39 cM (Fig. S4; Table S4), while 14 
remained unlinked.

The length of the largest LG was 186.04 cM (LG_A03), 
while the smallest was 5.25 cM (LG_A07). The number of 
loci mapped per LG ranged from 2.0 (LG_A06, LG_A07, 
LG_B05, LG_B06, and LG_B08) to 27 (LG_A03). The 
LGs were assigned to the polymorphic markers using the 
details of Sujay et al. (2012) and the physical positions of 
the respective ESTs. Seven novel EST-SSRs viz., DGR259 
(XM_025835922.2), DGR312 (XM_025835733.2), 
DGR329, DGR361 (XM_025784168.1), DGR508, 
DGR800, and DGR2409 could be mapped on the LG_A03; 
which is known to harbor major LLS and rust resistance 
QTLs (Sujay et al. 2012; Khedikar et al. 2010; Mondal and 
Badigannavar 2018).

QTL(s) for LLS and rust resistance

The genotypic data of 70 polymorphic SSRs and phenotypic 
data of 328  F2 individuals were used for the identification of 
QTLs imparting disease resistance. Two major QTLs viz., 
 LLSQTL1, and  LLSQTL2 are identified for LLS resistance on 
LG_A03 explaining 47.45% and 29.06% PVE (percentage 
of variance explained), respectively (Table 1). The  LLSQTL1 
was found located in the map interval of 1.41 cM and is 
flanked by the markers SSR_GO340445 and FRS72 (Fig. 1). 
Whereas,  LLSQTL2 was found located between the markers 
DGR259 and FRS59. Incidentally, the  LLSQTL2 was found 
located very close to  LLSQTL1 at a distance of 3.22 cM from 
the marker FRS72 (Fig. S5). Also, a major QTL for rust 
resistance  (RustQTL) with 70.52% PVE (Fig. S5) was vali-
dated which is flanked by the markers SSR_GO340445 and 
FRS72; and is also located in the region harboring  LLSQTL1 
on LG_A03.

The common QTL region lying between markers 
GO340445 and FRS72 spanning 332.7 kb was reported har-
boring one R-gene (Aradu.Z87JB; TIR–NB–LRR) and four 
PR-genes (Aradu.RKA6M, Aradu.T44NR, Aradu.1WV86, 
and Aradu.NG5IQ) having vital roles in imparting resist-
ance to foliar fungal disease (Mondal and Badigannavar 
2018). In addition to the five genes identified by Mondal and 

Badigannavar (2018), we identified one lipooxygenase/lipase 
gene (Aradu.RW91L) having resistance function (Table 2).

Collinearity between linkage map and physical map

Twenty-seven SSRs were mapped on A03 chromosome, 
including 23 SSRs in the LLS and rust QTL region spanning 
between markers GM1954 and GM2009 (Table S1). Moreo-
ver, good collinearity was also observed for these SSRs on 
the A03 chromosome for their order and positions (Fig. 2). 
A small part of this region (between gi56931710 and 
DGR2409) was identified as a coarse QTL region imparting 
LLS and rust resistance. Further, a refined region (between 
markers DGR259 and FRS56) imparting LLS resistance 
and a common QTL region (between SSR_GO340445 and 
FRS72) for both LLS and rust resistance were identified as 
fine QTL regions (Fig. 3).

Validation studies

Twenty-three SSR markers between marker locus GM1954 
and GM2009 were used for validation in 177 diverse geno-
types (Table S1; Table S5). Twelve genotypes resistant to 
both LLS and rust were found harboring resistant alleles 
of 13 markers viz., DGR2409, DGR329, RS103, RS78, 
SSR_GO340445, FRS72, FRS49, DGR259, FRS56, RS50, 
RS42, gi56931710, and DGR800 (Fig. 3). However, eight 
markers (RS5, DGR312, DGR361, GM2079, GM2301, 
DGR508, IPAHM103, and GM1954) present on the left 
end of the coarse QTL region and one marker (GM2009) 
present on the right end of LLS-rust QTL region could not 
discriminate these genotypes. The LLS and rust-resistant 
genotypes (RS138, AK 265, and ICGV87846) showed sus-
ceptible allele amplification by GM1954 marker; whereas, 
the genotype RS138 showed susceptible allele amplification 
by GM2009 marker. Similarly, JCG88 a resistant genotype 
to both the diseases also amplified susceptible allele from 
four markers viz., IPAHM103, GM2079, RS5, and GM2009 
(Fig. 3).

