ICAR-KRISHI VIGYAN KENDRA, GADAG ## **ANNUAL REPORT -2022-23** (FOR THE PERIOD FROM 01 APRIL, 2022 TO 31 MARCH 2023) ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti Gadag district, Karnataka State Pincode: 582205 Website: https://kvkgadag.icar.gov.in/ E-mail: kvk.Gadag@icar.gov.in/ Host Organisation: Agricultural Science Foundation, Hulkoti #### PART I - GENERALINFORMATION ABOUT THE KVK 1.1. Name and address of KVK withphone, fax and e-mail | KVK Address | Telephone | | E mail | Web Address | |--|--------------------------|-----|---|--------------------------| | | Office | Fax | | | | ICAR-K.H.Patil Krishi
Vigyan Kendra,
Hulkoti,
Gadag dist. | (08372)289606
/289325 | - | kvk.Gadag@icar.gov.in
kvkhulkoti@gmail.com | www.kvkgadag.icar.gov.in | 1.2 .Name and address of host organization with phone, fax and e-mail | The street and the street of games and the street of games and the street of stree | | | | | | | | | |--|-------------------|-----|----------------------|----------------|--|--|--|--| | Address | Telephor | ne | E mail | Web Address | | | | | | | Office | Fax | | | | | | | | Agricultural Science Foundation, Hulkoti | (08372)
289069 | - | hulkotiasf@gmail.com | www.asf.ind.in | | | | | | Gadag dist. | | | | | | | | | 1.3. Name of the Programme Coordinator with phone & mobile No | Name | | Telephone / Contact | | | | | | |---------------------|-----------|------------------------|--------------------|--|--|--|--| | | Residence | Residence Mobile Email | | | | | | | Dr. L.G. Hiregoudar | - | 9448358772 | laxs1961@gmail.com | | | | | | | | 8073642868 | | | | | | #### 1.4. Year of sanction: 1985 1.5. Staff position as on 31 March 2023 | SI.
No. | Sanctio
ned post | Name of
the
incumbent | Designation | M
/
F | Discipline | Highest
Qualificati
on
(for PC,
SMS and
Prog.
Asstt.) | Pay
Level | Basic
pay | Date of
joining
KVK | Permanent
/Temporary | Categ
ory
(SC/S
T/
OBC/
Others) | |------------|--|-----------------------------|---------------------------------|-------------|--------------------|---|--------------|--------------|---------------------------|-------------------------|--| | 1 | Head/Se
nior
Scientist | Dr. L.G.
Hiregoudar | Programme
Coordinator | M | Crop
Physiology | M.Sc
(Agri),
PhD | L-14 | 218200 | 05.09.1992 | Р | OBC | | 2 | Scientist/
SMS | Dr. Sudha
V. Mankani | Subject
Matter
Specialist | F | Home
Science | M.H.Sc,
PhD | L-12 | 119300 | 26.06.1995 | Р | ОВС | | 3 | Scientist/
SMS | Mr. N.H.
Bhandi | Subject
Matter
Specialist | М | Soil
Science | M.Sc
(Agri) | L-11 | 96600 | 01.06.2005 | Р | OBC | | 4 | Scientist/
SMS | Mrs.
Hemavati
R.H. | Subject
Matter
Specialist | F | Horticulture | M.Sc
(Horti) | L-10 | 61300 | 14.02.2020 | Р | ОВС | | 5 | Scientist/
SMS | Dr.
Vinayak
Niranjan | Subject
Matter
Specialist | М | Ag.
Engineering | M.Tech(Ag
.Eng), PhD | L-10 | 57800 | 11.10.2021 | Р | ОВС | | 6 | Scientist/
SMS | VACANT | Subject
Matter
Specialist | | Agronomy | | | | | | | | 7 | Scientist/
SMS | VACANT | Subject
Matter
Specialist | | Ag.
Extension | | | | | | | | 8 | Programm
e Assistant
(Lab
Tech.) | Dr. B.M.
Murgod | Programme
Assistant | М | Animal
Science | B.V. Sc | L-7 | 60400 | 25.06.2007 | Р | OBC | | SI.
No. | Sanctio
ned post | Name of
the
incumbent | Designation | M
/
F | Discipline | Highest
Qualificati
on
(for PC,
SMS and
Prog.
Asstt.) | Pay
Level | Basic
pay | Date of
joining
KVK | Permanent
/Temporary | Categ
ory
(SC/S
T/
OBC/
Others) | |------------|--|-----------------------------------|-------------------------|-------------|------------|---|--------------|--------------|---------------------------|-------------------------|--| | 9 | Program
me
Assistant
(Compute
r) | Mrs. Lalita
S.Asuti | Computer
Programmer | F | - | M.Sc (IT) | L-7 | 66000 | 01.06.2005 | Р | ОВС | | 10 | Program
me
Assistant/
Farm
Manager | Mr. Suresh
L.
Halemani | Farm
Manager | М | 1 | B.Sc
(Agri.) | L-7 | 53600 | 01.02.2011 | Р | ОВС | | 11 | Assistant | Mr. M.B.
Jakkanago
udra | Assistant | M | - | M.Com | L-7 | 60400 | 25.06.2007 | Р | OBC | | 12 | Jr.
Stenogra
pher | Mr. T.K.
Sai
Swaroop
Rao | Jr.
Stenograph
er | М | - | SSC &
Certificate
in
Stenograp
hy | L-4 | 30500 | 15.12.2016 | Р | ОВС | | 13 | Driver - 1 | Mr. N.L.
Hadapad | Driver-Cum-
Mechanic | М | - | 7th Std. | L-4 | 46100 | 03.09.1992 | Р | ОВС | | 14 | Driver - 2 | Mr. G.D.
Madivalar | Driver-Cum-
Mechanic | М | - | 7th Std. | L-4 | 41000 | 26.06.1995 | Р | OBC | | 15 | SS-2 | Mrs. Savita
V.
