ICAR-K.H.PATIL KRISHI VIGYAN KENDRA, HULKOTI, GADAG DISTRICT ACTION PLAN FOR 2023-24 #### 1. General information about the Krishi Vigyan Kendra | 1.1 | Name and address of KVK with phone, fax and e-mail ID | : | ICAR-K.H. Patil Krishi Vigyan Kendra Hulkoti – 582205 Dist.: Gadag, State: Karnataka Phone: (08372) 289606 E-mail: kvk.gadag@icar.gov.in, kvkhulkoti@gmail.com Website: https://kvkgadag.icar.gov.in | |-----|---|---|--| | 1.2 | Name and address of host organization | : | Agricultural Science Foundation Hulkoti – 582205 District: Gadag, State: Karnataka Phone: (08372) 289069 E-mail: hulkotiasf@gmail.com Website: www.asf.ind.in | | 1.3 | Year of sanction | : | 1985 | | 1.4 | Website address of KVK and date of last update | | https://kvkgadag.icar.gov.in and date of last update is 18-03-2023 | #### 2.Details of staff as on date | | | | | If permanen
indica | • | | If temporary, pl. indicate | |------------|----------------------------|-----------------------|----------------------|-----------------------|-------------------------|-----------------|--| | SI.
No. | Sanctioned post | Name of the incumbent | Discipline | Current
Pay Level | Current
Basic
Pay | Date of joining | the consolidated amount paid (Rs./month) | | 2.1 | Senior Scientist & Head/PC | Dr. L.G. Hiregoudar | Crop Physiology | L-14 | 218200 | 05.09.1992 | Р | | 2.2 | Subject Matter Specialist | Dr. Sudha V. Mankani | Home Science | L-12 | 119300 | 26.06.1995 | Р | | 2.3 | Subject Matter Specialist | Mr. N.H. Bhandi | Soil Science | L-11 | 96600 | 01.06.2005 | Р | | 2.4 | Subject Matter Specialist | Mrs. Hemavati R.H. | Horticulture | L-10 | 61300 | 14.02.2020 | Р | | 2.5 | Subject Matter Specialist | Dr. Vinayaka Niranjan | Agri.
Engineering | L-10 | 57800 | 11.10.2021 | Р | | | | | | If permanent, please indicate | | | If temporary, pl. indicate | |------------|---|--------------------------|---------------------|-------------------------------|-------------------------|-----------------|---| | SI.
No. | Sanctioned post | Name of the incumbent | Discipline | Current
Pay Level | Current
Basic
Pay | Date of joining | the
consolidated
amount paid
(Rs./month) | | 2.6 | Subject Matter Specialist | VACANT | Ag. Extension | | | | | | 2.7 | Subject Matter Specialist | VACANT | Agronomy | | | | | | 2.8 | Programme Assistant (Animal Science) | Dr. B.M. Murgod | Animal
Husbandry | L-7 | 60400 | 25.06.2007 | Р | | 2.9 | Programme Assistant (Computer Programmer) | Mrs. Lalita S.Asuti | Computers | L-7 | 66000 | 01.06.2005 | Р | | 2.10 | Programme Assistant (Farm Manager) | Mr. Suresh L. Halemani | Farm management | L-7 | 53600 | 01.02.2011 | Р | | 2.11 | Assistant | Mr. M.B. Jakkanagoudar | Accounts | L-7 | 60400 | 25.06.2007 | Р | | 2.12 | Stenographer | Mr. T.K. Sai Swaroop Rao | - | L-4 | 30500 | 15.12.2016 | Р | | 2.13 | Driver Cum Mechanic | Mr. N.L. Hadapad | - | L-4 | 46100 | 03.09.1992 | Р | | 2.14 | Driver Cum Mechanic | Mr. G.D. Madivalar | - | L-4 | 41000 | 26.06.1995 | Р | | 2.15 | Skilled Support Staff-1 | Mrs. Savita V. Karadani | - | L-1 | 19700 | 14.02.2020 | Р | | 2.16 | Skilled Support Staff -2 | VACANT | - | | | | | ## 3. Details of SAC meeting conducted during 2022-23 | Date | Number of
Participants | Salient Recommendations | Action taken | Remarks, if any | |------------|---------------------------|---|--|-----------------| | 22-02-2023 | 19 | Introduce more perennial fruits and vegetables in Nutri Garden | These recommendations are included in the Action Plan of 2023-24 | - | | | | Conduct trainings on vegetable and fruit processing. | | | | | | Include cucumber variety released by IIHR under Vegetable Cafeteria. | | | | | | Impart trainings on IFS in order to enable farmers to get good income and give thrust to animal components also | | | | | | Give thrust to Intercropping and Mixed cropping during trainings. | | | | | | Train farmers to take up seed treatment in Redgram crop to reduce incidence of wilt problem in the district | | | | | | Pure Byadagi variety seed production in Chilli crop be encouraged among farmers so as to make pure Byadagi variety seeds available to villagers. | | | | | | Conduct group meeting / crop seminar in Mango crop to overcome pest problem involving Subject Experts. | | | | | | Advise farmers for going to buffaloe rearing as buffaloe milk fetches good market price and thus farmers can get good returns. | | | | | | Advise farmers for planting fodder trees on bunds so as to feed animals, sheep and goat even during off-seasons. | | | | | | Take up Paraquat spray for shedding of leaves in Greengram
before mechanical harvesting to ease the harvesting operation
and also suggested to go for eco-friendly treatment with high
salt concentrate in place of chemical i.e Paraquat. | | | | | | Take up method demonstrations of seed treatment in Greengram seeds before sowing to manage Yellow Vein Mosaic Virus. | | | | | | Promote BJV-44 variety of Rabi Sorghum through demonstrations. | | | | Date | Number of | Salient Recommendations | Action taken | Remarks, if | |------|--------------|--|---------------------------------------|-------------| | | Participants | | | any | | | | Advise farmers to go for Ridges and Furrows in Chilli crop in case of excess rainfall during the season. | These recommendations are included in | - | | | | Advise farmers to go for wider spacing (row to row) in Bengalgram crop for good mechanical harvesting. | the Action Plan of 2023-24 | | Tentative date of SAC meeting proposed during 2023-24 : 30-11-2023 ## 4. Details of operational areas proposed during 2023-24 | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |--------------------------------|---|--|--|--| | Cluster A Asundi (Gadag block) | Maize | Imbalanced nutrition Application of excess Nitrogen Incidence of Army worm Drudgery during threshing and winnowing of Maize Incidence of Turcicum leaf blight and Bacterial stalk rot High labour requirement for harvesting of maize | 40 ha.
(40% of the
irrigated area) | Training on INM practices in Maize Trainings on use of machineries in maize cultivation Supply of literature | | | Greengram | Low yield due to use of local variety Imbalanced nutrition and high cost of cultivation Low yield due to incidence of Powdery mildew and Pod borer Seed shattering problem during harvesting in local variety China Moong Moisture stress due to long dry spells in Kharif | 45 ha
(30% of the area) | FLD on ICM practices in Greengram FLD on Compartmental Bund Former Training on ICM in Greengram Supply of literature Field day | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |----------|---|---|--|--| | | Bt. Cotton | Incidence of Pink bollworm Incidence of Leaf reddening Incidence of sucking pests | 15 ha
(10% of the area) | Training on use of Splat pheromone technique to control pink bollworms with method demonstration Training on ICM practices in cotton Field day | | | Bengalgram | Low yield due to cultivation of local varieties Imbalanced nutrition and high cost of cultivation Low yield due to incidence of pod borer Incidence of Wilt and Rust | 150 ha
(50% of the area) | FLD on ICM practices in Bengalgram Training on ICM practices
in Bengalgram Supply of literature Field day | | | | Non profitability due to no
nipping Drudgery of Operation involved
in Manual Nipping of Chickpea | | FLD on solar nipping machine Trainings on use of machineries in chickpea cultivation Field day | | | Rabi Sorghum | Low productivity due to use of local variety Incidence of shoot fly and stem borer Incidence of smut diseases Problem of lodging in existing variety | 40 ha
(20 % of the area) | FLD on ICM practices in Rabi Sorghum Training on ICM practices in Rabi Sorghum Supply of literature Field day | | | Summer groundnut | Low yield due to use of local varieties Imbalanced nutrition Incidence of collar rot and root grub | 50 ha
(50% of the
irrigated area) | FLD on INM in Summer Groundnut Training on ICM practices in summer groundnut Field Day Supply of literature | | | | Drudgery involved in manual
harvesting Low income due to high labour
cost | | Trainings on use of machineries in groundnut cultivation | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |----------|---|---|--|--| | | Safflower | Low productivity due to cultivation of local variety Incidence of sucking pests Incidence of Capsule borer Incidence of Alternaria leaf spot | 100 ha
(50 % of the area) | FLD on ICM practices in ISF-764 variety Training on ICM practices in Safflower Supply of literature Field Day | | | Vegetable crops | Low income due to cultivation of local varieties Application of imbalanced fertilizers | 36 ha. (60% of
the irrigated area) | FLD on introduction of ICAR-IIHR varieties of vegetable crops (Ridgegourd, Radish, Spinach, Dolichos Bean, Cucumber and Drumstick) Assessment of high yielding okra hybrids for higher productivity Trainings on ICM in vegetable crops Supply of literature Field day | | | Red Chilli | Non-availability of quality and pure seeds of Byadgi Dabbi Lack of proper knowledge on ICM practices resulting in poor productivity and quality with high incidence of pest and diseases Improper post-harvest management (Drying & storage of chilli and its powder) | 250 ha. (60% of
the rainfed area) | FLD on ICM in Chilli crop Training on ICM Supply of relevant literature Farm advisory services Rendering Kisan Mobile Advisory Services to farmers Field day Seed production | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |----------|---|--|--|--| | | Onion | Imbalanced nutrition application without soil testing Low productivity in existing variety Bellary Red onion Low keeping quality of bulbs in existing variety High incidence of thrips & purple blotch High incidence of weeds High labour requirement in detopping of harvested onion crop | 250 ha. (60% of
the rainfed area) | FLD on introduction of Bhima Super variety along with ICM practices Demonstration of Battery Operated Onion Detopper Trainings on ICM in onion crop Seed production activities with identified seed farmers for supply of quality seeds of Bhima Super variety in village Supply of relevant literature Field day | | | Nutrition and health | Less consumption of fruits and vegetables Lack of awareness on nutritional importance and value addition of flax seeds Lack of availability of Omega-3 Fatty acids in vegetarian diet. | 85% families | FLD on Nutri Garden Training on balanced diet and nutrition Training on importance of millets in diet Field day | | | Millets | Low productivity due to cultivation of local variety Lack of awareness on millet nutrition and value addition | 90% families | FLD on HN-46 variety of Foxtail Millet Training on preparation of millet products Training Supply of literature | | | Grain storage | Incidence of stored grain pest | 50% families | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | Borewell | Decreased ground water level
and less water availability for
irrigation | 160 ha. (37%) | Training on recharge of ground water through borewell Field visits to demonstration units of artificial recharge of ground water through borewell | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |---------------------------------------|---|--|--|---| | | | | | Supply of literature | | Cluster B Halligudi (Mundaragi block) | Greengram | Low yield due to use of local variety Imbalanced nutrition and high cost of cultivation Low yield due to incidence of Powdery mildew and Pod borer Seed shattering problem during harvesting in local variety China Moong Moisture stress due to long dry spells in Kharif | 150 ha
(25 % of the area) | FLD on ICM practices in Greengram Training on ICM in Greengram Supply of literature Field day | | | Bengalgram | Low yield due to cultivation of local varieties Imbalanced nutrition and high cost of cultivation Low yield due to incidence of pod borer Incidence of Wilt and Rust Reduced yield due to moisture stress | 200 ha