Moreover, almost all the LLS and rust suscepti-
ble genotypes (except ICGV00350) showed suscepti-
ble allele amplification for all the tested marker loci, 
except for GM1954 and GM2009 markers, which are 
situated at the terminal end of the region. However, 
ICGV00350, a susceptible genotype to both the diseases 

Table 1  Summary of major 
QTLs identified for late leaf 
spot and rust resistance on A03 
chromosome

Where, PVE percentage of variance explained; LOD logarithm of odds; Add additive variance

Trait QTL name Position Left marker Right marker PVE (%) LOD Add

LLS LLSQTL1 133 FRS72 SSR_GO340445 47.45 50.39 1.24
LLSQTL2 128 FRS56 DGR259 29.06 34.53 0.96

Rust RustQTL 133 FRS72 SSR_GO340445 70.52 87.81 2.24
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showed resistant allele amplification by markers such as 
IPAHM103, DGR508, GM2301, GM2079, DGR361, and 
DGR312. These markers are found located on the left 
side of the coarse QTL region. In addition to the marker 
SSR_GO340445 and FRS72 which are found carrying 
fine QTL region, other markers like DGR2409, DGR329, 
RS103, RS78, FRS49, DGR259, FRS56, RS50, RS42, and 
gi56931710 also showed very tight association with both 
the diseases (Fig. S3). Two markers namely, GM1954 and 
GM2009 which are positioned at the border of the rust 
and LLS QTL region, showed less correspondence with 
the susceptible and resistant genotypes.

Surprisingly, none of the nine genotypes resistant to 
only rust disease were found having the marker alleles 
associated with coarse QTL region except markers loci 
SSR_GO340445 and DGR2409 in the resistant genotypes 
R2001-2 and ICG10, respectively. The marker validation 
details for all the genotypes are presented in Table S1 and 
Figs. 2, 3, 4.

Discussion

Simultaneous screening of an  F2 population for rust and 
LLS diseases under open field conditions through the 
spreader row technique has resulted in reliable phenotyp-
ing for these diseases. On a similar note, in wheat Alah-
mad et al. (2018) have also screened an  F2 population for 
two fungal diseases i.e. crown rot and leaf rust for the 
identification of linked QTLs. A set of 1311 SSR markers 
when tested between the parents (GJG17 and GPBD4) of 
the mapping population, resulted in a very low (6.04%) 
level of polymorphism, which was in concurrence with 
the previous reports of 6.07–6.65% polymorphism (Sujay 
et al. 2012; Khedikar et al. 2010; Mondal et al. 2012a). 
The low genetic diversity in cultivated peanut is mainly 
due to its recent origin from a single polyploidization 
event (Young et al. 1996). Of 900 novel EST-SSR mark-
ers studied, 43 (4.77%) are found polymorphic in the 

Fig. 1  Chromosome A03 carrying major QTLs for rust and late leaf spot disease resistance and functional annotation of the genes in the identi-
fied QTL region
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parents which were a little bit more than the previous 
reports (Hong et al. 2010; Mondal et al. 2012b). The very 
low polymorphism by the EST-SSRs could be due to the 
amplification of conserved genic regions. Four EST-SSR 
markers viz., DGR329, DGR508, DGR800, and DGR2409 
were able to discriminate against the resistant and suscep-
tible bulks for both LLS and rust diseases in BSA. How-
ever, an SSR marker  PM384100 (Shoba et al. 2012), and 
a RAPD marker  J71350 (Mondal et al. 2008) did not show 
complete correspondence with resistance when validated 
in a set of genotypes.