Karadani | Field
Assistant | F | - | PUC | L-1 | 19700 | 14.02.2020 | Р | OBC | | 15 | SS-1 | VACANT | Field
Assistant | | | | | | | | | ### 1.6. Total land with KVK (in ha):28.0 ha | S. | Item | Area (ha) | |-----|---------------------------|-----------| | No. | | | | 1 | Under Buildings | 1.5 | | 2. | Under Demonstration Units | 0.5 | | 3. | Under Crops | 12.0 | | 4. | Orchard/Agro-forestry | 14.0 | | 5. | Others | - | ## 1.7. Infrastructural Development: A) Buildings | | | Source | | | Sta | ge | | | |-----|-------------------------------|---------|--------------------|--------------------------|----------------------------------|------------------|--------------------------|------------------------| | S. | | of | | Complete |) | | Incomp | lete | | No. | Name of building | funding | Completion
Date | Plinth
area
(Sq.m) | Expenditure
(Rs. in
lakhs) | Starting
Date | Plinth
area
(Sq.m) | Status of construction | | 1. | Administrative
Building | ICAR | 1996 | 800 | 33.46 | - | 1 | - | | 2. | Farmers Hostel | ICAR | 1997 | 550 | 17.26 | - | - | - | | 3. | Staff Quarters 1 | ICAR | 31-03-2006 | 400 | 25.82 | - | - | - | | | 3 | | | | | | | | | | 4 | | | | | | | | | | 5 | | | | | | | | | | 6 | | | | | | | | | 4. | Demonstration
Units | | | | | | | | | | 1. Dairy | ICAR | 31-03-1997 | 50 | 4.00 | - | - | - | | | 2. Sheep & goat | ICAR | 31-03-1997 | 50 | 2.63 | - | - | - | | | Organic input production unit | ICAR | 31-03-2011 | 67 | 3.00 | | | | | 5 | Fencing | ICAR | 31-03-2011 | | 8.00 | | | | | 6 | Rain Water harvesting system | ICAR | 31-03-2007 | - | 10.00 | - | - | - | | 7 | Threshing floor | ICAR | 31-03-2011 | 278 | 2.00 | - | - | - | | 8 | Farm godown | ICAR | 31-03-2011 | 70 | 3.00 | - | - | - | | 9 | Vermi Compost | DDB | 31-03-2002 | 100 | 3.50 | - | - | - | | 10 | Vehicle & implement shed | ICAR | 31-03-2011 | 80 | 3.00 | - | - | - | # B) Vehicles | Type of vehicle | Year of purchase | Cost
(Rs. in lakhs) | Total kms. Run | Present status | |---------------------------|------------------|------------------------|----------------|--| | Jeep
(Mahindra Bolero) | 2009 | 6.00 | 218412 | Placed order for
vehicle under
replacement of
vehicle | | Tractor | 2003 | 5.00 | 12460Hrs | Needs replacement | | Motor cycle - I | 2004 | 0.40 | 76728 | Needs replacement | | Motor cycle - II | 2009 | 0.50 | 56632 | Good | C) Lab Equipment & AV aids | Name of the equipment | Year of purchase | Quantity (No.) | Cost
(Rs. in lakhs) |
Present status | |-------------------------------|------------------|----------------|------------------------|----------------| | Computer | 2008 | 1 | 1.00 | Good | | Digital Amplifier with Public | 2013 | 1 | 0.36 | Good | | Address System | | | | | | OHP | 2004 | 1 | 0.25 | Good | | Name of the equipment | Year of purchase | Quantity (No.) | Cost
(Rs. in lakhs) | Present status | |--|------------------|----------------|------------------------|----------------| | Motorised projection screen | 2013 | 1 | 0.21 | Good | | White board | 2013 | 1 | 0.14 | Good | | LED display board | 2013 | 1 | 0.10 | Good | | Lap top Computer | 2007 | 1 | 0.53 | Not Good | | LCD | 2007 | 1 | 0.45 | Good | | Ceramic black board | 2007 | 1 | 0.12 | Good | | Lab equipments for dairy and goatery | 2011 | 1 | 0.50 | Good | | Generator | 2011 | 1 | 1.00 | Good | | EPBAX system | 2011 | 1 | 0.50 | Good | | Equipments of Plant health diagnostic unit | 2011 | 1 | 10.00 | Good | | Laptop computer | 2016-17 | 1 | 0.589 | Good | | Desktop computer | 2016-17 | 1 | 0.25 | Good | | Printer | 2016-17 | 1 | 0.181 | Good | | Copier | 2016-17 | 1 | 0.595 | Good | | Projector | 2016-17 | 1 | 0.48 | Good | | Digital camera | 2016-17 | 1 | 0.242 | Good | | Pico projector | 2016-17 | 1 | 0.145 | Good | | Amplifier | 2016-17 | 1 | 0.055 | Good | | Class room chairs | 2016-17 | 1 | 0.21 | Good | | File cabin | 2016-17 | 1 | 0.20 | Good | | Hostel furniture | 2016-17 | 1 | 0.59 | Good | | Projector Screen | 2020-21 | 1 | 0.24 | Good | | Laptop | 2020-21 | 1 | 0.79 | Good | | Desktop | 2020-21 | 1 | 0.44 | Good | | Office furniture | 2020-21 | 1 | 1.02 | Good | | Desktop (All in one) | 2022 | 1 | 1.26 | Good | | Laptop | 2022 | 1 | 0.62 | Good | | Printer (All in one) | 2022 | 1 | 0.30 | Good | ## D)Farm equipment and implements | Name of the equipment/implement | Year of purchase | Quantity
(No.) | Cost (Rs.) | Present status | |---------------------------------|------------------|-------------------|------------|----------------| | Hipro lab model gin machine | 2006 | 1 | 0.70 | Good | | Seed delinting machine | 2006 | 1 | 0.18 | Good | | Cotton seed sorter | 2007 | 1 | 0.50 | Good | | Seed treatment drum | 2007 | 1 | 0.40 | Good | | Name of the equipment/implement | Year of purchase | Quantity
(No.) | Cost (Rs.) | Present status | |---------------------------------|------------------|-------------------|------------|----------------| | Rotary weeder | 2009 | 1 | 0.84 | Good | | Laser guided land leveler | 2011 | 1 | 3.89 | Good | | Power tiller | 2011 | 1 | 2.72 | Good | | Rotavator | 2022 | 1 | 1.23 | Good | | Tamarind de-seeder | 2022 | 1 | 1.11 | Good | ## 1.8. Details of SAC meeting organised | Date | Number of
Participants | Salient Recommendations | Action taken | Remark | |--------------------|---------------------------|---|--|-----------| | 22-
02-
2023 | 19 | Introduce more perennial fruits and vegetables in Nutri Garden. Conduct trainings on vegetable and fruit processing. | These recommendati ons are | s, if any | | | | Include cucumber variety released by IIHR under Vegetable Cafeteria. | included in the
Action Plan of