(40 % of the area) | FLD on ICM practices in Bengalgram Training on ICM practices in Bengalgram Supply of literature Field day FLD on compartmental bund former Trainings on use of machineries in chickpea cultivation | | | Safflower | Low productivity due to cultivation of local variety Incidence of sucking pests Incidence of Capsule borer Incidence of Alternaria leaf spot | 100 ha
(50 % of the area) | OFT on Assessment of Annigeri 2020 and ISF-764 varieties in Safflower crop FLD on ICM practices in ISF-764 variety Training on ICM practices in Safflower Supply of literature Field Day | | | Rabi Sorghum | Low productivity due to use of
local variety Incidence of shoot fly and
stem borer | 40 ha
(20 % of the area) | FLD on ICM practices
in Rabi Sorghum Training on ICM practices in Rabi Sorghum Supply of literature Field day | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |----------|---|---|--|---| | | | Incidence of smut diseasesProblem of lodging in existing variety | | | | | Sunflower | Incidence of NecrosisIncidence of Red headed
caterpillar (RHHC) | 20 ha
(50 % of the area) | Training on ICM practices in SunflowerSupply of literature | | | Red Chilli | Non-availability of quality and pure seeds of Byadgi Dabbi Lack of proper knowledge on ICM practices resulting in poor productivity and quality with high incidence of pest and diseases | 80 ha. (30% of
the rainfed area) | FLD on ICM in Chilli crop Training on ICM Supply of relevant literature Farm advisory services Rendering Kisan Mobile Advisory Services to farmers Field day | | | Onion | Low income due to cultivation of local varieties Imbalanced nutrition without soil testing Low keeping quality bulbs in existing variety High incidence of thrips & purple blotch High incidence of weeds High labour requirement in detopping of harvested onion crop | 100 ha. (30% of
the rainfed area) | FLD on introduction of Bhima Super variety along with ICM practices Trainings on ICM in onion crop Demonstration of battery operated detopper Trainings on use of battery operated detopper Seed production activities with identified seed farmers Supply of quality seeds of Bhima Super variety Supply of relevant literature Field day | | | Rabi crops | Non profitability in existing
Rabi crops due to moisture
stress during Rabi Season | 80 ha (25% of the rainfed area) | FLD on introduction of Ashwagandha crop for higher income and drought mitigation Supply of relevant literature Field day | | | Rabi crops | Non profitability in existing
Rabi crops due to moisture
stress during Rabi Season | 80 ha (25% of the rainfed area) | FLD on introduction of Ajawain crop for higher income and drought mitigation Supply of relevant literature | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |---------------------------------------|---|---|--|--| | | | | | Field day | | | Nutrition and health | Less consumption of fruits and vegetables Lack of awareness on nutritional importance and value addition of flax seeds Lack of availability of Omega-3 Fatty acids in vegetarian diet. | 85% families | FLD on Nutri Garden Training on balanced diet and nutrition Training on importance of millets in diet Field day | | | Grain storage | Incidence of stored grain pest | 50% families | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | Millets | Low productivity due to
cultivation of local variety Lack of awareness on millet
nutrition and value addition | 90% families | Demonstration of HN-46 variety of Foxtail Millet Training on preparation of millet products Training Supply of literature | | Cluster C Akkigund (Laxmeshwar block) | Maize | Imbalanced nutrition Incidence of Army worm Drudgery during threshing and winnowing of Maize Incidence of Turciccum leaf blight and Bacterial stalk rot High labour requirement for harvesting of maize | 60 ha
(90 % of total
area) | Trainings on INM practices in Maize Trainings on use of machineries in maize cultivation Supply of literature | | | Spreading groundnut | Low productivity in existing local varieties Imbalanced nutrition Incidence of leaf minor and leaf spot | 40 ha
(20 % of the area) | Trainings on ICM practices in Spreading groundnut Supply of relevant literature | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | | | | | | |----------|---|--|--|---|--|--|--|--|--| | | Soybean | Low productivity due to
cultivation of local variety | 20 ha
(5% of the area) | FLD on Introduction of KDS-753 variety of
Soybean Trainings Supply of literature | | | | | | | | Bt. Cotton | Incidence of pink bollwormProblem of leaf reddeningIncidence of sucking pests | 40 ha
(20 % of the area) | Training on use of Splat pheromone technique to
control pink bollworm and method demonstration Training on ICM practices in cotton | | | | | | | | | Drudgery of operation in
existing spraying methods | 120 ha
(80 % of total
area) | Trainings on use of machineries in Bt. Cotton cultivation | | | | | | | | Greengram | Low yield due to use of local variety Imbalanced nutrition and high cost of cultivation Low yield due to incidence of Powdery mildew and Pod borer Seed shattering problem during harvesting in local variety China Moong Moisture stress due to long dry spells in Kharif | 80 ha
(50 % of the area) | FLD on ICM practices in Greengram FLD on Compartmental Bund Former Training on ICM in Greengram Supply of literature Field day | | | | | | | | Blackgram | Low yield due to use of local varieties Incidence of Powdery mildew Incidence of pod borer | 30 ha
(20 % of the area) | OFT of high yielding varieties of Blackgram Training on ICM practices in Blackgram Supply of literature | | | | | | | | Bengalgram | Low yield due to cultivation of local varieties Imbalanced nutrition and high cost of cultivation Low yield due to incidence of pod borer Incidence of Wilt and Rust | 100 ha
(25 % of the area) | Training on natural farming practices in
Bengalgram FLD on demonstration of solar nipping machine in
Bengalgram Trainings on use of machineries in Bengalgram
cultivation Supply of literature | | | | | | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | | | | | |----------|---
---|--|--|--|--|--|--| | | | Non profitability due to no nipping Drudgery of operation involved in manual nipping of Bengalgram | | Field day | | | | | | | Wheat | Low productivity due to use of local varieties Incidence of termites and stem borer Incidence of rust and leaf spot | 20 ha
(10 % of the area) | Training on ICM practices in WheatSupply of literature | | | | | | | Rabi Sorghum | Incidence of Shoot fly and
Stem borerIncidence of Smut disease | 20 ha
(20 % of the area) | FLD on ICM practices in Rabi Sorghum Training on ICM practices in Rabi Sorghum Supply of literature Field day | | | | | | | Millets | Low productivity due to
cultivation of local variety Lack of awareness on millet
nutrition and value addition | 90% families | FLD on introduction of HN-46 variety of Foxtail Millet Training on preparation of millet products Training Supply of literature | | | | | | | Rabi crops | Non profitability in existing
farming system due to
moisture stress during Rabi
season | 90 ha (40% of the rainfed area) | FLD on introduction of Ashwagandha crop for
higher income and drought mitigation Supply of relevant literature | | | | | | | Borewell | Decreased ground water level
and less water availability for
irrigation | 35 ha. (25%) | Training on recharge of ground water through borewell Field visits to demonstration units of artificial recharge of ground water through borewell Supply of literature | | | | | | | Milch cattle | Low productivity of milk due to
non-availability of green fodder
throughout the year. | | | | | | | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | | | | | |--|---|--|---|--|--|--|--|--| | | | | | Field day Animal health camps in collaboration with
Department of Animal Husbandry | | | | | | | Goat | Low body weight in kids | 200 Nos. | Training on scientific management of goats | | | | | | | Nutrition and health | Less consumption of fruits and vegetables Lack of awareness on nutritional importance and value addition of flax seeds Lack of availability of Omega-3 Fatty acids in vegetarian diet. | FLD on Nutri Garden Training on balanced diet and nutrition Training on importance of millets in diet Field day | | | | | | | | Grain storage | Incidence of stored grain pest | 50% families | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | | | | Cluster D
Muganur
(Naragund block) | Maize | Imbalanced nutrition Application of excess Nitrogen Incidence of Army worm Drudgery during threshing and winnowing of Maize Incidence of Turcicum leaf blight and Bacterial stalk rot High labour requirement for harvesting of maize | 150 ha
(30 % of the area) | Trainings on INM practices in maize Supply of literature | | | | | | | Greengram | Low yield due to use of local variety Imbalanced nutrition and high cost of cultivation Low yield due to incidence of Powdery mildew and Pod borer Seed shattering problem | 100 ha
(50 % of the area) | FLD on ICM practices in Greengram Training on ICM in Greengram Supply of literature Field day | | | | | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | | | | | | |----------|---|--|--|---|--|--|--|--|--| | | | during harvesting in local variety China MoongMoisture stress due to long dry spells in Kharif | | | | | | | | | | Wheat | Low productivity due to use of local varieties Incidence of stem borer Incidence of rust and leaf spot | 40 ha
(20 % of the area) | Training on ICM practices in wheatSupply of literature | | | | | | | | Bengalgram | Low yield due to cultivation of local varieties Imbalanced nutrition and high cost of cultivation Low yield due to incidence of pod borer Incidence of Wilt and Rust Non profitability in existing farming system due to moisture stress Deterioration of soil physical properties due to unscientific use of machineries Reduced Water Use Efficiency Non profitability due to nipping Drudgery of operation involved in manual nipping of Bengalgram | 50 ha
(40 % of the area) | OFT on assessment of high yielding varieties in Bengalgram crop OFT on conservation agriculture practices in Bengalgram preceded by Maize FLD on Solar nipping machine Training on natural farming practices in Bengalgram Training on resource conservation technologies in Bengalgram cultivation Trainings on use of machinaries in Bengalgram cultivation Field day Supply of literature | | | | | | | | Rabi Sorghum | Incidence of Shoot fly and
Stem borer Incidence of Smut disease | 25 ha
(40 % of the area) | FLD on ICM practices in Rabi Sorghum Training on ICM practices in Rabi Sorghum Supply of literature Field day | | | | | | | Clusters | Major crops & enterprises being practiced in cluster villages | Prioritized problems in these crops/ enterprise that limit yield and income | Extent of area (ha/No.) affected by the problem in the village | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | | | | | | |----------|---|---|--|--|--|--|--|--|--| | | Safflower | Low productivity due to
cultivation of local variety Incidence of sucking pests Incidence of Capsule borer Incidence of Alternaria leaf
spot | 50 ha
(50 % of the area) | Training on ICM practices in Safflower Supply of literature Field Day | | |
| | | | | Red Chilli | Non-availability of quality and pure seeds of Byadgi Dabbi Lack of proper knowledge on ICM practices resulting in poor productivity and quality with high incidence of pest and diseases Unhygienic way of drying of Red Chillies | 120 ha (30% of
the rainfed area) | FLD on ICM in Chilli crop Training on ICM Supply of relevant literature Farm advisory services Field day Seed production activities with identified seed farmers | | | | | | | | Onion | Low productivity due to imbalanced nutrition Low productivity due to cultivation of low yielding variety Double Red Incidence of thrips reduces the yields High labour requirement in detopping of harvested onion crop | 120 ha (30% of
the rainfed area) | FLD on introduction of Bhima Super variety along with ICM practices Trainings on ICM in onion crop Demonstration of battery operated onion detopper Trainings on use of battery operated onion detopper Seed production activities with identified seed farmers Supply of quality seeds of Bhima Super variety Supply of relevant literature&Field day | | | | | | | | Milch cattle | Low productivity of milk due to