Out of 84 polymorphic SSRs, 23 (27.38%) showed seg-
regation distortion (SD), which is quite similar to the earlier 
reports (Sujay et al. 2012; Khedikar et al. 2010). However, 
a few studies have also recorded a relatively low level of SD 
for the studied markers (Mondal et al. 2012a; Hong et al. 

2010, 2008). Out of the seven novel EST-SSR markers iden-
tified, four markers viz., DGR329, DGR508, DGR2409, and 
DGR800 could distinguish the bulks in BSA, while three 
(DGR259, DGR312, and DGR361) could not differenti-
ate the bulks. Interestingly all the seven markers were fine 
mapped on A03 chromosome, in the region which is known 
to harbor QTLs for LLS and rust resistance. Gajjar et al. 
(2014) in their validation studies also reported the presence 
of maximum numbers of linked-markers on LG_03 (now 
chromosome A03).

The identification of QTL(s) is a prerequisite in the 
marker-assisted improvement of any quantitative trait. 
Khedikar et al. (2010) first mapped a major QTL conferring 
rust resistance having 55.20% PVE on LG_6 (later identi-
fied as A03) using the IPAHM103 marker (Fig. S6). After-
ward, Mondal et al. (2012a) identified a more tightly linked 

Table 2  Summary of EST-
SSR markers and genes in the 
targeted genomic region of A03 
chromosome

Where, *Indicate the identified EST-SSR markers in the present study between marker locus GM2009 and 
GM1954, a QTL hot spot region for LLS and rust; (–) details not available

SSR marker (Gene ID) Position (cM) Functional annotation

GM1954 49.71 –
IPAHM103 63.63 –
DGR508* (Aradu.70RCL) 69.33 Putative clathrin assembly protein
GM2301 78.01 –
GM2079 88.59 –
DGR800* (Aradu.RT35T) 102.95 Xyloglucan endotransglucosylase
DGR361* (Aradu.RT35T) 107.98 Xyloglucan endotransglucosylase
DGR312* (Aradu.AB2YQ) 116.55 C2H2-like zinc finger protein
RS5 125.16 –
gi56931710 125.43 –
RS42 126.23 –
RS47 127.03 –
RS50 127.03 –
FRS56 127.3 –
DGR259* (Aradu.UG0RV) 128.9 MADS-box transcription factor
FRS49 130.24 –
(Aradu.JG217) – LRR-Protein kinase superfamily protein
FRS72 132.12 –
(Aradu.Z87JB) – Disease resistance protein (TIR-NBS-LRR class)
(Aradu.RKA6M) – Glucan endo-1,3 beta-glucosidase-like
(Aradu.T44NR) – Glucan endo-1,3 beta-glucosidase-like
(Aradu.1WV86) – Glucan endo-1,3 beta-glucosidase-like
(Aradu.RW91L) – Lipase/lipooxygenase PLAT/LH2 family
(Aradu.NG5IQ) – Glucan endo-1,3 beta-glucosidase-like
SSR_GO340445 133.53 –
RS78 134.06 –
RS74 134.6 –
RS103 137.55 –
DGR329* (Aradu.13SFN) 143.12 GDSL esterase/lipase
DGR2409* (Aradu.BZ2JW) 149.11 CTD small phosphatase-like protein
GM2009 155.94 –
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SSR_GO340445 (1.9 cM) to the rust resistance gene. Fur-
ther, Sujay et al. (2012) have identified two common regions 
each carrying a major QTL for rust and LLS between marker 
GM1954 and GM2009.

Several studies have shown the presence of QTLs impart-
ing LLS and/or rust disease resistance between the markers 
GM1954 and GM2009 on A03 chromosome (Sujay et al. 
2012; Khedikar et al. 2010; Gajjar et al. 2014). Further, the 
QTL-seq analysis has also revealed the presence of SNPs in 
the candidate genes affecting LLS and rust resistance (Pan-
dey et al. 2017; Shirasawa et al. 2018). Mondal et al. (2012a) 
have reported SSR_GO340445 marker is tightly liked to 
rust resistance QTL. Recently, Mondal and Badigannavar 
(2018) have identified the fine-region of QTL (1.25 cM, 
96.3% PVE) for rust resistance between the markers SSR_
GO340445 and FRS72. Thus, the region between the mark-
ers GM1954 and GM2009 was targeted for its validation and 
further saturation with newly developed EST- SSR markers.