2023-24 | | | | | Impart trainings on IFS in order to enable farmers to get good income and give thrust to animal components also | 2020-24 | | | | | Give thrust to Intercropping and Mixed cropping during trainings. | | | | | | Train farmers to take up seed treatment in Redgram crop to reduce incidence of wilt problem in the district | | | | | | Pure Byadagi variety seed production in Chilli crop be encouraged among farmers so as to make pure Byadagi variety seeds available to villagers. | | | | | | Conduct group meeting / crop seminar in Mango crop to overcome pest problem involving Subject Experts. | | | | | | Advise farmers for going to buffaloe rearing as buffaloe milk fetches good market price and thus farmers can get good returns. | | | | | | Advise farmers for planting fodder trees on bunds so as to feed animals, sheep and goat even during off-seasons. | | | | | | Take up Paraquat spray for shedding of leaves in Greengram before mechanical harvesting to ease the harvesting operation and also suggested to go for ecofriendly treatment with high salt concentrate in place of chemical i.e Paraquat. | | | | | | Take up method demonstrations of seed treatment in Greengram seeds before sowing to manage Yellow Vein Mosaic Virus. | | | | | | Promote BJV-44 variety of Rabi Sorghum through demonstrations. | | | | | | Advise farmers to go for Ridges and Furrows in Chilli crop in case of excess rainfall during the season. | | | | | | Advise farmers to go for wider spacing (row to row) in Bengalgram crop for good mechanical harvesting. | | | #### PART II - DETAILS OF DISTRICT ### 2.1Major farming systems/enterprises (based on the analysis made by the KVK) | S. No | Farming system/enterprise | | | | | | |---------------------|---|--|--|--|--|--| | Rainfed situation | Rainfed situation | | | | | | | 1 | Agricultural crops + Dairy enterprise | | | | | | | 2 | Agricultural crops + Horticultural crops | | | | | | | 3 | Agriculture + Horticulture + Dairy enterprise | | | | | | | Irrigated situation | 1 | | | | | | | 1 | Agriculture + Dairy enterprise | | | | | | | 2 | Agriculture + Horticulture + Dairy enterprise | | | | | | | | | | | | | | # 2.2Description of Agro-climatic Zone & major agro ecological situations (based on soil and topography) | S. No | Agro-climatic Zone | Characteristics | | | | |-------|--|---|--|--|--| | 1 | Northern Dry Zone-3
and Region-2 of the
state | This zone comprises of Gadag, Ron, Mundaragi, Gajendragad and Naragund blocks. Rainfall ranges from 450-600 mm with 30-35 rainy days mainly from June – September months. Maximum temperature ranges from 36-40° c. This zone is drought prone. Kharif crops grown: Greengram, Groundnut, Onion, Bt. Cotton Chilli, Sunflower, Maize etc Rabi crops grown: Bengalgram, Rabi Sorghum, wheat, sunflower etc | | | | | 2 | Northern Semi
Transitional Zone-8
and Region-4 of the
state | This zone comprises of Shirahattiand Laxmeshwar blocks. Average rainfa is 619 mm. Gets rainfall from both South-West and North-East mansoons. Kharif crops grown: Greengram, Sorghum, Bt-cotton, Groundnut, Sunflower, Millets, Maize, Onion, Chillietc Rabi crops grown: Rabi Sorghum, Sunflower, Bengal gram, Wheat etc | | | | 2.3 Soil type/s | 2.3 | Son type/s | | | | | | | |-------|--|---|---------------|--|--|--|--| | S. No | Soil type | Characteristics | Area in
ha | | | | | | 1 | Very shallow red gravelly loam soils | Less water holding capacity with less runoff and high infiltration rate, | 26,625 | | | | | | 2 | Shallow red gravelly mixed with deep black soils | Less water holding capacity with moderate runoff and high infiltration rate. It contains high sand percent. | 10,659 | | | | | | 3 | Medium deep red clayey soils Moderate water holding capacity with less runoff and moderate infiltration rate. It contains high clay percent. | | | | | | | | 4 | Medium deep red gravelly clay soils | Moderate water holding capacity with less runoff and high infiltration rate. It contains high clay percent. | 63,163 | | | | | | 5 | Deep red gravelly clay soils | High water holding capacity with less runoff and less infiltration rate. It contains high clay percent. | 8,290 | | | | | | 6 | Medium deep black clayey soils | Moderate water holding capacity with high runoff and less infiltration | 1,50,117 | | | | | | 7 | Deep black clayey soils | More water holding capacity with low infiltration rate of water & clay content is more than 35 percent | 67,444 | | | | | | 8 | Deep black calcareous clayey soils | More water holding capacity with low infiltration rate and high runoff. It contains more percent of Calcium | 92,238 | | | | | | 9 | Deep alluvial black clayey soils | More water holding capacity with low infiltration rate and high run off. | 17,088 | | | | | | 10 | Deep alluvial clayey soils (salt affected in patches) | More water holding capacity, less infiltration rate and high run off affects the seed germination | 1,053 | | | | | | | | Total | 4,61,887 | | | | | 2.4. Area, Production and Productivity of major crops cultivated in the district (Reference year: 2022-23) | SI. No | Crop | Area (ha) | Production (Tons) | Productivity(Kg /ha) | |--------|-------------------|-----------|-------------------|----------------------| | | Cereals | | | | | 1 | Maize | 113100 | 489625 | 4329 | | 2 | Rabi Sorghum | 76846 | 54471 | 709 | | 3 | Wheat (Irrigated) | 19250 | 37500 | 1948 | | 4 | Paddy (Irrigated) | 4300 | 20500 | 4767 | | | Pulses | | | | | 4 | Greengram | 125000 | 96000 | 768 | | 5 | Bengalgram | 150000 | 149000 | 993 | | 6 | Redgram | 3373 | 2150 | 637 | | | Oilseeds | | | | | 7 | Groundnut | 44560 | 84400 | 1894 | | 8 | Sunflower | 28300 | 45400 | 1604 | | 9 | Safflower | 5600 | 3300 | 589 | | | Commercial crops | | | |
 9 | Bt. Cotton | 28300 | 146970 | 5193 | | 10 | Onion | 29671 | 343420 | 11.5 tonns | | 12 | Dry chillies | 15102 | 72489 | 480 | Source: Department of Agriculture, Gadag - 2022-23 #### 2.5. Weather data | Month | Rainfall (mm) | Temperature ⁰ C | | Relative Humidity (%) | |-----------------|---------------|----------------------------|---------|-----------------------| | | | Maximum | Minimum | | | April, 2022 | 58.0 | 37.42 | 23.95 | 47.65 | | May, 2022 | 160.0 | 33.88 | 22.65 | 70.00 | | June, 2022 | 96.0 | 29.38 | 21.88 | 81.34 | | July, 2022 | 124.7 | 27.13 | 21.53 | 88.21 | | August, 2022 | 143.1 | 27.18 | 21.03 | 88.71 | | September, 2022 | 218.4 | 27.91 | 20.78 | 87.02 | | October,2022 | 164.1 | 26.80 | 19.07 | 85.85 | | November, 2022 | 1.2 | 26.64 | 17.26 | 85.67 | | December, 2022 | 14.0 | 27.05 | 16.43 | 82.86 | | January, 2023 | 0.0 | 30.56 | 15.49 | 61.60 | | February, 2023 | 0.0 | 34.50 | 17.27 | 42.60 | | March, 2023 | 0.0 | 37.37 | 21.41 | 37.13 | 2.6. Production and Productivity of Livestock, Poultry, Fisheries etc. in the district | Category | Population | Production | Productivity | |--------------------------------|------------|------------------------|--------------| | Cattle | | | | | Crossbred | 24153 | 25968 Lit. of milk/day | 5.22 Kg/day | | Indigenous | 118502 | 45944 Lit of milk/day | 2.40 Kg/day | | Buffalo | 60989 | 64088 Lit. of milk/day | 2.80 Kg/day | | Sheep | | | | | Crossbred | 335 | | | | Indigenous | 258712 | 158 tons/year (meat) | 15 Kg/animal | | Goats | 106353 | 134 tons/year (meat) | 16 Kg/animal | | Pigs | | | | | Crossbred | 557 | | | | Indigenous | 6012 | | | | Rabbits | 341 | | | | Dogs | 16711 | | | | Others | 311 | | | | Poultry birds (egg production) | 156275 | 72 lakh/year | 100 per year | Source: