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ABSTRACT
This article provides some new construction methods of partially bal-
anced bipartite block (PBBB) designs for comparing test treatments
with more than one control. Partially balanced incomplete block
(PBIB) designs based on some association schemes such as triangu-
lar association, Latin-square association, group divisible association,
and cyclic association are used for developing these methods of
construction. A catalog of efficient PBBB designs is included for param-
eter values v1 (number of test treatments) ≤ 10, v2 (number of con-
trol treatments) = 2, b (number of blocks) ≤ 8, r1 (replications of test
treatments) ≤ 10 and k (block size) ≤ 6 along with computed variances.
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1. Introduction

In many fields of experiments such as agricultural, industrial and biological experiments,
the experimenter often desires to compare simultaneously several test treatments with a
standard or existing treatment called control treatment. A lot of literature is available for
single control situation, see for example, Hedayat, Jacroux, and Majumdar (1988); Majumdar
(1996); and Gupta and Parsad (2001). For this situation, an important class of designs called
as balanced treatment incomplete block (BTIB) designs was introduced by Bechhofer and
Tamhane (1981). Subsequently these designs were studied by Majumdar and Notz (1983);
Notz and Tamhane (1983); Hedayat and Majumdar (1984); Stufken (1987, 1988); Cheng et
al. (1988); Parsad, Gupta, and Prasad (1995); Das et al. (2005); Mandal, Gupta, and Parsad
(2017); and Mandal, Parsad, and Dash (2020). BTIB designs may not be always available for all
parametric combinations or even if it is available, it may require a large number of replications.
To circumvent this problem, Jacroux (1987) introduced group divisible treatment (GDTD)
designs. Further studies on these designs were fostered by Jacroux (1986, 1988); Jacroux and
Majumdar (1989); and Stufken (1991).

However, there exists an experimental situation, wherein the experimenter is interested
in comparing several test treatments with more than one control. For this situation, initially,
Corsten (1962) formulated balanced block designs with two different numbers of replications
along with their statistical analysis. Later, Kageyama and Sinha (1988) formally introduced
a valuable class of designs called balanced bipartite block (BBPB) designs for comparing
several test treatments with more than one control and also gave tables of these designs.
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These designs are subsequently studied by Sinha and Kageyama (1990); Jaggi, Gupta, and
Parsad (1996); and Mandal, Parsad, and Dash (2018). BBPB designs may not be always
obtainable for all combination of parameters or even if it is obtainable may require a large
number of replications. For such situations, Rao (1966) initially developed partially balanced
block designs with distinct replications and their statistical analysis. Later, most suitable class
of designs, that is, group divisible partially balanced bipartite (GD PBB) designs was first
proposed by Kageyama and Sinha (1991). The advantages of these designs were discussed by
Kageyama and Sinha (1988). According to Kageyama and Sinha (1991), these designs are also
useful for conducting factorial experiments; see for example, Puri and Kageyama (1985); and
Puri, Mehta, and Kageyama (1986). This design is defined in the sequel.

Definition 1.1. An incomplete block design with a set of v1 treatments occurring r1 times
and another set of v2 treatments occurring r2 (r1 �= r2) times arranged in b blocks of size
k, is called GD PBB design if: (i) the treatments in the jth set can be divided into pj groups
each of size qj (j = 1, 2) and any two treatments in the same group are called first associates,
otherwise second associates; (ii) any two treatments in the jth set which are ith associates occur
together in λj(i) blocks for i = 1, 2; (iii) any two treatments from different sets occur together
in λ12 = λ21(> 0) blocks.