non-availability of green fodder
throughout the year. | 45 Nos. | Training on scientific management of milch cattle Supply of literature Field visit & Mobile advisory services Field day Animal health camps in collaboration with Department of Animal Husbandry | | | | | | | Clusters | Major crops & enterprises being | Prioritized problems in these crops/ enterprise that limit yield | Extent of area (ha/No.) affected | Proposed intervention (OFT, FLD, Training, extension activity etc.)* | |----------|---------------------------------|--|----------------------------------|--| | | practiced in cluster villages | and income | by the problem
in the village | | | | Nutrition and health | Less consumption of millets,
fruits and vegetables in daily
diet | 85% families | FLD on Nutri Garden Training on health and nutrition, importance of millets in diet Field day | | | Grain storage | Incidence of stored grain pest | 50% families | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | Millets | Lack of awareness on millet
nutrition and value addition | 90% families | Training on preparation of millet productsSupply of literature | # 5.Technology assessment during 2023-24 | SI
No | Crop/
enterprise | Prioritized problem | Title of intervention | Technology options | Source of technology | Name of critical input | Qty
per
trial
(q) | Cost
per
trial
(Rs.) | No. of
trials | Total
cost
(Rs.) | Parameters to be studied | Team
members | |----------|---------------------|---|---|--|----------------------|-------------------------|----------------------------|-------------------------------|------------------|------------------------|---|--------------------| | 5.1 | Bengalgram | Productivity
of JG-11
variety is low | Assessment of production potential of | Farmers
Practice:
JG-11 | - | - | - | - | | | Plant height
(cm)Height of first | | | | | Problem of
wilt in this
variety JG- | different
Bengalgram
varieties | <u>Technology</u>
<u>Option 1:</u>
JAKI-9218 | UAS,
Dharwad | Seeds
(JAKI-9218) | 20 Kg | 2000 | | | Pod (cm) No. of pods per plant Height of cut for mechanical | | | | | 11 | | Technology
Option 2:
DBGV-204 | UAS,
Dharwad | Seeds
(DBGV-204) | 20 Kg | 2000 | | | | | | | | | | Technology
Option 3:
NBeG-49 | PJTSAU,
Hyderabad | Seeds
(NBeG-49) | 20 Kg | 2000 | | | harvesting (cm) • Shattering | | | | | | | Technology
Option
4:Phule
Vikram | MPKV,
Rahuri | Seeds
(Phule Vikram) | 20 Kg | 2000 | 5 | 42800 | losses due to mechanical harvesting (%) • Test weight | SMS
(Agronomy) | | | | | | | | Other inputs | | | | | (g) | | | | | | | | | Trichoderma | 800 gm | 160 | | | Grain yield | | | | | | | | | Rhizobium | 2 Kg | 200 | | | (q/ha) | | | | | | | | | PSB | 2 Kg | 200 | | | Duration of crop (Days) Incidence of wilt (%) Incidence of rust (%) | | | | | | | | | | Total | 8560 | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0140 | | 5.2 | Bengalgram | Deterioration
of soil
physical
properties | Assessment of conservation agriculture practices in | Farmers' Practice Sowing of chickpea following | | | | | 3 | 21300 | •Yield (Qtl/ha) •Soil moisture content (%) •Soil Bulk Density | SMS
(Ag. Engg.) | | SI
No | Crop/
enterprise | Prioritized
problem | Title of intervention | Technology options | Source of technology | Name of critical input | Qty
per
trial
(q) | Cost
per
trial
(Rs.) | No. of
trials | Total
cost
(Rs.) | Parameters to be studied | Team
members | |----------|---------------------|--|---|--|----------------------|---|----------------------------|-------------------------------|------------------|------------------------|--------------------------|-----------------| | | | due to repeated use of machineries High cost of cultivation | Bengalgram
after harvest
of Maize | conventiona I tillage (Harrowing and rotavator operation twice) after Maize crop harvest | | | | | | | (kg/cm³) • Economics | | | | | | | <u>Technology</u>
<u>Option 1</u>
Direct | | Seeds
(JAKI 9218)
Chickpea magic | 15 Kg | 1500
550 | | | | | | | | | | sowing of
chickpea
after single
pass blade
harrow
operation
after harvest
with combine
harvester | PAU,
Ludhiana | Farm machinery hiring cost (Tractor with Blade harrow + Seed drill) | | 2000 | | | | | | | | | | <u>Technology</u>
<u>Option 2</u> | | Seeds
(JAKI 9218) | 15 Kg | 1500 | | | | | | | | | | Sowing of
chickpea in
single pass
Rotavator
operation | PAU,
Ludhiana | Chickpea magic Farm machinery hiring cost (Tractor with Seed drill) | | 550
1000 | _ | | | | | | | | | after harvest
of Maize
with
combine
harvester | | | Total | 7100 | - | | | | | SI
No | Crop/
enterprise | Prioritized problem | Title of intervention | Technology options | Source of technology | Name of critical input | Qty
per
trial
(q) | Cost
per
trial
(Rs.) | No. of
trials | Total
cost
(Rs.) | Parameters to be studied | Team
members | | | |----------|---------------------|--|---------------------------------------|--|------------------------------------|------------------------|----------------------------|-------------------------------|------------------|------------------------|---|-------------------|--|--| | 5.3 | Blackgram | Low productivity due to cultivation of | Assessment of Production potential of | Farmers practice: Local variety | - | - | - | 1 | | | Plant height
(cm)No. of pods
per plant | | | | | | | local variety | different
Blackgram
varieties | Technology Option 1: DBGV-5 | UAS.
Dharwad | Seeds
(DBGV-5) | 7 Kg | 1000 | | | Test weight (gm)Grain | | | | | | | | under
rainfed
condition | Technology Option 2: BDU-12 | UAS,
Raichur | Seeds
(BDU-12) | 7 Kg | 1750 | 3 | 13950 | yield(q/ha) | SMS
(Agronomy) | | | | | | | | Technology Option 3: LBG-791 | UAS,
Bengaluru | Seeds
(LBG-791) | 7 Kg | 1750 | | | | | | | | | | | | | | Other inputs | | | | | | | | | | | | | | | | Trichoderma | 50 gm | 20 | | | | | | | | | | | | | | | | Rhizobium | 200gm | 30 | | | | | | | | | | | | PSB | 500gm | 100 | | | | | | | | | | | | | | | Total | 4650 | | | | | | | | 5.4 | Safflower | Low productivity due to | Assessment of different Safflower | Farmers Practice: A-1 | - | - | - | 1 | | | Plant height
(cm)No. of branches | | | | | | | cultivation of local variety | varieties for their productivity | <u>Technology</u>
<u>Option 1:</u>
ISF-764 | ICAR-IIOR,
Hyderabad | Seeds
(ISF-764) | 3.5 Kg | 350 | | | per plantNo. of capsules per plant | SMS | | | | | | | under 7
rainfed <u>0</u> | Technology
Option 2:
A-2020 | UAS,
Dharwad | Seeds
(A-2020) | 3.5 Kg | 350 | 3 | 3150 | Duration (Days)Yield (q/ha)Incidence of | (Agronomy) | | | | | | | CONTRA | | Technology Option 3: Annigeri Gold | UAS,
Dharwad | Seeds
(Annigeri Gold) | 3.5 Kg | 350 | | | leaf spot (%) | | | | | |
 | | | | Total | 1050 | | | | | | | | SI
No | Crop/
enterprise | Prioritized
problem | Title of intervention | Technology options | Source of technology | Name of critical input | Qty
per
trial
(q) | Cost
per
trial
(Rs.) | No. of
trials | Total
cost
(Rs.) | Parameters to be studied | Team
members | |----------|---------------------|---|--|---|-------------------------|------------------------------|----------------------------|-------------------------------|------------------|------------------------|--|-----------------------| | 5.5 | Okra | Existing hybrids are low yielding and resulting in low income | Assessment of high yielding okra hybrids for higher productivity | Farmers' Practice Cultivation of private hybrids Technology | TNAU, | Seeds: | 1 Kg | 2500 | _ | | Yield (Qtl/ha) and economics PDI (%) Plant height & Duration of the crop | SMS
(Horticulture) | | | | | | Option 1 | Tamilnadu | CoBH-4 | 9 | | | | Market | | | | | | | CoBH-4 | | Arka
vegetable
Special | 1Kg | 200 | 3 | 19050 | preference •Rate per Kg or Quintal | | | | | | | Technology
Option 2 | ICAR-IIHR,
Bengaluru | Seeds :
Arka Nikita | 1 Kg | 2500 | | 10000 | - Common | | | | | | | Arka Nikita | | Arka Vegetable
Special | 1Kg | 200 | | | | | | | | | | Technology
Option 3 | MPKV,
Rahuri | Seeds: Phule
Vimukta | 1 Kg | 750 | | | | | | | | | | Phule
Vimukta | | Arka Vegetable
Special | 1 Kg | 200 | | | | | | | | | | | | | Total | 6350 | | | | | | | | | | | | | Total | of OFTs | 17 | 100250 | | | # 6. Frontline demonstrations during 2023-24 | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total cost for the demo (Rs.) | Parameter
s to be
studied | Team
members | |------------|----------|-------------------------|--|--|-----------------|------------------------------|--------------------------------|------------------------------|-----------------|------------------------------|------------------------|-------------------------------|--|---| | 6.1 | Cereals | Rabi
Sorghum | Low
productivity
in existing M | Demonstr
ation of
BJV-44 | BJV-44 | - | UAS,
Dharwad | Seeds
(BJV-44) | 3 Kg | 240 | | | Yield
(Qtl/ha)% of | SMS
(Agronomy)
& SMS | | | | | 35-1 variety | variety in
Rabi | | | | Azospirillum | 200 gm | 30 | | | lodging | (Home
Science) | | | | | Moisture
stress | Sorghum | | | | PSB | 200 gm | 30 | 20 | 11400 | Organolepti
c evaluation | , | | | | | | crop | | | | CaCl ₂ | 100 gm | 20 | | | | | | | | | | | | | | ZnSO4 | 1.5 Kg | 150 | | | | | | | | | | | | | | FeSO4 | 1.5 Kg | 100 | | | | | | | | | | | | | | Total | | 570 | | | | | | 6.2 | Millets | Foxtail
millet | Low
productivity
due to
cultivation of
local variety | Demonstr
ation of
HN-46
variety of
Foxtail
Millet | HN-46 | - | UAS,
Dharwad | Seeds
(HN-46) | 3 | 450 | 3 | | Yield (Qtl/ha) Height of plant (cm) Length of cob (cm) | SMS
(Agronomy)
& SMS
(Home
Science) | | 6.3 | Oilseeds | Safflow
er | Low
productivity
due to
cultivation of | Demonstr
ation of
ICM
practices | ISF-764 | - | ICAR-IIOR,
Hyderabad | | 3.5 Kg | 350 | 10 | 3800 | No. of
capsules
per plant Duration | SMS
(Agronomy) | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total cost for the demo (Rs.) | Parameter
s to be
studied | Team
members | |------------|----------|-------------------------|---|---|-----------------|------------------------------|--------------------------------|--|---------------------------|------------------------------|------------------------|-------------------------------|---|--| | | | | local variety Imbalanced nutrition Incidence of sucking pests Incidence of Capsule borer Incidence of Leaf spot | in high
yielding
ISF-764
variety of
Safflower | | | | Azospirillum | 200 gm | 30 | | | (Days) • Yield (q/ha) • Incidenc e of leaf spot (%) | | | | | | | | | | | Total | | 380 | | | | | | | | Soybean | productivity
due to
cultivation of
local variety | Demonstra
ion of KDS-
753 variety
in Soybean | | - | MPKV,
Rahuri | Seeds
(KDS-753) | 25 Kg | 3750 | 3 | 11250 | Plant height (Cm) No. of tillers Yield (Qtl/ha) | SMS
(Agronomy) | | | | Summer
Groundn
ut | Low yield due to imbalanced nutrition | INM in
Summer
Groundnut | - | - | UAS,
Dharwad | Rhizobium
(Liquid form)
PSB
(Liquid form)
Zinc
Sulphate | 100 ml
100 ml
10 Kg | 50
50
1000 | 6 | 16200 | Soil fertility status before and after Yield | SMS
(Soil
Science) &
SMS
(Agronmy) | | | | | | | | | | Ferrous
Sulphate | 10 Kg | 600 | | | (Qtl/ha) | | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total
cost
for
the
demo
(Rs.) | Parameter
s to be
studied | Team
members | |------------|----------|-------------------------|---|---|-----------------|------------------------------|--------------------------------|--|----------------------------------|------------------------------|------------------------|--|---|---| | | | | | | | | | Gypsum | 200 Kg | 1000 | | | • Test weight (gm) | | | | | | | | | | | | Total | 2700 | | | | | | | | Summer
Groundn
ut | High labour
and time
requirement
in manual
harvesting
method Pod damage
in harrowing
method | Demonstr
ation of
Tractor
operated
Groundn
ut Digger
Cum
Elevator | - | - | TNAU,
Coimbato
re | Tractor with
Groundnut
Digger Cum
Elevator | 2 hours | 1200 | 10 | 12000 | Digging efficiency (%) Area coverage (Ha/h) Labour requirem ent (Man-h/ha) Saving in time and cost (%) Economi cs | SMS
(Ag.