Gadag District Statistical Report-FY 2018-19 Note: The data for the year 2022 is not available at District Statics Office / Office of Deputy Directory of AH & VS 2.7 District profile has been **Updated** for 2022 : Yes (Latest available data is uploaded) #### 2.8 Details of Operational area / Villages | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|--|--| | 1 | Gadag | Asundi | One Year | Maize | Low yield due to cultivation of Maize as a sole crop Imbalanced nutrition Incidence of Army worm Drudgery during threshing and winnowing of Maize Incidence of Turcicum leaf blight and Bacterial stalk rot High labour requirement for harvesting of maize | FLD on ICM practices in Maize FLD on Maize + Redgram intercropping Demonstration ofself propelled maize harvester Trainings on ICM practices in maize Trainings on use of machineries in maize cultivation Supply of literature&Field day | | | | | | Greengram | Low yield due to use of local variety Low yield due to incidence of Powdery mildew and Pod borer Seed shattering problem during harvesting in local variety China Moong Moisture stress due to long dry spells in Kharif | OFT of Greengram varieties for higher productivity FLD on ICM practices in Greengram FLD on Compartmental Bund Former Training on ICM in Greengram Supply of literature Field day | | | | | | Spreading
Groundnut | Low productivity in existing local varieties Imbalanced nutrition Incidence of leaf minor and leaf spot | OFT on improved varieties of spreading groundnut Trainings on ICM practices in Spreading groundnut Supply of relevant literature Field day | | | | | | Bt. Cotton | Incidence of Pink bollworm Incidence of Leaf reddening Incidence of sucking pests | Training on use of Splat pheromone technique to control pink bollworms with method demonstration Training on ICM practices in cotton Field day | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|----------------------------------|---|--| | | | | | Bengalgram | Low yield due to cultivation of local varieties Low yield due to incidence of pod borer Incidence of Wilt and Rust Low yields due to moisture stress | FLD on ICM practices in Bengalgram Training on ICM practices in Bengalgram Supply of literature Field day FLD on solar nipping machine FLD on compartmental bund former Trainings on use of machineries in chickpea cultivation Field day | | | | | | Rabi Sorghum | Low productivity due to use of local variety Incidence of shoot fly and stem borer Incidence of smut diseases Problem of lodging in existing variety | FLD on ICM practices in Rabi
Sorghum Training on ICM practices in Rabi
Sorghum Supply of literature Field day | | | | | | Summer
groundnut
operation | Low yield due to use of local varieties Incidence of collar rot and root grub Drudgery of in manual | FLD on ICM in Summer
Groundnut Training on ICM practices in
summer groundnut Field Day Supply of literature OFT on mechanical harvesting of | | | | | | | harvestingLow income due to high labour cost | summer groundnut Trainings on use of machineries in groundnut cultivation | | | | | | Vegetable crops | Low income due to cultivation of local varieties Application of imbalanced fertilizers | FLD on Vegetable Cafeteria (Ridgegourd, Radish, Spinach and Dolichos Bean) Assessment of high yielding okra hybrids for higher productivity | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|--|--| | | | | | Red Chilli | Non-availability of quality and pure seeds of Byadgi Dabbi Lack of proper knowledge on ICM practices resulting in poor productivity and quality with high incidence of pest and diseases Improper post-harvest management (Drying & storage of chilli and its powder) | Trainings on ICM in vegetable crops Supply of literature Field day FLD on ICM in Chilli crop FLD on drying of Red chillies in Solar Drier Assessment of Shelf Life of Chilli powder Assessment of packaging methods for chilli powder storage Training on ICM Supply of relevant literature Farm advisory services Rendering Kisan Mobile Advisory Services to farmers Field day Seed production | | | | | | Onion | Imbalanced nutrition application without soil testing Low productivity in existing variety Bellary Red onion Low keeping quality of bulbs in existing variety High
incidence of thrips & purple blotch High incidence of weeds High labour requirement in detopping of harvested onion crop | FLD on introduction of Bhima
Super variety along with ICM
practices Trainings on ICM in onion crop Seed production activities with
identified seed farmers for supply
of quality seeds of Bhima Super
variety in village Supply of relevant literature Field day | | | | | | Banana | Less market priceNo value addition | Training on Bakaahu products | | | | | | Milch cattle | Low productivity of milk due to non-availability of green fodder | | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|--|---| | | | | | | throughout the year. | Training on scientific management of milch cattle Supply of literature Field visit Mobile advisory services Field day Animal health camps in collaboration with Department of Animal Husbandry | | | | | | Nutrition and health | Less consumption of fruits and vegetables | | | | | | | PHT in Chilli | Unhygienic way of drying of Red
Chillies | FLD on solar drying of Red
Chillies Training on use of solar dryer for
drying of chillies | | | | | | Grain storage | Incidence of stored grain pest | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | | | | Drudgery | Drudgery in cleaning & grading or
grains Less market price due to non-
grading of grains | | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-----------|---------------------|--|---------------------------|--|---| | | | | | Organic input | | Training | | | | | | production | importance of organic inputs | Supply of literature | | | | | | | among farm women | • | | | | | | Borewell | Decreased ground water level and less water availability for | Training on recharge of ground water through borewell | | | | | | | irrigation | Field visits to demonstration units
of artificial recharge of ground
water through borewell Supply of literature | | 2 | Mundaragi | Halligudi | One Year | Greengram | Low yield due to use of local
varieties | FLD on ICM practices in
Greengram | | | | | | | Incidence of Leaf spot and
Powdery mildewIncidence of Yellow Mosaic | Training on ICM practices in
GreengramFLD on Compartmental Bund | | | | | | | Virus and Leaf spot Moisture stress due to long dry spells in Kharif | FormerSupply of literatureField day | | | | | | Bengalgram | Low yield due to cultivation of local varieties | FLD on ICM practices in