The symbols v1, v2, b, r1, r2, k, λj(i) (j = 1, 2; i = 1, 2, . . . , t), are called parameters of the
design. This design is generally known as partially balanced bipartite block (PBBB) design. If
PBBB design based on group divisible (GD) association scheme, then it is called as GD PBB
design. These designs have the property of partial balance within the two groups of treatments
(treatments in each group having constant replication) and of balance structure between the
groups. Note that when λ12 = 0, the design is disconnected and hence we give the restriction
λ12 > 0. Furthermore, when λ2(1) = λ2(2), it is denoted by λ2() . The following parametric
relations hold for a PBBB design:

1. v1r1+v2r2=bk
2. r1 (k−1) =n11λ1(1)+n12λ1(2)+v2λ12
3. r2 (k−1) =n21λ2(1)+n22λ2(2)+v1λ12

If λ2(1) = λ2(2) then (iii) reduced as r2 (k − 1) = (v2 − 1)λ2() + v1λ12. Here, nji, is the
number of ith (i = 1, 2) associates of a given treatment from the jth (j = 1, 2) set.

The article is organized as follows. Some new construction methods of PBBB designs
along with illustrations are given in Section 2. Section 3 depicts the information about
efficiency and variance structure of these designs. In Section 4, a comparative study of these
designs with existing designs has been discussed. Finally, a list of these designs with two-
associate classes for parameter values v1 (number of test treatments) ≤ 10, v2 (number of
control treatments) = 2, b (number of blocks) ≤ 8, r1 (replications of test treatments) ≤ 10,
k (block size) ≤ 6 is also given in Appendix.

2. Construction methods of PBBB designs

This section reveals some new methods for obtaining PBBB designs using PBIB designs based
on some usual association schemes.
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Method 2.1. Let there exists a t-associate class PBIB design with parameters as v′ , b′ , r′, k′ , λ′
i,

∀ i = 1, 2, . . . , t. By reinforcement of v2 control treatments to each of the b′ blocks of PBIB
design, implies a PBBB design with parameters v1 = v′ , v2, b = b′ , r1 = r′ , r2 = b′ , k = k′ + v2,
λ1(i) = λi, ∀ i = 1, 2, . . . , t, λ12 = r′ , λ2() = b′ .

Example 2.1. Consider a PBIB design based on two class triangular association scheme with
parameters v′ = 10, b′ = 5, r′ = 2, k′ = 4, λ

′
1 = 1, λ

′
2 = 0, n = 5, which is T28 in Clatworthy

(1973) and its block layout as

(1, 2. 3, 4)

(1, 5, 6, 7)

(3, 5, 8, 9)

(4, 7, 9, 10)

Then by using the procedure of Method 2.1, on addition of v2 = 2 controls viz., 01 and 02, one
can get a PBBB design based on two-class triangular association scheme with block layout as
follows:

(1, 2, 3. 4,
(1, 5, 6, 7,
(2, 5, 8, 9,
(3, 6, 8, 10,

01, 02)
01, 02)
01, 02)
01, 02)

(4, 7, 9, 10, 01, 02)

The parameters of the above design are v1= 10, v2= 2, b= 5, r1= 2, r2= 5, k= 6, λ1(1)= 1,
λ1(2)= 0, λ12= 2, λ2() = 5.

Method 2.2. Suppose there exists two class PBIB design based on group divisible (GD)
association scheme with parameters v′ , b′ , r′, k′ , λ

′
i, i = 1, 2. The group divisible association

scheme on v = mn treatments, for integers m ≥ 4 and n ≥ 2, arranged in m × n array as

1 m + 1 2m + 1 . . .

2 m + 2 2m + 2 . . .

3 m + 3 2m + 3 . . .
...

...
...

...

m(m − 1) + 1
m(m − 1) + 1
m(m − 1) + 1

...
m 2m 3m . . . mn

A PBBB design can be obtained by merging treatments of any v2 ∈ [2, m − 2] rows of the
above m × n array and the parameters of this design become as v1 = v′ − v2n = n(m − v2),
v2, b = b′ , r1 = r′ , r2 = nr′ , k = k′ , λ1(1) = λ

′
1, λ1(2) = λ

′
2, λ12 = nλ

′
2, λ2() = n2λ

′
2.