Engineering
) & SMS
(Agronomy) | | 6.4 | Pulses | Green-
gram | Low yield
due to
cultivation of
local
varieties Incidence of
Yellow
Mosaic Virus | Demonstr
ation of
DGGV-2
variety in
Greengra
m crop
and easy
facilitatio | DGGV-2 | - | UAS,
Dharwad | Seeds
(DGGV-2)
Rhizobium
PSB
Pulse Magic | 5 Kg
200 gm
500 gm
2 Kg | 30
100
550 | 30 | | Plant height (cm) No. of pods per plant Yield (q/ha) | SMS
(Agronomy) | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total
cost
for
the
demo
(Rs.) | Parameter
s to be
studied | Team
members | |------------|----------|-------------------------|---|--|-----------------|------------------------------|--------------------------------|---|-----------------|------------------------------|------------------------|--|---|--------------------| | | | | and Pod | n of | | | | | Total | 1180 | | 35400 | | | | | | | • Incidence of | machine
harvestin | | | | Paraquat
(For 3 demos | 1 ltr | 1000 | | 3000 | | | | | | | Powdery
mildew | g by
shedding | | | | | | 2180 | | 38400 | | | | | | | Seed shattering problem during harvesting
Moisture Stress | leaves at
harvest
through
spray of
Paraquat
herbicide | | | | | | | | | | | | | | Bengal
gram | Low yield in existing local | Demonstr ation of | JAKI-
9218 | - | UAS,
Dharwad | Seeds
(JAKI-9218) | 20 Kg | 1800 | | | Plant
height (cm) | SMS
(Agronomy) | | | | 3 | varieties | ICM | | | | Trichoderma | 100 gm | 40 | | | No. of pods | & SMS | | | | | Incidence of | practices | | | | Rhizobium | 500 gm | 100 | | | per plant | (Ag. Extn.) | | | | | pod borer | in JAKI-
9218 | | | | PSB | 500 gm | 100 | 25 | 74750 | Yield (q/ha) | | | | | | Incidence of wilt and rust | variety of
Bengalgr | | | | Chickpea
magic | 1.5 Kg | 550 | | | Incidence
of wilt (%) | | | | | | | am crop | | | | Pheromone traps | 4 No. | 400 | | | | | | | | | | | | | | | Total | 2990 | | | | | | | | Bengal
gram | Low productivity due to | Tractor operated compartm | - | - | UAS,
Raichur | Tractor operated compartmen | 1 hour
Total | 1000
1000 | | | Yield (Qtls) Soil | SMS
(Ag. Engg.) | | | | | moisture
stress | ental bund
former | | | | tal bund
former
(Hiring
basis) | | | 20 | 20000 | moisture
content
(%) | | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total
cost
for
the
demo
(Rs.) | Parameter
s to be
studied | Team
members | |------------|---------------------------------|-------------------------|--|--|-----------------|------------------------------|--------------------------------|--------------------------------|-----------------|------------------------------|------------------------|--|---|--------------------------------| | | | Bengal
gram | Non profitability due to no nipping High labour and time consumption in hand nipping method | Solar
nipping
machine | - | - | UAS,
Raichur | Solar
nipping
machine | 1 unit | 9000 | 10 | 9000 | Yield
(Qtls) No. of
pods per
plant Number of
branches | SMS
(Ag. Engg.) | | 6.5 | Commer | | | | | | | | | | | | | | | 6.6 | cial crops Horticultu ral crops | Onion | • Low income due to | Demonst ration of | Bhima
Super | - | ICAR-
DOGR, | Bhima Super seeds | 1 Kg | 2500 | | | Yield (Qtls)and | SMS
(Horticulture), | | | | | cultivation of | ICM in | - | | Pune | Gypsum | 66 Kg | 330 | | 38760 | income | SMS
(Ag.Engg.)& | | | | | local
varieties | Red
onion | | | | Vegetable
Special | 2 Kg | 400 | | 00700 | (Rs./ha) • Pest (Nos.) | | | | | | Double red & | variety | | | | TOTAL | | 3230 | | | anu | (30 30) | | | | | Bellary red • High labour requirement | Bheema
Super
• Battery | | | | Onion
Detopper | 1 Nos | 3500 | 12 | 3500 | disease
incidence(
%) | | | | | | and drudgery
of operation
inmanualdeto
pping of
harvested
onions | operated
Onion
detopper
(ICM in
Onion) | | | | | | | | | Bulb weight
(gms) Labour
requireme
nt for
detopping
(Nos.) | | | | | | | | | | | | | Total | | 42260 | | | | | | Red
Chilli | Non-
availability of
quality and | ICM in
Byadgi
Chilli | Byadgi
Dabbi | - | IIHR,
Bengalur
u and | Pure seeds of
Byadgi Chilli | | 3500 | 10 | 54200 | Yield
(Qtl/ha)Disease | SMS
(Horticulture)
& SMS | | | | | quality and | 9 711111 | | | UHS, | Yellow / Blue | 16 | 960 | | | Discase | (Home | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total
cost
for
the
demo
(Rs.) | Parameter
s to be
studied | Team
members | |------------|----------------------|-------------------------|--|----------------------------------|--------------------------------|------------------------------|--------------------------------|-------------------------------------|-----------------|------------------------------|------------------------|--|---|-----------------------| | | | | pure seeds
of Byadagi
Dabbi
• High | | | | Bagalkot | sticky traps Arka Vegetable Special | 2 Kg | 400 | | | index (%) • Pest incidence | Science) | | | | | incidence of sucking | | | | | Beauveria
bassiana | 1 kg | 280 | | | | | | | | | pests leading
to
murdacompl | | | | | Lecanicilliuml
ecanii | | 280 | | | | | | | | Vanata | ex disease & anthracnose disease • Lack of proper knowledge on ICM practices resulting in poor productivity and quality • Improper post-harvest management | | Didness | | | Coods of | Total | 5420 | | | No. 1.1 | CMC | | | Horticultu ral crops | Vegeta
bles | Low productivity and income | Introduction of new varieties in | Ridgego
urd- Arka
Prasan | - | IIHR,
Bengaluru
& UHS, | Seeds of
Ridgegourd
Dolichos | 400 gm
4 Kg | 1100
1500 | | | Yield
(Qtl/ha)Income | SMS
(Horticulture) | | | | | due to non-
availability of | vegetable crops of | Dolichos | | Bagalkot | Bean
Spinach | 2.5 Kg | 950 | 10 | 59500 | (Rs./ha) | | | | | | improved | ICAR-IIHR, | Bean – | | | Radish | 1 Kg | 1200 | | | | | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total
cost
for
the
demo
(Rs.) | Parameter
s to be
studied | Team
members | |------------|----------|-------------------------|--|---|--|------------------------------|-----------------------------------|--|-----------------------------------|----------------------------------|------------------------|--|---|--| | | | | vegetable
varieties | Bengaluru&
UHS,
Bagalkot | Arka Amogh Spinach – Arka Anupama Radish – Arka Nishant Cucumb er- Arka Veera Drumstick - Bhagya | | | Cucumber Drumstick Vegetable Special TOTAL | 40 gms
20
seedlings
2 Kg | 400
400
400
5950 | | | | | | | | Ashwa
gandha | Non profitability in existing cropping pattern due to vagaries of Monsoon and lack of crop diversificatio n in field crops resulting in income | FLD on
introductio
n of
Ashwagan
dha crop | Poshita | - | CSIR-
CIMAP,
Lucknow,
UP | Seeds | 4 Kg | 1200 | 5 | 6000 | •Yield (Qtl/ha) and economics •Root length&dia meter •Fresh and dry Root weight (gms) | SMS
(Horticulture
) & SMS
(Ag. Extn.) | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total
cost
for
the
demo
(Rs.) | Parameter
s to be
studied | Team
members | |------------|----------|-------------------------|---|-------------------------------------|-------------------|------------------------------|--|------------------------------|-----------------|------------------------------|------------------------|--|---|--| | | | | insecurity to the farmers Lack of knowledge on alternate cropping system and crop diversificatio n to sustain vagaries of Monsoon | | | | | | | | | | | | | | | Ajwain | Non profitability in existing cropping pattern due to vagaries of Monsoon and lack of crop diversificatio n in field crops resulting in income insecurity to the farmers Lack of knowledge
| FLD on introductio n of Ajwain crop | Ajmer
Ajwain-1 | - | ICAR-
NRC on
seeds
spices,
Ajmer,
Rajastha
n | Seeds | 2 Kg | 700 | 3 | | •Days taken
for 50%
flowering
•Yield
(Qtl/ha) | SMS
(Horticulture
) & SMS
(Ag. Extn.) | | on alternate cropping system and crop diversificatio not sustain vagaries of Monsoon. Sheep Low returns due to low body weight gain Milch Cattle Ca | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total
cost
for
the
demo
(Rs.) | Parameter
s to be
studied | Team
members | |--|------------|----------|-------------------------|--|---|-----------------|------------------------------|--------------------------------|---|-----------------|------------------------------|------------------------|--|---------------------------------|-----------------| | due to low body weight gain due to low body weight gain Milch Cattle Milch Cattle Milch Calves Calf starter Calves Milch Calf starter sta | | | | cropping system and crop diversificatio n to sustain vagaries of | | | | | | | | | (KS) | | | | Albendazole (30 ml) Milch Cattle Calves Milch Cattle Calves Milch Calves Milch Calves Milch Cattle Calf starter 9 Kg 2400 Albendazole (30 ml) Milch Calf starter 9 Kg 250 Milch Calf starter 9 Kg 2400 | | | Sheep | due to low
body weight | of bypass
protein
and
bypass
fat with | - | - | , | supplement
ation of
bypass
protein and | 3 Kg | 800 | 10 | 8500 | weight gain Mortality | (Animal | | Milch Cattle Delayed maturity in CB Calves Feeding of calf starter with deworming in CB calves to attain early maturity Cattle Ca | | | | | g in lambs to improve weight | | | | | 1 | | 10 | | | | | Cattle maturity in CB calf starter with deworming in CB calves to attain early maturity Bidar Albendazole (30 ml) Albendazole (30 ml) 26500 weight gain Age of maturity maturity (Animal Science) | | | | | | | | | | | | | | | | | Calves with deworming in CB calves to attain early maturity | | | | | | - | - | , | Calf starter | 9 Kg | 2400 | | | | Prog. Asst. | | | | | Cattle | Calves | with deworming in CB calves to attain early | | | Bidar | | 5 | 250 | 10 | 26500 | gain
• Age of | | | | | | | | inaturity | | | | | Total | 2050 | | | | | | SI.