Bengalgram | | | | | | | Low yield due to incidence of
pod borer | | | | | | | | Incidence of Wilt and Rust | Field day | | | | | | | | Supply of literature | | | | | | | Reduced yield due to moisture stress | FLD on compartmental bund former | | | | | | | | FLD on solar nipping machine | | | | | | | | Trainings on use of machineries in chickpea cultivation | | | | | | Safflower | Low productivity due to
cultivation of local variety | OFT on Assessment of Annigeri
2020 and ISF-764 varieties in | | | | | | | Incidence of sucking pests Incidence of Consula hards | Safflower crop Training on ICM practices in | | | | | | | Incidence of Capsule borerIncidence of Alternaria leaf spot | Training on ICM practices in Safflower | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|--------------------------------|---|---| | | | | | | | Supply of literatureField Day | | | | | | Rabi Sorghum | Low productivity due to use of local variety Incidence of shoot fly and stem borer Incidence of smut diseases Problem of lodging in existing variety | FLD on ICM practices in Rabi
Sorghum Training on ICM practices in Rabi
Sorghum Supply of literature Field day | | | | | | Nutri cereal
Foxtail millet | Low productivity in existing local variety | FLD on ICM practices in Nutri cereal Foxtail millet variety DHFt-109-3 Trainings Supply of literature & Field day | | | | | | Bio-fortified
Pearl millet | Long dry spells result in low yields in majority of the Kharif crops, hence introducing biofortified and drought resistant pearl millet | FLD on ICM practices in bio-
fortified Pearl millet variety
VPMV-9 | | | | | | Sunflower | Incidence of Necrosis Incidence of Red headed caterpillar (RHHC) | Training on ICM practices in Sunflower Supply of literature | | | | | | Red Chilli | Non-availability of quality and pure seeds of Byadgi Dabbi Lack of proper knowledge on ICM practices resulting in poor productivity and quality with high incidence of pest and diseases | FLD on ICM in Chilli crop Training on ICM Supply of relevant literature Farm advisory services Rendering Kisan Mobile Advisory
Services to farmers Field day | | | | | | Onion | Low income due to cultivation of local varieties | FLD on introduction of Bhima
Super variety along with ICM | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|---|--| | | | | | | Imbalanced nutrition without soil testing Low keeping quality bulbs in existing variety High incidence of thrips & purple blotch High incidence of weeds High labour requirement in detopping of harvested onion crop | | | | | | | Rabi crops | Non profitability in existing Rabi crops due to moisture stress during Rabi Season | • FLD on introduction of | | | | | | Rabi crops | Non profitability in existing Rabi crops due to moisture stress during Rabi Season | FLD on introduction of Ajawain crop for higher income and drought mitigation Supply of relevant literature Field day | | | | | | Milch cattle | Low productivity of milk due to non-availability of green fodder throughout the year. | | | | | | | Sheep | Low body weight in lambs | Training on scientific management of sheep | | | | | | Goat | Low body weight in kids | Training on scientific management of goats | | | | | | Nutrition and health | Less consumption of fruits and vegetables | FLD on Nutri GardenTraining on balanced diet and nutrition | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|------------|---------------------|--|---------------------------|---
---| | | | | | | | Training on healthy foods for healthy life Training on importance of millets in diet Field day | | | | | | Grain storage | Incidence of stored grain pest | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | | | | Drudgery | grains Less market price due to non- grading of grains | Demonstration on spiral separator on Greengram, Bengalgram, Rabi Sorghum etc. UV protected aprons for farm activities | | | | | | Organic input production | Lack of awareness on
importance of organic inputs
among farm women | TrainingSupply of literature | | 3 | Laxmeshwar | Akkigund | One Year | Maize | Low yield due to cultivation of Maize as a sole crop Imbalanced nutrition Incidence of Army worm Drudgery during threshing and winnowing of Maize Incidence of Turcicum leaf blight and Bacterial stalk rot High labour requirement for harvesting of maize | FLD on ICM practices in Maize FLD on Maize + Redgram intercropping Demonstration ofself propelled maize harvester Trainings on ICM practices in maize Trainings on use of machineries in maize cultivation Supply of literature& field day | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|--|---| | | | | | Spreading groundnut | Low productivity in existing
local varieties Imbalanced nutrition
Incidence of leaf minor and leaf
spot | OFT on improved varieties of spreading groundnut Trainings on ICM practices in Spreading groundnut Supply of relevant literature | | | | | | Bt. Cotton | Incidence of pink bollworm Problem of leaf reddening Incidence of sucking pests | Training on use of Splat
pheromone technique to control
pink bollworm and method
demonstration Training on ICM practices in
cotton | | | | | | | Drudgery of operation in existing spraying methods | OFT on assessment of different
spraying equipment Trainings on use of machineries
in Bt. Cotton cultivation | | | | | | Greengram | Low yield due to use of local varieties Incidence of Powdery mildew Incidence of Yellow Mosaic Virus and Leaf spot | FLD on ICM practices in
Greengram Training on ICM practices in
Greengram Supply of literature Field day | | | | | | Blackgram | Low yield due to use of local varieties Incidence of Powdery mildew Incidence of pod borer | OFT of high yielding varieties of
Blackgram Training on ICM practices in
Blackgram Supply of literature | | | | | | Bengalgram | Low yield due to cultivation of local varieties Low yield due to incidence of pod borer Incidence of Wilt and Rust | OFT on assessment of high
yielding varieties | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|--------------------------------|---|--| | | | | | Wheat | Low productivity due to use of
local varieties Incidence of termites and stem
borer Incidence of rust and leaf spot | Training on ICM practices in WheatSupply of literature | | | | | | Rabi Sorghum | Incidence of Shoot fly and Stem borer Incidence of Smut disease | FLD on ICM practices in Rabi
Sorghum Training on ICM practices in Rabi
Sorghum Supply of literature Field day | | | | | | Nutri cereal