Example 2.2. A singular GD design, S19 in Clatworthy (1973) with parameters as v′ = 8,
b′ = 8, r′ = 6, k′ = 6, λ

′
1 = 6, λ

′
2 = 4, m = 4 and n = 2 based on group divisible association

scheme as follows;

1 5
2 6
3 7
4 8
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The block contents of this design are:

(1, 5, 2, 7,
(2, 6, 1, 5,
(3, 7, 4, 8,
(4, 8, 3, 6,

3, 6); (5, 1,
4, 8); (6, 2,
1, 5); (7, 3,
2, 7); (8, 4,

7, 2, 6, 3)

5, 1, 8, 4)

8, 8, 5, 1)

6, 6, 7, 2)

On merging of any v2 = 2 (say) of the rows, without loss of any generality, one can get a PBBB
design. Suppose first two rows [1, 5] and [2, 6] are merged by placing control treatments ‘01’
and ‘02’ respectively. After merging, the above array becomes as

01 01
02 02
3 7
4 8

One gets a PBBB design with parameters as v1 = 4, v2 = 2, b = 8, r1 = 6, r2 = 12, k =
6, λ1(1) = 6, λ1(2) = 4, λ12 = 8, λ2() = 16. The blocks of the design after renumbering of
treatments shown below:

(01, 01 02 3,
(02, 02, 01, 01,
(1, 3, 2, 4,
(2 4, 1, 02,

1, 02); (01, 01,
2, 4); (02, 02,
01, 01); (3, 1
3); (4, 2,

3, 02, 02, 1)

01, 01, 4 2)

4, 2, 01 01)
02, 1, 3 02)

The designs generated by Methods 2.1 and 2.2 are catalogued in Appendix for parameter
values v1 ≤ 10, v2 = 2, b ≤ 8, r1 ≤ 3 and k ≤ 6.

3. Efficiency and variance structure

For studying the efficiencies of obtained PBBB designs, we use the results of A-optimality
of BBPB designs for comparing test treatments with multiple controls. For this purpose, we
consider D (v1, v2, b, k) as the class of all connected block designs in which v1 test treatments
and v2 control treatments are arranged in b blocks of size k each. We make use of the sufficient
condition for establishing the A-optimality of BBPB designs discussed by Jaggi, Gupta, and
Parsad (1996). The sufficient condition gives the lower bound to the trace of variance-
covariance matrix of all the test treatments versus control treatments contrasts. A design that
attains the lower bound is termed as A-optimal. The condition is given in Result 3.1.

Result 3.1. An PBBB design is A-optimal in the class of all designs with the same values of
v1, v2, b, k if

g
(
w, q

) = min
{

g (x, z) , (x, z)∈ �
}

(3.1)

where � = {(x, z) ; x= 0, 1, . . . , int
[
k
/

v2
]−1; z= 0, 1, . . . , b with z> 0 when x= 0} ,

g (x, z)= 1
A (x, z)

+ a
B (x, z)

+ d
C (x, z)

a=v2(v1−1)2, d=v1(v2−1)



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5

A (x, z)={k(bx+z) − v2
(
bx2+2xz+z

)}
/v1k,

B (x, z)= [bkv1 (k−1)−v2 {v1 (k−1) +k} (bx+z)

+ v2
2
(
bx2+2xz+z

)]
/v1k,

C (x, z) = bx + z. Here int [ .] denotes the greatest integer function.