No. | Category | Crop/
enterpr
ise | Prioritized
problem | Technol ogy to be demonst rated | Name of variety | Na
me
of
hyb
rid | Source
of
technolo
gy | Name of
critical
input | Qty per
demo | Cost
per
demo
(Rs.) | No.
of
dem
os | Total cost for the demo (Rs.) | Parameter
s to be
studied | Team
members | |------------|-----------|-------------------------|--------------------------------------|--|-----------------|------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------|-------------------------------|---|---| | 6.8 | Fisheries | | | | | | | | | | | | | | | 6.9 | Others | | | | | | | | | | | | | | | | | Grain
storage | Incidence of
stored grain
pest | Demonstr
ation of
Super
grain
bags | - | - | PCI Ltd,
Bengaluru | Super grain
bags | 1 No.
(50 Kg
capacity) | 150 | 40 | | Percentag e of stored grain pest Shelf life | SMSs
(Home
Science) &
SMS
(Ag. Extn.) | | | | | | f FLDs | 237 | 403210 | | | | | | | | | # 7. Trainings for farmers/ farm women during 2023-24 | SI.No. | Thematic area and the crop/ enterprise | Crop / Enterprise | Related field intervention (OFT/FLD) | Training title | No. of courses | Expected
No. of
participants | Names of the team members involved | |--------|--|-------------------|--------------------------------------|---|----------------|------------------------------------|--| | 7.1 | Crop production | Natural Farming | Others | Natural Farming: A sustainable farming system under dryland condition | 6 | 150 | SMS (Agronomy)
SMS (Soil science)
SMS (Horticulture) | | | | Greengram | FLD | ICM practices in Greengram | 2 | 50 | SMS (Agronomy) | | | | Blackgram | OFT | ICM practices in Blackgram | 2 | 40 | SMS (Agronomy) | | | | Groundnut | OFT, FLD and Others | ICM practices in Groundnut | 2 | 50 | SMS (Agronomy)
SMS (Soil Science) | | | | Maize | FLD | ICM practices in Maize | 2 | 50 | SMS (Agronomy)
SMS (Soil Science) | | | | Cotton | OFT | ICM practices in Cotton | 2 | 40 | SMS (Agronomy) | | | | Bengalgram | OFT, FLD and Others | ICM practices in Bengalgram | 2 | 50 | SMS (Agronomy) | | | | Safflower | OFT, FLD and Others | ICM practices in Safflower | 2 | 40 | SMS (Agronomy)
SMS (Soil Science) | | | | Wheat | Others | ICM practices in Wheat | 2 | 40 | SMS (Agronomy) | | SI.No. | Thematic area and the crop/ enterprise | Crop / Enterprise | Related field intervention (OFT/FLD) | Training title | No. of courses | Expected
No. of
participants | Names of the team members involved | |--------|--|-----------------------------------|--------------------------------------|--|----------------|------------------------------------|--| | | | | | | | | SMS (Soil Science) | | | | Rabi Sorghum | FLD and
Others | ICM practices in Rabi
Sorghum | 2 | 50 | SMS (Agronomy) | | | | All crops | Others | Reclamation of problematic soil | 1 | 20 | SMS (Soil science) | | | | Rain water harvesting | Others | Rain water harvesting | 3 | 60 | SMS (Soil science) | | 7.2 | Horticulture production | Red Onion | FLD &
Others | ICM in Red Onion crop | 3 | 60 | SMSs
(Horticulture)& Soil
Science) | | | | Chilli | FLD | ICM in Chilli crop | 2 | 40 | SMSs
(Horticulture& Soil
Science) | | | | Vegetable crops | FLD | ICM in vegetable crops | 4 | 80 | SMS (Horticulture) | | | | Dryland horticulture | Others | Promotion of dryland horticulture | 2 | 40 | SMS (Horticulture) | | | | Onion | FLD | Usage of pre and post emergent herbicides to reduce the cost of cultivation | 1 | 20 | SMSs (Horticulture
& Agronomy) | | 7.3 | Livestock production | Animal nutrition in Dairy animals | Others | Promotion of fodder production technologies for getting higher milk productivity in dairy animals Silage preparation and its importance | 2 | 60 | Programme
Assistant
(Animal Husbandry) | | | | Poultry birds | Others | Scientific management of poultry birds | 1 | 20 | Programme Assistant (Animal Husbandry) | | | | Sheep and goat | Others | Scientific management of
Sheep and goat | 2 | 50 | ProgrammeAssistant
(Animal Husbandry) | | SI.No. | Thematic area and the crop/ enterprise | Crop / Enterprise | Related field intervention (OFT/FLD) | Training title | No. of courses | Expected
No. of
participants | Names of the team members involved | |--------|--
--|--------------------------------------|---|----------------|------------------------------------|--------------------------------------| | 7.4 | Home Science | Nutrition | FLD | Importance of protective foods and Nutrition Garden | 4 | 80 | SMS
(Home Science) | | | | Drudgery | Others | Drudgery reducing equipments | 4 | 80 | SMS
(Home Science) | | | | Grain storage | FLD | Grain storage | 4 | 80 | SMS
(Home Science) | | 7.5 | Production of inputs at site | Organic input production & Organic farming | Others | Training on organic inputs production and usage in various crops | 2 | 40 | SMS (Soil Science) | | 7.6 | Soil health and fertility | Soil health & fertility | Others | Soil fertility management in dryland / Irrigated areas | 4 | 80 | SMSs (Soil Science
& Agronomy) | | 7.7 | PHT and value addition | Value addition | FLD | Training on ICM in millet crops and importance of millets in diet and its value addition | 4 | 120 | SMSs
(Home Science &
Agronomy) | | | | | Others | Training on Nutritional importance of flaxs seed and value addition | 4 | 120 | SMS
(Home Science) | | | | | EDP | Value added products,
packing, marketing and
licensing of millet / Chilli
products | 2 | 10 | SMS
(Home Science) | | | | | Others | Preparation of Jam, mixed pickles and tomato products | 4 | 80 | SMS
(Home Science) | | 7.9 | Capacity building/
group dynamics | Multiple Income
Generating Activities | Others | Empowerment of women SHGs through multiple IGAs | 3 | 60 | SMS
(Home Science) | | | | Farmers' Interest
Group | Others | Formation of FIG and Farmers Producer Organization | 4 | 100 | SMS
(Ag. Extension) | | | | Farmers' Producer Organisation | Others | Business plan development for FPOs | 2 | 40 | SMS
(Ag. Extension) | | SI.No. | Thematic area and the crop/ enterprise | Crop / Enterprise | Related field intervention (OFT/FLD) | Training title | No. of courses | Expected
No. of
participants | Names of the team members involved | |--------|--|---------------------------|--------------------------------------|--|----------------|------------------------------------|---| | | | Integrated Farming System | Others | Integrated Farming System for FPO members | 2 | 40 | SMS (Agronomy & Ag. Extension) | | 7.10 | Farm mechanization | Maize and Chickpea | OFT | Adoption of conservation agriculture practices in Maize-Chickpea cropping system | 2 | 50 | SMS (Ag. Engg.)&
SMS (Agronomy) | | | | Chickpea | FLD | Use of compartmental bund former for moisture conservation | 2 | 35 | SMS (Ag. Engg.)&
SMS (Soil Science) | | | | | FLD | Operation of solar nipping machine | 2 | 50 | SMS (Ag. Engg.)&
SMS (Agronomy) | | | | Summer Groundnut | OFT | Mechanization in Groundnut harvesting | 2 | 40 | SMS (Ag. Engg.)&
SMS (Ag. Extn.) | | | | Bt. Cotton | OFT | Mechanized spraying in Bt. Cotton | 2 | 75 | SMS (Ag. Engg.) | | | | Onion | FLD | Drudgery reduction in Onion detopping operation | 2 | 50 | SMS (Ag. Engg.)&
SMS (Horticulture) | | 7.11 | Fisheries production technologies | Fisheries | Others | Fish farming | 1 | 10 | Programme Assistant (Animal Husbandry)& Officer of Fisheries Department | | 7.12 | Mushroom production | Mushroom | Others | Mushroom cultivation | 1 | 10 | SMS (Home
Science) | | 7.13 | Agro forestry | Forestry crops | Others | Promotion of agro forestry for income security in dry land | 1 | 20 | SMS (Agronomy
&Soil Science) | | 7.14 | Bee keeping | | Others | Bee keeping in Onion seed production plots | 1 | 5 | SMS (Horticulture)
& Progressive
farmers | | 7.15 | Sericulture | Sericulture | Others | Quality production of Cocoons | 1 | 10 | SMS (Ag.
Extension)& Dept of
Sericulture officers | | SI.No. | Thematic area and the crop/ enterprise | Crop / Enterprise | Related field intervention (OFT/FLD) | Training title | No. of courses | Expected
No. of
participants | Names of the team members involved | |--------|--|---|--------------------------------------|---|----------------|------------------------------------|--------------------------------------| | 7.16 | Others, pl. specify | Artificial recharging of groundwater through borewell | Others | Technology on recharging of ground water through borewell | 1 | 30 | SMSs (Soil Science
& Agronomy) | | | | All field crops | Others | Usage of Organic Manure & Green Manure crops to enhance moisture holding capacity | 2 | 50 | SMSs
(Soil Science &
Agronomy) | | | | | | Total | 109 | 2355 | | # 8. Training for rural youth during 2023-24 | SI.No. | Thematic area and the crop/ enterprise | Crop /
Enterprise | Related field intervention (EDP/Skill development etc) | Training title | No. of courses | Expected
No. of
participants | Names of the team members involved | |--------|--|----------------------------------|--|---|----------------|------------------------------------|---| | 8.1 | Crop production | Integrated
Farming
Systems | Skill
Development | Integrated Farming Systems:
Holistic approach for sustained
yields and viable economy | 1 | 20 | SMS (Agronomy) SMS(Soil science) SMS (Horticulture) | | | | Natural
farming | Skill
Development | Production of inputs for ecological health and benefits under Natural Farming | 1 | 20 | SMS (Agronomy) SMS(Soil science) SMS (Horticulture) | | 8.2 | Horticulture production | Dryland
Horticulture | Skill
Development | Dryland Horticulture | 1 | 10 | SMS
(Horticulture) | | | | Coconut | Skill
Development | Use of Coconut tree climber for drudgery reduction | 1 | 5 | SMS (Ag. Engg.)