Foxtail millet | Low productivity in existing local variety | FLD on ICM practices in Nutri cereal Foxtail millet variety DHFt-109-3 Trainings Supply of literature & Field day | | | | | | Rabi crops | Non profitability in existing farming system due to moisture stress during Rabi season | Ashwagandha crop for higher income and drought mitigation • Supply of relevant literature | | | | | | Borewell | Decreased ground water level and less water availability for irrigation | Training on recharge of ground water through borewell Field visits to demonstration units of artificial recharge of ground water through borewell Supply of literature | | | | | | Milch cattle | Low productivity of milk due to non-availability of green fodder throughout the year. | FLD on fodder cafeteria and nutrition in milch cattle Training on scientific management of milch cattle Supply of literature Field visit Mobile advisory services Field day | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|--|--| | | | | | | | Animal health camps in collaboration with Department of Animal Husbandry | | | | | | Goat | Low body weight in kids | Training on scientific management of goats | | | | | | Nutrition and health | Less consumption of fruits and vegetables | FLD on Nutri Garden Training on balanced diet and nutrition Training on healthy foods for healthy life Training on importance of millets in diet Field day | | | | | | Grain storage | Incidence of stored grain pest | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | | | | Drudgery | Drudgery in cleaning & grading of
grains Less market price due to non-
grading of grains | Demonstration on spiral separator on Greengram, Bengalgram, Rabi Sorghum etc. UV protected aprons for farm activities | | | | | | Organic input production | Lack of awareness on importance of organic inputs among farm women | TrainingSupply of literatureField day | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|----------|---------------------|--|---------------------------|---|--| | 4 | Naragund | Muganur | One Year | Maize | Low productivity due to imbalanced nutrition Incidence of Armyworm Problem of leaf reddening Incidence of Downey mildew | FLD on ICM practices in Maize Training on ICM practices in maize Supply of literature Field day | | | | | | Greengram | Low yield due to use of local
varieties Incidence of Powdery mildew Incidence of Yellow Mosaic Virus and Leaf spot | FLD on ICM practices in
Greengram Training on ICM practices in
Greengram Supply of literature Field day | | | | | | Blackgram | Low yield due to use of local
varieties Incidence of Powdery mildew
Incidence of pod borer | OFT on high yielding varieties of
Blackgram Training on ICM practices in
Blackgram Supply of literature | | | | | | Wheat | Low productivity due to use of
local varieties Incidence of stem borer
Incidence of rust and leaf spot | Training on ICM practices in wheatSupply of literature | | | | | | Bengalgram | Low yield due to cultivation of local varieties Low yield due to incidence of pod borer Incidence of Wilt and Rust Non profitability in existing farming system due to moisture stress Deterioration of soil physical properties due to unscientific use of machineries Reduced Water Use Efficiency | OFT on assessment of high yielding varieties in Bengalgram crop OFT on conservation agriculture practices FLD on ICM practices in Bengalgram FLD on Solar nipping machine Training on ICM practices in Bengalgram Field day Supply of literature | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|---|---| | | | | | Rabi Sorghum | Incidence of Shoot fly and
Stem borer
Incidence of Smut disease | FLD on ICM practices in Rabi
Sorghum Training on ICM practices in Rabi
Sorghum Supply of literature Field day | | | | | | Safflower | Low productivity due to
cultivation of local variety Incidence of sucking pests Incidence of Capsule borer
Incidence of Alternaria leaf spot | OFT on Assessment of Annigeri
2020 and ISF-764 varieties in
Safflower crop Training on ICM practices in
Safflower Supply of literature Field Day | | | | | | Red Chilli | Non-availability of quality and pure seeds of Byadgi Dabbi Lack of proper knowledge on ICM practices resulting in poor productivity and quality with high incidence of pest and diseases Unhygienic way of drying of Red Chillies | FLD on ICM in Chilli crop FLD on solar drying of Red Chillies Training on use of solar dryer for drying of chillies Training on ICM Supply of relevant literature Farm advisory services Field day Seed production activities with identified seed farmers | | | | | | Onion | Low productivity due to imbalanced nutrition Low productivity due to cultivation of low yielding variety Double Red Incidence of thrips reduces the yields | FLD on introduction of Bhima
Super variety along with ICM | | SI.
No. | Taluk | Name of the village | How long the village is
covered under
operational area of the
KVK | Major crops & enterprises | Major problems identified | Identified Thrust Areas | |------------|-------|---------------------|--|---------------------------|--|--| | | | | | Milch cattle | Low productivity of milk due to
non-availability of green fodder
throughout the year. | Training on scientific management
of milch cattle Supply of literature Mobile advisory services | | | | | | Drudgery | Drudgery in cleaning & grading of
grains Less market price due to non-
grading of grains | Demonstration on spiral separator
on Greengram, Bengalgram, Rabi
Sorghum etc. UV protected aprons for farm
activities | | | | | | Nutrition and health | Less consumption of millets, fruits and vegetables in daily diet | FLD on Nutri Garden Training on health and nutrition, importance of millets in diet Field day | | | | | | Grain storage | Incidence of stored grain pest | FLD on demonstration of Super grain bags Training on management of stored grain pests Home visits and interactive meetings Supply of literature Supply of super grain bags | | | | | | Dicoccum
wheat | Nutritional importance and its value addition | Training on nutritional importance