We adopt the approach of Stufken (1988) to obtain A-efficiency (E) of PBBB designs.
The A-efficiency is the ratio of A-value of a hypothetical A-optimal design whose criterion
value given in (3.1) is minimum for comparing test treatments with controls in a given
class of designs, to the A-value of the design whose A-efficiency to be obtained in the same
class of designs. Here, A-value is the trace of variance-covariance matrix of the estimated
treatment contrasts of interest. A-efficiencies of these designs are obtained by using Result
3.1. Further, a design is A-optimal if the A-efficiency is 1.000. Some of the A-optimal designs
within the scope of parameters v1 ≤ 10, v2 = 2, b ≤ 8, r1 ≤ 3, k ≤ 6 are observed in Appendix.
For cataloguing purpose, we have restricted for v2 (number of control treatments) = 2.
Furthermore, computed variances of these designs for the estimated differences in effect
between two treatments, V1(1)σ

2, V1(2)σ
2, V12σ

2 and V2() σ
2 have also been given. Here,

V1(1)σ
2 denotes variance for the estimated differences in effect between two test treatments

(first associates) both from the first set; V1(2)σ
2 denotes variance for the estimated differences

in effect between two test treatments (second associates) both from the first set; V2() σ
2

denotes variance for two control treatments both from the second set; and V12(= V21)σ
2

denotes variance for two treatments (test with control) from different sets. These quantities
V1(1), V1(2), V12 and V2() are also helpful to judge whether the designs are practical or
not. Experimenters and practicing statisticians may choose design, suitable to their practical
purpose, from the tables by reading values V1(1), V1(2), V12 and V2() for given v1, v2 and b.
The letters S, SR, R, LS, T, C in Appendix indicate the source designs from Clatworthy (1973).

4. Comparative study with existing designs

Previously, balanced bipartite block (BBPB) designs for comparing test treatments with more
than one control have been reported [Kageyama and Sinha (1988); Sinha and Kageyama
(1990); and Jaggi, Gupta, and Parsad (1996)]. However, these designs are available in large
number of blocks (b ≤ 52) for minimum number of treatments (2 ≤ v1 ≤ 10) [Kageyama and
Sinha (1988)]. Additionally, Sinha and Kageyama (1990) presented two designs such as SK4
(v1 = 8, b = 16, r1 = 6, r2 = 8, k = 4, λ11 = 2, λ12 = 8, λ22 = 2) and SK13 (v1 = 10, b = 15,
r1 = 7, r2 = 10, k = 6, λ11 = 3, λ12 = 10, λ22 = 4) in 16 and 15 blocks, respectively. Jaggi,
Gupta, and Parsad (1996) also contain the designs with large number of blocks (b ≥ 15)viz.,
JGP1 (b = 15, r1 = 7, r2 = 9, k = 4, E = 0.955) and JGP2 (b = 15, r1 = 9, r2 = 3, k = 4, E =
0.483) for v1 = 8; and JGP3-7 (i.e., b = 18, r1 = 5, r2 = 16, k = 4, E = 0.965; b = 36, r1 = 10,
r2 = 32, k = 4, E = 0.965; b = 16, r1 = 6, r2 = 8, k = 4, E = 0.937; b = 24, r1 = 9, r2 = 12, k =
4, E = 0.936; and b = 22, r1 = 10, r2 = 4, k = 4, E = 0.517) for v1 = 10. Here, SK# and JGP#
denotes the BBPB design at serial number # in Sinha and Kageyama (1990); and Jaggi, Gupta,
and Parsad (1996) respectively. In place of these designs, the proposed PBBB designs (given in
Appendix) i.e., either design with serial number 7 or 12; and either design with serial number
13 or 14, respectively, may be practical with good A-efficiencies (i.e., 0.901 ≤ E ≤ 1.000) in
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a smaller number of blocks. Interestingly, the proposed construction methods in the present
investigation are simple and straightforward, which yields quite highly efficient PBBB designs
(i.e., 0.868 ≤ E ≤ 1.000) with a minimum number of blocks (3 ≤ b ≤ 8) compared to existing
ones. As a result, these designs can make it easier for experimenters (even if the experimenter
is constrained by a lack of resources) to infer elementary contrasts between each test and each
control with as much precision as possible in plant and animal experiments.
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