SMS (Horticulture) | | 8.3 | Livestock production | Dairy
enterprise | Skill
Development | Skill upgradation training on dairy management practices | 4 | 100 | Programme
Assistant
(Animal Husbandry) | | | | Poultry | Skill
Development | Scientific management of poultry birds | 1 | 25 | Programme Assistant (Animal Husbandry) | | | | Sheep & Goat | Skill
Development | Feed and endo-ecto parasite management in sheep and goat | 2 | 40 | Programme Assistant (Animal Husbandry) | | 8.4 | Home Science | Health and Nutrition | FLD | Health, nutrition and importance of Nutrition Garden | 4 | 100 | SMS (Home
Science) | | 8.5 | Plant protection | Bt. Cotton | Skill
Development | Different types of traps for management of pests in Bt.Cotton | 1 | 15 | SMS (Agronomy) | | 8.6 | Production of inputs at site | Jeevamruta production | Skill
Development | Jeevamruta preparation & usage | 1 | 10 | SMS (Soil Science) | | 8.7 | Soil health and fertility | Soil health
and fertility | Skill
Development | Soil health enhancement in dryland area through Organic input production | 1 | 10 | SMS
(Soil Science) | | SI.No. | Thematic area and the crop/ enterprise | Crop /
Enterprise | Related field
intervention
(EDP/Skill
development etc) | Training title | No. of courses | Expected
No. of
participants | Names of the team members involved | |--------|--|----------------------|---|---|----------------|------------------------------------|--| | 8.8 | PHT and value addition | Millets | EDP | Millet value addition | 1 | 10 | SMS (Home
Science) | | 8.9 | Capacity building/ group dynamics | All crops | Others | Entrepreneurship development in crops and enterprise | 1 | 20 | SMS (Ag. Extension) | | 8.10 | Farm mechanization | All field crops | Skill
development | Operation and maintenance of
Tractor and Agricultural
Machinery | 1 | 15 | SMS (Ag. Engg.) | | 8.11 | Fisheries production technologies | Fisheries | Skill
Development | Fish Farming | 1 | 10 | Programme Assistant (Animal Husbandry) & Officer of Fisheries Department | | 8.12 | Mushroom production | Mushroom | Skill
Development | Mushroom cultivation | 1 | 10 | SMS (Home
Science) | | 8.13 | Agro forestry | Forestry crops | Others | Promotion of agro forestry for income security in dry land | 1 | 10 | SMS (Soil Science) | | 8.14 | Bee keeping | Bee keeping | Skill
Development | Bee keeping in orchards | 1 | 10 | SMS (Horticulture)&
Horticulture
Department Officers | | 8.15 | Sericulture | Sericulture | Skill
Development | Production technology of mulberry crop | 1 | 10 | SMS (Horticulture)&
Sericulture
Department Officers | | 8.16 | Others, pl. specify | | Total | | 26 | 450 | | # 9. Training for extension personnel during 2023-24 | SI.No. | Thematic area and the crop/ enterprise | Training title | No. of courses | Expected No. of participants | Names of the team members involved | |--------|--|---|----------------|------------------------------|---| | 9.1 | Crop production | ICM practices in different crops and cropping systems | 1 | 25 | SMS (Agronomy)
SMS (Soil Science) | | 9.2 | Home Science | and cropping systems | | | Civil Colli Colletion) | | | Millets | Millet Nutrition | | | | | | Nutrition | Nutrition Garden
– It's importance and layout | 8 | 250 | SMS (Home Science) | | 9.3 | Capacity building and group dynamics | Formation and functioning of Farmers' Producer Organisation | 1 | 25 | SMS (Ag. Extension) | | 9.4 | Horticulture | Advances in horticulture crops | 1 | 10 | SMS (Horticulture) | | 9.5 | Livestock production and management | Nutrition and disease management | 1 | 30 | Programme Assistant
(Animal Husbandry) | | 9.6 | Plant protection | IPM technologies for different crops | 1 | 25 | SMS (Agronomy) | | 9.7 | Farm mechanization | Micro irrigation system for effective water management | 1 | 25 | SMS (Ag. Engg.) &SMS (Soil Science) | | 9.8 | PHT and value addition | Value addition in agriculture and horticulture crops | 1 | 20 | SMS (Home Science) | | 9.9 | Production of inputs at site | Organic input preparation | 1 | 20 | SMS (Soil Science) | | 9.10 | Sericulture | - | - | - | - | | 9.11 | Fisheries | | | | | | 9.12 | Other, pl. specify | | | | | | | Soil fertility | Importance of soil testing and soil fertility management | 1 | 25 | SMS (Agronomy)
SMS (Soil Science) | | | Natural farming | Crop production technologies in different crops under natural farming | 1 | 25 | SMS (Agronomy)
SMS (Soil Science) | | | | Total | 18 | 480 | | # 10.Vocational trainings during 2023-24 | SI.No. | Thematic area and the crop/
enterprise | Training title | No. of programmes | Duration
(days) | Expected
No. of
participants | Sponsoring agency, if any | Names of the team members involved | |--------|---|--|-------------------|--------------------|------------------------------------|----------------------------------|--| | 10.1 | Crop production | Integrated farming system models for different agroclimatic condition | 1 | 3 | 25 | KSDA | SMS (Agronomy) | | 10.2 | Home Science | Food processing | 1 | 3 | 20 | RSETI / ATMA | SMS (Home
Science) | | 10.3 | Capacity building and group
Dynamics | | | | | | | | 10.4 | Horticulture | Nursery management | 1 | 3 | 15 | - | SMS (Horticulture) | | | | Scientific management of dairy animals | 2 | 10 | 60 | RSETI, ASF,
ZP etc | Programme
Assistant
(Animal Husbandry) | | 10.5 | Livestock production and management | Scientific management of sheep and goat | 2 | 10 | 50 | AH & VS
Dept., ASF,
ZP etc | Programme
Assistant
(Animal Husbandry) | | | | Scientific management of poultry birds | 1 | 10 | 30 | AH & VS
Dept., ASF,
ZP etc | ProgrammeAssistant (Animal Husbandry) | | 10.6 | Plant protection | Pest and disease management in field crops | 1 | 3 | 25 | KSDA | SMS (Agronomy) | | 10.7 | Farm mechanization | Renewable energy based gadgets | 1 | 3 | 30 | - | SMS
(Ag. Engg.) | | 10.8 | PHT and value addition | Value addition in Agriculture and Horticulture crops | 1 | 3 | 20 | ATMA | SMS (Home
Science) | | 10.9 | Production of inputs at site | | | | | | | | 10.10 | Sericulture | | | | | | | | 10.11 | Fisheries | | | | | | | | 10.12 | Other, pl. specify | | _ | | | | | | | Small scale processing and value addition | Operation and maintenance of machinaries for primary processing of seeds | 1 | 2 | 30 | - | SMS (Ag. Engg.) | | | | Total | 12 | | 305 | | | # 11.Sponsored trainings during 2023-24 | SI.No. | Thematic area and the crop/
enterprise | Training title | No. of programmes | Duration
(days) | Expected number of participants | Sponsorin
g agency | Names of the team members involved | |--------|---|--|-------------------|--------------------|---------------------------------|-----------------------|------------------------------------| | 11.1 | Crop production | Production technology for
Kharif and Rabi crops | 2 | 2 | 50 | KSDA | SMS (Agronomy&
Soil Science) | | 44.0 | Home Science | Krishi Sakhi | 4 | 6 | 120 | KSRLM | SMS (Home
Science) | | 11.2 | | Solid waste management | 4 | 5 | 120 | KSRLM | SMS (Home
Science) | | 11.3 | Capacity building and group Dynamics | | | | | | , | | 11.4 | Horticulture | | | | | | | | 11.5 | Livestock production and management | | | | | | | | 11.6 | Plant protection | | | | | | | | 11.7 | Farm mechanization | Mechanization in field crops | 1 | 7 | 35 | ATMA | SMS (Ag. Engg.&
Agronomy) | | 11.8 | PHT and value addition | Value addition to agriculture crops | 1 | 1 | 40 | KSDA | SMS (Home
Science) | | | | Value addition to horticulture crops | 1 | 1 | 40 | KSDH | SMS (Home
Science) | | 11.9 | Production of inputs at site | ' | | | | | , | | 11.10 | Sericulture | | | | | | | | 11.11 | Fisheries | | | | - | | | | 11.12 | Others, pl. specify | | | | | | | | | | Total | 13 | | 405 | | | # 12. Extension activities during 2023-24 | SI.No. | Extension activity | No. of activities | Targeted numberof participants | Names of the team members involved | |--------|--|-------------------|--------------------------------|------------------------------------| | 12.1 | Advisory services | 1500 | 1500 | All staff | | 12.2 | Diagnostic visits | 20 | 50 | SMSs(Agronomy& Horticulture) | | 12.3 | Field days | 12 | 1000 | All staff | | 12.4 | Group discussions | 10 | 150 | All staff | | 12.5 | Kisangosthies | 2 | 200 | All staff | | 12.6 | Film shows | 10 | 410 | All staff | | 12.7 | Self -Help Groups (SHGs) meetings | 10 | 200 | SMS (Home Science) | | 12.8 | KisanMelas | 1 | 400 | SMS (Ag. Extension) | | 12.9 | Exhibitions | 3 | 12000 | All staff | | 12.10 | Scientists' visit to farmers' fields | 200 | 900 | All staff | | 12.11 | Plant/soil health/animal health camps | 5 | 450 | All staff | | 12.12 | Farm science club meetings (FIG/FPO) | 5 | 150 | SMS (Ag. Extension) | | 12.13 | Ex-trainees sammelanas (Meetings) | 2 | 100 | SMS (Ag. Extension) | | 12.14 | Farmers' seminars/workshops | 2 | 250 | SMS (Ag. Extension) | | 12.15 | Method demonstrations | 30 | 950 | All staff | | 12.16 | Celebration of important days | 10 | 1000 | All staff | | 12.17 | Special day celebrations | 1 | 100 | All staff | | 12.18 | Exposure visits | 10 | 300 | All staff | | 12.19 | Technology week celebration | 1 | 2500 | All staff | | 12.20 | Farm innovators' meet | 1 | 20 | SMS (Ag. Extension) | | 12.21 | Awareness programmes | 30 | 1500 | SMS (Ag. Extension) | | 12.22 | Pre-kharif campaign | 10 | 300 | SMS (Agronomy) | | 12.23 | Pre-rabi/summer campaign | 10 | 355 | SMS (Agronomy) | | 12.24 | Others, pl. specify | | | | | 12.25 | Lectures delivered as resource persons | 15 | 2500 | All staff | | | News paper coverage | 35 | - | All staff | | | Radio talks | 40 | - | All staff | | | TV Talks | 3 | - | All staff | | SI.No. | Extension activity | No. of activities | Targeted numberof participants | Names of the team members involved | |--------|--------------------|-------------------|--------------------------------|--| | | Popular articles | 5 | - | All staff | | | Bi-monthly meeting | 5 | 50 | All staff | | | Animal health camp | 2 | 100 | Programme Assistant (Animal Husbandry) | | | Total | 1990 | 27435 | | ## 13. Activities proposed as knowledge and resource centre during 2023-24 ## 13.1 Technological knowledge | SI.