Our analysis has validated the presence of 1.25 cM 
QTL region for rust resistance (Mondal and Badiganna-
var 2018). Interestingly, the same QTL region (1.41 cM) 
located between the markers SSR_GO340445 and FRS72 
was also found harboring a common QTL for LLS 

resistance (47.45% PVE). Further, we have also identified 
a major QTL for LLS resistance  (LLSQTL2; 29.06% PVE) 
which is situated at 3.22 cM distance from FRS72 marker. 
Thus, the resistance to both LLS and rust diseases in the 
peanut was found governed by a common genomic region 
on chromosome A03.

We could also validate one R-gene (Aradu.Z87JB) and 
four resistance-related genes (Aradu.RKA6M, Aradu.T44NR, 
Aradu.1WV86, and Aradu.NG5IQ) in the LLS-Rust common 
QTL region on the A03 chromosome (Table 2) as reported 
by Mondal and Badigannavar (2018). R-gene resistance is 
due to the incompatible reaction, where elicitor is recognized 
by the receptor and causes hypersensitive response (HR) 
(Eitas and Dangl 2010; Bernoux et al. 2014). The resist-
ance-related genes were also known to impart host plant 
resistance by encoding various antifungal proteins which 
can degrade the cell-wall polysaccharides of the pathogen 
(Xu et al. 1992; Serba et al. 2015). The overexpression of 
tobacco β-1,3-glucanase imparted resistance to Cercospora 
arachidicola and Aspergillus flavus (Sundaresha et al. 2010); 
while radish and fenugreek fusion defensin gene showed 
improved resistance to Cercospora arachidicola and Phae-
oisariopsis personata in transgenic peanut (Bala et al. 2016).

Fig. 2  Collinearity between linkage map and physical map for the SSR markers linked with the rust and LLS diseases on A03 chromosome
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Lipoxygenase (Aradu.RW91L) ‒ a defense-related gene 
was found located between SSR_GO340445 and FRS72 
markers. Lipoxygenase has irreversible membrane damage 
function by peroxidation of membrane lipids, which causes 
cell death and thereby checks the pathogen spread (Kep-
pler and Novacky 1986). LRR-PK (Aradu.JG217) which is 
equivalent to the RHG4 gene in soybean, was found flanked 
by two major QTLs viz.,  RUSTQTL/LLSQTL1 and  LLSQTL2. 
This R‒gene might be involved in the initiation of HR by 
helping TIR-NBS-LRR (Aradu.Z87JB) in resistant peanut 
plants (Mondal and Badigannavar 2018).

EST-SSRs have great potential to tag and map QTLs since 
they are derived from the expressed regions of the genome 
(Oliveira et al. 2007). An EST-SSR marker (DGR259) was 
found close to the fine QTL region, while six more markers 
viz. DGR329, DGR2409, DGR312, DGR361, DGR800, and 
DGR508 could be integrated into the vicinity of a major 
QTL imparting disease resistance. The marker DGR329 was 
derived from the EST of Aradu.13SFN gene which encodes 
for the GDSL esterase/lipase enzyme having a defense role 
as reported in Arabidopsis (Kwon et al. 2009; Lee et al. 
2009) and wheat (Schweiger et al. 2016). Similarly, a gene 
Aradu.AB2YQ, the source of DGR312 marker, encodes 

for the  C2H2 zinc finger domain of transcription factors, 
and are known to impart defense in pepper, capsicum, and 
potato against Pseudomonas syringae (Oh et al. 2005), Xan-
thomonas campestris (Kim et al. 2004), and Phytophthora 
infestans (Tian et al. 2010), respectively.