and its value addition | #### 2.9 Priority thrust areas | S. | Thrust area | |----|---| | No | | | 1 | Soil fertility management through production and application of bio-manures | | 2 | Promotion of intercropping systems in Maize and Bt.Cotton crops | | 3 | Promotion of JAKI-9218 & BGD-111-01 varieties of Bengalgram | | 4 | Promotion of SPV-2217 variety of Rabi Sorghum | | 5 | Promotion of nutri-farms | | 6 | Popularisation of drudgery reduction equipments | | 7 | Post harvest technologies | | 8 | Livestock nutrition for higher milk productivity | # PART III - TECHNICAL ACHIEVEMENTS 3.A. Target and Achievements of mandatory activities | | 0 | FT | | | FLD | | | | | |--------------------|-----------|--------|-------------|-----------|---------------|--------|-------------|--|--| | | 1 | | | | 2 | | | | | | 0 | FTs (No.) | Far | FI | LDs (No.) | Farmers (No.) | | | | | | Target Achievement | | Target | Achievement | Target | Achievement | Target | Achievement | | | | 9 | 9 | 33 | 33 | 20 | 20 | 312 | 312 | Training (Farme | ers/farm wo | men) | | Training (Rural youth) | | | | |--------|---------------------------------------|-------------|-------------|-------------------------------------|------------------------|--------------------|-------------|--| | | | 3 | | Programmes (No.) Porticipants (No.) | | | | | | Co | Courses (No.) Participants (No.) | | | Progra | ammes (No.) | Participants (No.) | | | | Target | · · · · · · · · · · · · · · · · · · · | | Achievement | Target | Achievement | Target | Achievement | | | 130 | 131 | 4000 | 4791 | 10 | 14 | 300 | 357 | Training (Exter | sion perso | onnel) | | Training (| sponsored |) | |--------|-----------------|--------------------|---------------|--------|-------------|-----------|---------------| | | | 5 | | | | 6 | | | Co | urses (No.) | Parti | cipants (No.) | Progr | ammes (No.) | Parti | cipants (No.) | | Target | Achievement | Target Achievement | | Target | Achievement | Target | Achievement | | 25 | 31 | 800 1160 | | 60 | 66 | 2300 | 2380 | Training (| Vocational) | | | Extension I | Programme | S | |--------|--------------------------------|-------------|---------------|--------|-------------|-----------|---------------| | | | 7 | | | | 8 | | | Cou | ırses (No.) | Partic | cipants (No.) | Progr | ammes (No.) | Partio | cipants (No.) | | Target | Achievement Target Achievement | | Achievement | Target | Achievement | Target | Achievement | | 10 | 13 | 300 379 | | 450 | 484 | 30000 | 34325 | Seed Pro | oduction (Q) | Planting m | naterial (Nos.) | |----------|--------------|------------|-----------------| | | 9 | | 10 | | Target | Achievement | Target | Achievement | | 70 | 83.522 | 40000 | 49390 | | | | | | | Livest | ock, poultry strai | ns and fing | erlings (No.) | | Bio-prod | ucts (Kg) | | |--------|------------------------------------|--------------------------|---------------|--------|---------------------------------|-------------|-------------| | | 1 | 1 | | | 1 | 2 | | | | Target | Ach | nievement | | Target | Acl | nievement | | | 4 | | 4 | | 15500 | | 15674 | Se | oil, water, plant a
including (| nd manure
mobile kits | | | Mobile agro adv | isories pro | vided | | | 1 | 3 | | | 1 | 4 | | | San | nples (No.) | Fari | mers (No.) | | s including text,
pice (No.) | Far | mers (No.) | | Target | Achievement | Target | Achievement | Target | Achievement | Target | Achievement | | 740 | 750 | 1500 | 1585 | 50 | 58 | 21000 | 42452 | | | | | | | | | | | | | | | | | | | #### 3.B1. Abstract of interventions undertaken | | | | | | | | | Interven | itions | | | | | | |----------|-------------------------------|---------------------|--|------------------------
---|---------------------------------------|--------------------------------------|---|--------|------------------------------|--|--------------------------------------|------------------|----------------------| | | | | | | | | | | | | Supply of | | Sup | oly of bio
oducts | | S.
No | Thrust
area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of
FLD if any | Number
of
Training
(farmers) | Number
of
Training
(Youths) | Number of
Training
(extension
personnel) | | Supply of
seeds
(Qtl.) | plantin
g
materia
Is
(No.) | Supply
of live-
stock
(No.) | No. | Kg | | 1 | Varietal
demonstra
tion | Rabi
Sorghum | Low
productivity
in exiting
M-35-1
variety | - | Demonstra
tion of
SPV-2217
variety in
Rabi
Sorghum
crop | 2 | - | - | 6 | 3 | - | - | - | 10 | | 2 | ICM | Maize | | - | ICM in
Maize | 2 | 1 | - | 8 | - | - | - | - | - | | 3 | Post
harvest
technology | Maize | Drudgery
of
operation
involved in
manual cob
harvesting | | Demonstra
tion of self
propelled
Maize
harvester | 3 | - | - | 4 | - | - | - | - | - | | 4 | Intercroppi
ng system | Maize+
Redgram | Low income due to sole crop | - | Maize+
Redgram
(4:2)
intercroppi
ng system | 1 | - | - | 5 | 1.5 Qtls
(Redgram) | 0 | 0 | 3 | 20 | | 5 | Varietal
Demonstr
ation | Foxtail
Millet | Low
productivity
due to
cultivation
of local
variety | - | Demonstra
tion of
nutri
cereal
crop foxtail
millet with
high
yielding
variety | 2 | - | - | 2 | 0.75 | - | - | - | - | | 6 | Varietal
Demonstr
ation | Pearl Millet | | - | Introductio
n of bio-
fortified | 1 | - | - | 2 | 0.06 | - | - | 2 | 1.2 | | | | | | | | | | Interver | ntions | | | | | | |----------|-------------------------------|---------------------|--|---|--|-----------------------------|----------------------------|---|------------|------------------------------|--|----------------------------|-----|----------------------| | | | | | | | Number | Number | | | | Supply of | Supply | pr | ply of bio
oducts | | S.
No | Thrust
area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of
FLD if any | of
Training
(farmers) | of
Training
(Youths) | Number of
Training
(extension
personnel) | activities | Supply of
seeds
(Qtl.) | plantin
g
materia
Is
(No.) | of live-
stock
(No.) | No. | Kg | | | | | | | and
drought
resistant
pearl millet | | | | | | | | | | | 7 | Varietal
Assessme
nt | Greengram | Low
productivity
due to
cultivation
of local
variety | Assessme
nt of high
yielding
varieties of
Greengra
m | - | 2 | - | - | 2 | 0.5 | - | - | 1 | 2 | | 8 | Varietal
Demonstr
ation | Greengram | Low
productivity
due to
cultivation
of local
variety | - | Demonstra
tion of
DGGV-2
variety in
Greengra
m crop | 2 | - | - | 4 | 1.25 | - | 1 | 2 | 10 | | 9 | Varietal
Assessme
nt | Blackgram | Low
productivity
due to
cultivation
of local
variety | Assessme
nt of
Production
potential of
different
Blackgram
varieties
under
rainfed
condition | - | 2 | - | - | 4 | 0.7 | - | - | 2 | 2 | | 10 | Varietal
Assessme
nt | Bengalgram | Productivity
of JAKI-
9218
variety is
low under
irrigated | Assessme
nt of
potential
productivit
y of
DBGV- | - | 4 | - | - | 5 | 4.0 | - | - | - | 1.5 | | | | | | | | | | Interver | ntions | | | | | | |----------|---|---------------------|--|--|--|---------------------------------------|--------------------------------------|---|------------|------------------------------|--------------------------------------|--------------------------------------|----|----------------------------| | S.