No. | Category | Details of technologies | Area (ha) | Number | Names of the team members involved | |------------|---------------------------------------|---|-----------|--|--| | 13.1.1 | Technology
park/ crop
cafeteria | Agri-Horti system | 1 | - | SMS (Agronomy and
Horticulture) &
Farm Manger | | | | Nutri-cereals cafeteria
(Foxtail millet, Little millet, Browntop millet and Pearl
millet) | 0.4 | - | SMS (Agronomy) &
Farm Manger | | | | Natural farming | 0.4 | - | SMS (Agronomy,
Horticulture and Soil
Science) &
Farm Manger | | 13.1.2 | Demonstration units | Value addition in Amla, Mango, Tamarind etc. | - | 500 farmers/ farm women visit to the units | SMS (Home Science) | | | | Mixed orchard of fruit crops – Mango & Cashew | 8 ha. | 1000 farmers/farm women visit to orchards | SMS (Horticulture) | | 13.1.3 | Lab analytical | Soil, water & plant testing | - | 1000 samples | SMS (Soil Science) | | | services | Identification of pest and disease | - | 100 samples | SMS (Agronomy & Horticulture) | | 13.1.4 | Technology
week | Technologies relevant to Gadag district | - | 8000-10000
farmers/farm women | All staff | | 13.1.5 | Others, PI. specify | | | | | 13.2 Technological products | SI. No. | Category | Name of the production partner agency, if any | Name of the product | Quantity planned to be
produced during
2023-24 (q) | Number planned to be
produced during
2023-24 | Names of the team members involved | |---------|-------------------|---|--------------------------------|--|--|--| | 13.2.1 | Seeds | Farmers' FPOs | Onion | 5 | - | SMS(Horticulture) & Farm Manager | | | | Farmers' FPOs | Greengram | 20 | - | | | | | Farmers' FPOs | Redgram | 5 | | | | | | Farmers' FPOs | Bengalgram | 30 | | SMS(Agronomy) & | | | | Farmers' FPOs | Safflower | 20 | | Farm Manager | | | | Farmers' FPOs | Rabi
Sorghum | 10 | | | | 13.2.2 | Planting material | | Mango | - | 500 | | | | | | Tamarind | - | 500 | SMS(Horticulture) & | | | | | Cashewnut | - | 1000 | Farm Manager | | | | | Fodder crops
/ fodder slips | - | 50000 | Programme Assistant,
(Animal Science) &
Farm Manager | | 13.2.3 |
Bio-products | | Vermicompost | 250 | - | | | | | | Vermiwash | 600 lit | - | SMS(Soil Science) & | | | | | Earthworms | 2.0 | - | Farm Manager | | | | | Azolla | 1.0 | - | | | 13.2.4 | Livestock strains | | Calves | - | 2 | Programme Assistant, | | | | | Lambs | - | 4 | (Animal Science) & | | | | | Kids | - | 8 | Farm Manager | | 13.2.5 | Fish fingerlings | | | | | | | 13.2.6 | Any other, pl | | Pickles | 4 | | | | | specify | | | | <u> </u> | SMS (Home Science) | | | | | Amla products | 1 | - | & Farm Manager | ## 13.3 Technological information | | Category | Technological capsules / Number | Names of the team members involved | |--------|---|---|------------------------------------| | 13.3.1 | Technology backstopping to line departments | | | | | | Role of macro & micro nutrients in crop production In-situ soil & water conservation practices Natural farming practices Pod borer identification and management in Greengram | SMS (Soil Science) | | | Agriculture | Pou borer identification and management in Greengram Identification and management of different sucking pests in Cottton Identification and management of different boll worms in Cottton Black arm and Alternaria leaf spot management in Cotton Nutrient management in Maize Chemical weed management in Maize Identification and management of Armyworm in Maize Identification and management in Maize Identification and management of leaf minor and leaf spot in Groundnut Management of Root grub in Groundnut Management of Tikka disease in Groundnut Podborer and wilt management in Bengalgram Low cost technologies to increase productivity in Bengalgram Management of Capsule borer and Leaf spot in Safflower Management of Necrosis and RHHC in Sunflower Management of Powdery mildew and pod borer in Blackgram Stem borer, termites, rust and leafspot management in Wheat Seed priming with CalCl2 for Rabi Sorghum Shoot fly, stem borer and army worm management in Rabi Sorghum Organic input production technologies Contingent crop planning Natural Farming Foliar spray of KNO3 for drought tolerance Use of nano-fertlizers as foliar spray in different crops | SMS (Agronomy) | | Category | Technological capsules / Number | Names of the team members involved | |--------------------------|---|---| | | Chemical weed management Seed priming with CaCl₂ for Rabi Sorghum | | | | Opening of conservation furrow for moisture conservation Compartment bunding for soil moisture conservation Nipping in Bengalgram&Redgram and its importance | SMS (Agronomy) | | | Contingent crop planning Foliar spray of KNO₃ for drought tolerance | | | Horticulture | Onion thrips and purple blotch identification and management Chillimurda complex identification and management Weed management in Onion Nutrient management in fruit crops Orchard management in Cashew crop Chilli pest and disease management Mango pest and disease management Ashwagandha crop as boon for drought proofing | SMS (Horticulture) | | Agricultural Engineering | Mechanization in field crops Use of suitable machineries for mechanized operations in orchard crops Farm machineries for small and marginal farmers Standard operating practices of dangerous farm machineries to avoid injuries Operation and maintenance of tractors and other agricultural machinery for enhancing useful life Management of natural resources through resource conserving machinery Renewable energy applications in agriculture Soil and water conservation practices in problematic fields | SMS (Ag. Engg.) | | Animal Husbandry | Scientific Dairy Management technologies | Programme Assistant
(Animal Husbandry) | | Fisheries | Fish rearing in Tanks | Programme Assistant
(Animal Husbandry) | | Others, pl. specify | Nutrition &importance of Nutri-Garden | SMS (Home Science) | | | Category | Technological capsules / Number | Names of the team members involved | |--------|------------------------|---|---| | | | <u>Leaflets</u> | | | | | Scientific Dairy Management | Programme Assistant
(Animal Husbandry) | | | | Soil & water conservation measures for dry land agriculture | SMS (Soil Science) & SMS
(Agronomy) | | | | Value added products of millets | SMS (Home Science) | | 13.3.2 | Literature/publication | Leaflets • Dryland agriculture practices for higher productivity • Production technologies in different crops √ Maize √ Greengram √ Blackgram √ Cotton ✓ Groundnut ✓ Bengalgram ✓ Safflower ✓ Rabi Sorghum ✓ Sunflower ✓ Wheat Krishi Vigyan Patrike • Improved Crop Management practices in different crops ✓ Maize ✓ Greengram ✓ Blackgram ✓ Cotton ✓ Groundnut ✓ Bengalgram ✓ Safflower ✓ Rabi Sorghum ✓ Safflower ✓ Rabi Sorghum ✓ Sunflower ✓ Rabi Sorghum ✓ Sunflower ✓ Rabi Sorghum ✓ Sunflower | SMS (Agronomy) | | Category | Technological capsules / Number | Names of the team members involved | |----------|--|------------------------------------| | | Leaflets Modern farm equipment for higher productivity Energy efficient farm machineries for efficient field operations Drudgery reducing small farm equipment for farm women Resource conserving technologies for enhanced profitability Use of renewable energy sources in agricultural operations Importance of micro irrigation systems in varied cropping systems Technologies for <i>in-situ</i> conservation of rain water | SMS (Ag. Engg.) | | | Krishi Vigyan Patrike Importance & methods of soil and water testing Soil & water conservation measures Alternate land use systems Role of nutrients for higher production | SMS (Soil Science) | | | Production technologies in Onion Tips on cultivation of onion &chilli Weed management in onion Onion seed production technology Mango orchard management Nutrient management in Mango Post harvest management in Mango | SMS (Horticulture) | | | Spiral separator Importance of value addition in millets Drudgery reducing equipments Solar dryer | SMS (Home Science) | | | Compartment bunding for moisture conservation Production technology of Maize Paired row method of sowing in Groundnut Integrated nutrient management in Groundnut Wider row
method of sowing in Sunflower Foliar spray of boron for seed setting in Sunflower Detopping and its importance in Bengalgram Paired row method of sowing in Rabi Sorghum CaCl₂ seed priming & its importance in Rabi Sorghum | SMS (Agronomy) | | | Category | Technological capsules / Number | Names of the team members involved | |--------|---|---|--| | | | Demonstration on enrichment of dry fodder and azolla cultivation | Programme Assistant (Animal Husbandry) | | 13.3.3 | Electronic Media | Natural farming | SMS (Agronomy)& SMS (Soil Science) | | | | Millets and its value addition | SMS (Home Science) | | | | Soil Science aspects – 6 Nos. | SMS (Soil Science) | | | Kisan Mobile Advisory
Services | Home Science aspects – 10 Nos. | SMS
(Home Science) | | | | Horticulture crop – 10 Nos. | SMS (Horticulture) | | 13.3.4 | | Field crops – 20 Nos. | SMS (Agronomy) | | | | Animal Science aspects – 15 Nos. | Programme Assistant (Animal Husbandry) | | | | Market information, Input availability & other messages – 20 Nos. | Programme Assistant (Computers) | | 13.3.5 | Information on centre/state sector schemes and service providers in the district (Data may be collected from different agencies). | One booklet on both Centre and State Sector Schemes and Service Providers | SMS (Ag.Extension) | ### 14. Additional activities planned during 2023-24 | SI.No. | Name of the agency / scheme | Name of activity | Technical programme with quantification | Financial outlay
(Rs. in lakh.) | Names of the team members involved | |--------|-----------------------------|---|---|------------------------------------|------------------------------------| | 1 | Nutri Garden | Nutritional
security through
Nutri garden | 25 | 0.25 | SMS (Home Science) | | | CFLDs on Pulses and | CFLDs in
Greengram | 20 Ha | 1.80 | SMS (Agronomy) | | 2 | | CFLDs in
Bengalgram | 20 Ha | 1.80 | SMS (Agronomy) | | | Oilseeds | CLFDs in
Summer
Groundnut | 20 Ha | 2.40 | SMS (Agronomy) | #### **Details of Nutri Garden** Nutri Garden for year round nutritional security among farm families <u>Village</u>: Halligudi (Mundaragi), Asundi (Gadag), Akkigund(Laxmeshwar) & Muganur (Naragund) | Problems | Technology to be demonstrated | |--|---| | Lack of awareness about nutrition &nutri garden Less consumption of vegetables due to high price of vegetables and fruits Lack of awareness on super foods | Production of vegetables Planting of perennial nutritious plants Introduction of super foods like Chia and grain amaranth | | Critical inputs | Qty /