The sequence analysis of QTL region on the A03 chromo-
some identified the SNPs imparting resistance against LLS 
and rust diseases (Shirasawa et al. 2018; Pandey et al. 2017). 
Also, the R-gene (Aradu.Z87JB) encoding disease resistance 
protein (TIR-NBS-LRR class) and PR genes (Aradu.1WV86, 
Aradu.NG5IQ, and Aradu.RW91L) encoding glucan endo-
1,3-beta-glucosidase-2 like protein, glucan endo-1, 3 beta-
glucosidase-4 like protein and lipase/lipooxygenase, respec-
tively have been identified in the 1.41 cM fine QTL region 
imparting LLS and rust resistance. Similar results were also 
obtained for rust by Mondal and Badigannavar (2018).

Two genes viz., Aradu.RT35T and Aradu.AB2YQ encod-
ing for xyloglucan endotransglucosylase/ hydrolases (XTHs) 
enzyme and  C2H2-like zinc finger protein, respectively, have 
been identified, which is very close to the fine QTL region 
imparting resistance. These genes were found harboring 
non-synonymous SNPs when compared among the resist-
ant and susceptible genotypes (Shirasawa et al. 2018; Pandey 

Fig. 3  Allelic pattern of all the markers flanking major rust and LLS QTL region
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et al. 2017), which could be the possible reason for alteration 
of gene function and making the genotypes as resistant or 
susceptible.

It is interesting to note that, two markers (DGR361 and 
DGR800) which are derived from the ESTs of Aradu.RT35T 
gene were mapped at different positions on the A03 chro-
mosome. A detailed analysis has revealed that the mark-
ers DGR361 and DGR800 have not only amplified differ-
ent SSR motifs viz. (CT)7(TCT)5 (DGR361) and CT(14) 
(DGR800) but were also found located on different posi-
tions viz. Aradu03:29,051,583 and Aradu03:131,814,096, 
respectively. Thus, the primes have targeted the tandemly 
repeated sequences of the paralogous genes located on A03 
chromosome (Bosamia et al. 2015).

Detailed expression studies of the identified genes in the 
QTL region will help in elucidation of the comprehensive 
resistance mechanism operating in peanut for rust and LLS 
diseases. The collinearity analysis has shown the similarity 
between the marker order when the linkage map (LG_A03) 
was compared with the physical map of A03 chromosome. 
A few markers did not follow the order compared to physical 
map and previous linkage maps (Sujay et al. 2012; Khedi-
kar et al. 2010; Mondal and Badigannavar 2018) as linkage 

maps depict only relative positions of markers to each other 
(Sourdille et al. 2003). An improved and saturated map of 
the targeted genomic region has been developed by integrat-
ing seven novel EST-SSR markers. For MABC, MAS, and 
also for the QTL pyramiding, there is a need to identify very 
tightly linked and polymorphic markers flanking LLS and 
rust QTL region in different genotypic background.

The effective use of linked SSR markers in any marker-
assisted breeding program demands its validation in varied 
genetic backgrounds (Mondal et al. 2008). Validation of 
23 SSR markers in a set of 177 diverse Indian groundnut 
genotypes revealed 12 as resistant to both LLS and rusts 
and carrying coarse QTL region. Thirteen markers in the 
coarse QTL region (DGR2409, DGR329, RS103, RS78, 
SSR_GO340445, FRS72, FRS49, DGR259, FRS56, RS50, 
RS42, gi56931710, and DGR800) showed correspondence 
with LLS and rust resistance reaction of the genotypes stud-
ied. Likewise, three markers viz., SSR_GO340445, FRS72, 
and FRS49 in the rust fine QTL region have also shown 
correspondence for rust reaction in 95 diverse groundnut 
genotypes (Mondal and Badigannavar 2018). Similarly, a 
marker (gi56931710) in the coarse QTL region, differenti-
ated the rust-resistant and susceptible genotypes (Mondal 

Fig. 4  Validation of all the markers flanking the major rust QTL region in a set of genotypes
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and Badigannavar 2018; Mondal et al. 2012a), while five 
markers (GM2009, GM2301, GM2079, GM1954, and 
IPAHM103) in the major QTL region have shown signifi-
cant association with rust resistance in different mapping 
populations (Sukruth et al. 2015).

Interestingly, three markers namely, GM2009, GM1954, 
and RS5, which flanked the coarse QTL region, did not show 
any correspondence with the foliar disease resistance in our 
population. On the contrary, Sujay et al. (2012) observed 
a moderate phenotypic effect with marker GM1954; while 
Yol et al. (2016) found a significant association of GM1954 
marker to rust resistance when tested in 256 groundnut 
genotypes.

A set of nine genotypes resistant to only rust disease are 
found lacking the specific marker alleles linked with the 
coarse QTL region governing the rust resistance (Table S1). 
This means that either the specific linked marker alleles are 
absent in these genotypes or these genotypes could be car-
rying the QTL(s) other than those present in the coarse QTL 
region of A03 chromosome for rust resistance. Thus, there is 
a need to focus on these genotypes to find the actual reason 
for the same. However, two genotypes viz., R2001-2, and 
ICG10 showed resistant allele of marker SSR_GO0340445 
and DGR2409, respectively.

It is important to note that the majority of these genotypes 
are derived from NcAcs (North Carolina Accessions) such 
as ALR3, Girnar1, ICGS10, VRI4, and LGN1. Mondal et al. 
(2012b) upon validation also found that one SSR marker 
gi56931710 amplified a resistant allele in all the non-NcAcs 
derived rust-resistant genotypes, but not in NcAcs derived 
resistant genotype (NcAc343). Further, of five NcAcs 
derived lines, two genotypes viz., Girnar1 and ICGS10 did 
not amplify the IPAHM103 marker loci. Also, the geno-
type ICGV86590 remained unclassified as resistant by the 
IPAHM103 allele, as also reported by Khedikar et al. (2010). 
It seems that the NcAcs derived lines may carry a different 
genomic region controlling the rust resistance in peanuts.

Overall, 21 genotypes were found resistant to foliar dis-
eases, and of these 12 (57%) were found resistant to both 
LLS and rust, while 09 (43%) were resistant to only rust. 
Further, 16 (76%) genotypes are of ssp. fastigiata type; 
while, 05 (24%) are of ssp. hypogaea type (Table  S5). 
Similarly, Subrahmanyam et al. (1989) reported 87% of 
the resistant genotypes as ssp. fastigiata type; while, 13% 
as ssp. hypogaea type. Also, various sources of LLS and 
rust resistance have been identified in the cultivated gene 
pool (Varman 1999; Subrahmanyam et al. 1989; Mehan 
et al. 1996; Singh et al. 1997) and majority of them are of 
subspecies fastigiata type (Subrahmanyam et al. 1995; Liao 
2003). Since primitive peanut subspecies fastigiata has its 
probable origin in Peru, which is a secondary gene center 
and also the source of foliar-fungal disease resistance (Sub-
rahmanyam et al. 1995), therefore, this subspecies was found 

dominating as a source of resistance to these diseases. Fur-
thermore, when we looked at the market type, all the resist-
ant genotypes of ssp. fastigiata are of Spanish bunch type 
(Table S5). Spanish types mostly have superior agronomic 
traits (Mehan et al. 1996) and thus are frequently used as a 
resistance source in various peanut breeding programs.

Conclusions

This study reports the validation of QTLs for rust and 
the identification of novel QTLs for LLS resistance. Both 
the QTLs have been mapped as a common major QTL 
region imparting LLS and rust resistance on A03 chromo-
some. Also, this region was further saturated by integrat-
ing a greater number of novel markers that can be used to 
introgress these fine QTL regions to improve LLS and rust 
resistance more efficiently by minimizing the risk of linkage 
drag. Since the novel EST-SSR markers are derived from the 
genes known to impart biotic stress resistance, therefore the 
linked marker associated genes may further be studied for 
its exact mode of action in imparting the resistance to LLS 
and rust diseases. The marker validation has identified the 
genotypes having varied genomic backgrounds which may 
be used as a potential source of LLS and rust resistance in 
the groundnut improvement as per the need of the breeder.
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