Demo | Cost /
Demo | No. of
Demo | Total cost (Rs.) | Parameters | |---|---------------|----------------|----------------|------------------|---| | Seeds & seedlings
(Lime-Kagzi, Drumstick-Bhagya, Papaya-Solo, Curry leaf-
Suhasini, Guava-Lucknow 14 & Apple Ber) | 02 unit | 400 | 25 25000 | | Quantity of vegetables produced (Kg) Economics Percent adequacy of vegetables | | Vegetable seeds
(Brinjal, Okra, Beans, Cucumber, Tomato, Chilli, Beetroot, Carrot, lvy gourd etc.) | 200 gms | 250 | | | | | Leafy vegetables (Amaranthus, Palak, Dil, Coriander, Methi, Rajagiri etc.) | 100 gms | 250 | | | | | Bio-fertilisers | 1 Kg | 100 | = | | vegetablee | | | Total | 1000 | | | | #### **Entrepreneurship Development Programme** ### EDP on popularization and branding of millet products / chilli products <u>Village</u>: Halligudi (Mundaragi), Asundi (Gadag), Akkigund (Laxmeshwar) & Muganur (Naragund) | Problems | Technology to be demonstrated | |---|---| | Lack of awareness on marketing and value
addition of millet products / chilli products | Demonstration of millet value added products – Millet Roti, Sandige & Papad Demonstration of value added products of chilli – Masala Chilli, Chilli powder & Methi Chillies Packing, labelling and food licensing | | Critical inputs | Qty /
Demo | Cost /
Demo | Total cost (Rs.) | Parameters | |-------------------------------------|---------------|----------------|------------------|---------------------------| | Sealing machine | 2 | 6000 | | Quantity of | | Food licensing | 2 | 1000 | | millet / chilli | | Food labels and packaging materials | 2000 | 23000 | 30000 | products
produced (Kg) | | | Total | 30000 | | • Economics | ## 14. CFLD (CLUSTER FRONT LINE DEMONSTRATIONS) #### i) Pulses: | SI. No. | Name of the crop | No. of demonstrations | Area (ha) | | | | | |---------|------------------|-----------------------|-----------|--|--|--|--| | | Kharif 2022-23 | | | | | | | | 1 | Greengram | 125 | 50 | | | | | | | Rabi 2022-23 | | | | | | | | 2 | Bengalgram | 125 | 50 | | | | | | | Total | 250 | 100 | | | | | ## ii) Oilseeds: | SI. No. | Name of the crop | No. of demonstrations | Area (ha) | | | | |---------|-----------------------|-----------------------|-----------|--|--|--| | | <u>Summer 2022-23</u> | | | | | | | 1 | Groundnut | 50 | 20 | | | | #### 15. Revolving fund ## 15.1Financial status of revolving fund | Opening balance as
on 01.04.2022
(Rs.in Lakh) | Expenditure incurred during
2022-23
(Rs.in Lakh) | Receipts
during
2022-23
(Rs.in Lakh) | Closing balance as on
31.03.2023
(Rs.in Lakh) | |---|--|---|---| | 6.39 | 30.02 | 30.64 | 7.01 | ## 15.2 Plan of activities under revolving fund during 2023-24 | SI.No. | Proposed activities | Expected output | Anticipated income (Rs.) | Names of the team members involved | |--------|---|-----------------|--------------------------|---| | 1 | Production of pickles and amla products | 2Qtls | 50000 | SMS (Home Science) & Farm Manager | | 2 | Onion seed production | 5Qtls | 250000 | SMS (Horticulture) & Farm Manager | | 3 | Greengram | 15Qtls | 90000 | SMS (Agronomy) & Farm Manager | | 4 | Bengalgram | 20 Qtls | 110000 | SMS (Agronomy) & Farm Manager | | 5 | Safflower | 20 Qtls | 100000 | SMS (Agronomy) & Farm Manager | | 6 | Rabi Sorghum | 10 Qtls | 30000 | SMS (Agronomy) & Farm Manager | | 7 | Mango grafts | 500 Nos. | 10000 | SMS (Horticulture) & Farm Manager | | 8 | Tamarind grafts | 500 Nos. | 8000 | SMS (Horticulture) & Farm Manager | | 9 | Amla seedlings | 1000 Nos. | 20000 | SMS (Horticulture) & Farm Manager | | 10 | Fodder crops | 30000 Nos. | 30000 | Programme Assistant (Animal Science) & Farm Manager | | 11 | Vermicompost production | 15 ton | 45000 | SMS (Soil Science) & Farm Manager | | 12 | Vermiwash | 250 liters | 10000 | SMS (Soil Science) & Farm Manager | | 13 | Earthworms | 2 Qtls | 20000 | SMS (Soil Science) & Farm Manager | | 14 | Milk production | 3500 liters | 122500 | Programme Assistant (Animal Science) & Farm Manager | | 15 | Lambs | 4 | 6000 | Programme Assistant (Animal Science) & Farm Manager | | 16 | Kids | 8 | 12000 | Programme Assistant (Animal Science) & Farm Manager | ## 16. Activities of soil, water and plant testing laboratory during 2023-24 | SI.No. | Type of samples | No.of samples to be analyzed | Names of the team members involved | |--------|-------------------------------------|------------------------------|------------------------------------| | 16.1 | Soil test using analytical lab | 1000 | SMS (Soil Science) | | 16.2 | Soil test using mobile analysis kit | 300 | SMS (Soil Science) | | 16.3 | Water | 500 | SMS (Soil Science) | | 16.4 | Plant | 60 | - | | 16.5 | Others, pl. specify | | | #### 17. E-linkage during 2023-24 | SI.
No | Nature of activities | Likely period of completion (please set the time frame) | Remarks if any | |-----------|--|---|--------------------| | 17.1 | Title of the technology module to be prepared | Millets (February 2024) | | | 17.2 | Creation and maintenance of relevant database system for KVK | Entering data every week | Already maintained | | 17.3 | Any other (Please specify) | | | | | KVK Knowledge network portal | Updating events every week | - | | | | Updating MPR and AE MPR every month | | #### 18. Activities planned under rainwater harvesting scheme (only to those KVKs which are already having scheme under rain water harvesting) | SI. No | Activities planned | Remarks if any | |--------
--|----------------| | 1 | Training to farmers and farm women on rain water harvesting | - | | | (4programmes, 120 participants) | | | 2 | Training to extension functionaries on rain water harvesting (1 programme, 25 participants) | - | | 3 | Facilitation for rain water harvesting through borewell and openwellsfor ground water recharging | - | | | (3 Nos.) | | #### 19. Farmers Field School (FFS) planned: | Thematic area | Title of the FFS | Budget proposed in Rs. | |---------------|------------------|------------------------| | - | - | - | #### 20. Integrated Farming System(IFS) planned: NIL | Description of model(s) | No. of models/units | Budget proposed in Rs. | |-------------------------|---------------------|------------------------| | - | - | - | # 21.Details of budget utilization (2022-23) (Rs.) | | | | | (RS.) | | | |----------------------------|--|------------|----------|-------------|--|--| | S.No. | Particulars Particulars | Sanctioned | Released | Expenditure | | | | A. Recurring Contingencies | | | | | | | | 1 | Pay & Allowances | 20573000 | 20573000 | 20572955 | | | | 2 | Traveling allowances | 195000 | 195000 | 195000 | | | | 3 | Contingencies | | | | | | | Α | Stationery, telephone, postage and other expenditure on office running, publication of Newsletter and library maintenance (Purchase of News Paper & Magazines) | 395000 | 395000 | 395000 | | | | В | POL, repair of vehicles, tractor and equipments | 475000 | 475000 | 475000 | | | | С | Meals/refreshment for trainees (Ceiling upto Rs.40/day/trainee be maintained) | 142000 | 142000 | 142000 | | | | D | Training material (posters, charts, demonstration material including chemicals etc. required for conducting the training) | 30000 | 30000 | 30000 | | | | E | Frontline demonstration except oilseeds and pulses (Minimum of 30 demonstration in a year) | 455000 | 455000 | 455000 | | | | F | On Farm Testing (On need based, location specific and newly generated information in the major production systems of the area) | 145000 | 145000 | 145000 | | | | G | Training of Extension Functionaries | 25000 | 25000 | 25000 | | | | Н | Extension activities | 125000 | 125000 | 125000 | | | | 1 | Farmers' Field School | 30000 | 30000 | 30000 | | | | J | EDP / Innovative activities | 30000 | 30000 | 30000 | | | | K | Maintenance of buildings | 150000 | 150000 | 150000 | | | | L | Establishment of Soil, Plant & Water Testing Laboratory and issue of Soil Health Cards | 50000 | 50000 | 50000 | | | | М | Nutri Garden | 25000 | 25000 | 25000 | | | | N | Library Maintenance | 25000 | 25000 | 25000 | | | | | TOTAL (A) | 22870000 | 22870000 | 22869955 | | | | B. Non-F | Recurring Contingencies | | | | | | | 1 | Equipments including Furniture (IT) | 300000 | 300000 | 300000 | | | | 2 | Vehicle (Four wheeler) | 900000 | 900000 | 900000 | | | | 3 | SCSP Prgoramme | 270000 | 270000 | 270000 | | | | TOTAL (B) | | 1470000 | 1470000 | 1470000 | | | | C. REVOLVING FUND | | 0 | 0 | 0 | | | | | GRAND TOTAL (A+B+C) | 24340000 | 24340000 | 24339955 | | | # 22.Details of Budget Estimate based on proposed action plan(2023-24) | SI.No. | Particulars | BE 2023-24
proposed
(Rs.) | |------------------|---|---------------------------------| | 22.1 | (A). REVENUE (Recurring Contingencies) | | | 21.1.1 | Pay & Allowances | 22375000 | | 22.1.2 | Traveling allowances | 250000 | | 22.1.3 | Contingencies | | | 22.1.3. <i>a</i> | Stationery, telephone, postage and other expenditure on office running, publication of Newsletter | 500000 | | 22.1.3. <i>b</i> | POL, repair of vehicles, tractor and equipments | 450000 | | 22.1.3. <i>c</i> | Food/refreshment for farmers / extension personnel @ Rs.150/person/day | 150000 | | 22.1.3. <i>d</i> | Training material (need based materials and equipments for conducting the training) | 100000 | | 22.1.3.e | Frontline demonstrations | 403210 | | 22.1.3.f | On farm testing (OFTs)/Technology Assessment | 100250 | | 22.1.3. <i>g</i> | Integrated Farming System (IFS) (Min. 5 Units) | 0 | | 22.1.3. <i>h</i> | Training of extension functionaries | 100000 | | 22.1.3. <i>i</i> | Extension activities/services | 150000 | | 22.1.3. <i>j</i> | Farmers' Field School | 0 | | 22.1.3. <i>k</i> | EDP (2 Nos.) / innovative activities | 30000 | | 22.1.3./ | Soil &water testing & issue of soil health cards | 200000 | | 22.1.3. <i>m</i> | Maintenance of building | 250000 | | 22.1.3. <i>n</i> | Library (Purchase of Journals, Periodicals, News Papers& Magazines) | 25000 | | 22.1.3.0 | Nutri Garden | 25000 | | | Total Recurring (A) | 25108460 | | 22.2 | (B). CAPITAL (Non-Recurring Contingencies) | | | 22.2.1 | Equipments& Furniture | 1000000 | | 22.2.2 | Works(Hostel building repair works) | 1500000 | | 22.2.3 | Vehicle (Tractor and Two Wheeler) | 1100000 | | 22.2.4 | Library | 100000 | | | Total Non Recurring (B) | 3700000 | | | Grand Total (A + B) | 2,88,08,460 |