No | Thrust
area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of FLD if any | Number
of
Training
(farmers) | Number
of
Training
(Youths) | Number of
Training
(extension
personnel) | activities | Supply of
seeds
(Qtl.) | Supply of plantin g materia ls (No.) | Supply
of live-
stock
(No.) | nr | ply of bio
oducts
Kg | | | | | condition | 204,
NBeG-47
and
NBeG-49
varieties | | | | | | | | | | | | 11 | Conservat
ion
agriculture
practice | Bengalgram | Non profitability due to moisture stress, deterioration of soil physical properties due to repeated use of machineries especially Rotavators& reduced water application efficiency | Assessme nt of conservati on agriculture practice for higher productivit y in Chickpea preceeded with Maize crop | - | 3 | - | 1 | 8 | 0.3 | - | - | | - | | 12 | ICM | Bengalgram | Low yield
in existing
local
varieties | - | Demonstra
tion of
JAKI-9218
vareity of
Bengalgra
m crop | 4 | - | - | 7 | 0.5 | - | - | - | 65 | | | | | | Interventions Supply Supply of bio | | | | | | | | | | | |----------|----------------------------|------------------------|--|--|---|---------------------------------------|--------------------------------------|---|------------|------------------------------|--------------------------------------|--------------------------------------|----|----------------------------| | S.
No | Thrust area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of FLD if any | Number
of
Training
(farmers) | Number
of
Training
(Youths) | Number of
Training
(extension
personnel) | activities | Supply of
seeds
(Qtl.) | Supply of plantin g materia ls (No.) | Supply
of live-
stock
(No.) | nr | ply of bio
oducts
Kg | | 13 | Low
Productivity | Bengalgram | Low
productivity
due to
moisture
stress | - | Demonstra
tion of
tractor
operated
bund
former in
Bengalgra
m crop | 2 | - | - | 5 | - | - | - | - | - | | 14 | Drudgery
reduction | Bengalgram | High labour
and time
consumptio
n in hand
nipping
method | - | Demonstra
tion of
solar
nipping
machine in
Bengalgra
m crop | 3 | - | - | 8 | - | - | - | - | - | | 15 | Varietal
Assessme
nt | Spreading
Groundnut | Productivity
of existing
local
varieties is
very less
under
rainfed
condition | Assessmen
t of
Spreading
Groundnut
varieties for
higher
productivity | - | 2 | - | - | 6 | 1.8 | - | | - | - | | 16 | Varietal
assessme
nt | Safflower | Low
productivity
due to
cultivation
of local
variety | Assessmen
t of
different
Safflower
varieties for
higher
productivity | - | 2 | - | - | 5 | 0.63 | - | - | 1 | - | | 17 | ICM | Safflower | Low
productivity
due to
cultivation | - | Demonstra
tion of ICM
practices
in high | 3 | - | - | 4 | 0.86 | - | - | - | - | | | | | | | | | | Interver | ntions | | | | | | |----------|---|----------------------------------|--|------------------------|---|-----------------------------|----------------------------|--------------------------------------|------------|------------------------------|--|----------------------------|-----|----------------------| | | | | | | | Number | Number | Number of | | | Supply | Supply | pr | oly of bio
oducts | | S.
No | Thrust
area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of
FLD if any | of
Training
(farmers) | of
Training
(Youths) | Training
(extension
personnel) | activities | Supply of
seeds
(Qtl.) | plantin
g
materia
Is
(No.) | of live-
stock
(No.) | No. | Kg | | | | | of local
variety | | yielding
ISF-764
variety of
Safflower | | | | | | | | | | | 18 | Integrated
Crop
Managem
ent | Onion | Low income due to cultivation of local varieties Double red & Bellary red | - | Demonstra
tion of ICM
in Red
onion
variety
Bheema
Super | 8 | - | - | 10 | 0.25 | - | 1 | - | - | | 19 | Integrated
Crop
managem
ent in
Chilli | Red Chilli
(Byadagi
Dabbi) | Non-availability of quality and pure seeds of Byadagi Dabbi, high incidence of sucking pests leading to murda complex disease & anthracnos e disease Lack
of proper knowledge on ICM | - | Integrated
Crop
Managem
ent
ByadagiCh
illi | 9 | - | - | 9 | 0.14 | - | - | - | - | | | | | | | | | | Interven | itions | | | | | | |----------|-------------------------------|--------------------------------|---|---|--|-----------------------------|----------------------------|---|--------|--|--|--------------------------------------|-----|----------------------| | | | | | | | Number | Number | Number of | | | Supply of | Supply | pr | oly of bio
oducts | | S.
No | Thrust
area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of
FLD if any | of
Training
(farmers) | of
Training
(Youths) | Number of
Training
(extension
personnel) | (No.) | Supply of
seeds
(Qtl.) | plantin
g
materia
Is
(No.) | Supply
of live-
stock
(No.) | No. | Kg | | 20 | Varietal
Assessme | Okra | practices resulting in poor productivity and quality Improper post- harvest manageme nt Existing hybrids are | Assessme
nt of Okra | | | | | | | | | | | | | nt | | low yielding
and
resulting in
low income | Hybrids for
higher
productivit
y | - | 4 | - | - | 10 | 0.06 | - | - | - | - | | 21 | Varietal
demonstra
tion | Vegetable
Crop
Cafeteria | Low productivity and income due to non-availability of improved vegetable varieties and less profit as farmers grow any of the vegetable crop | - | ICM in
Vegetable
crop
cafeteria | 5 | - | - | 10 | 0.04 Qtls: Ridgegourd seeds (Arka Prasana variety), 0.4Qtls: Dolichos bean seeds(Arka Amogh variety), 0.03Qtls:Spi nach seeds (Arka Anupam variety)& | - | • | - | - | | | | | | | | | | Interver | ntions | | | | | | |----------|----------------|---------------------|--|------------------------|--|---------------------------------------|--------------------------------------|---|----------------------|--|--------------------------------------|--------------------------------------|----|----------------------------| | S.
No | Thrust
area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of FLD if any | Number
of
Training
(farmers) | Number
of
Training
(Youths) | Number of
Training
(extension
personnel) | Extension activities | Supply of
seeds
(Qtl.) | Supply of plantin g materia ls (No.) | Supply
of live-
stock
(No.) | nr | ply of bio
oducts
Kg | | | | | | | | | | | | 0.01Qtls:
Radish
seeds(Arka
Nishant
variety) | | | | | | 22 | | Ashwagan
dha | Non profitability in existing cropping pattern due to vagaries of Monsoon and lack of crop diversificati on in field crops resulting in income insecurity to the farmers | - | Introduction
of
Ashwagand
ha crop | | - | - | 5 | 0.4 | - | - | - | | | 23 | | Ajwain | Non
profitability
in existing
cropping
pattern due
to vagaries
of
Monsoon
and lack of
crop | - | Introductio
n of Ajwain
crop | 2 | - | - | 3 | 0.1 | - | - | - | - | | | | | | | | | | Interver | ntions | | | | | | |----------|-------------------------------|---------------------|--|--|---|-----------------------------|----------------------------|---|------------|------------------------------|--|----------------------------|-----|----------------------| | | | | | | | Number | Number | | | | Supply of | Supply | pr | ply of bio
oducts | | S.
No | Thrust
area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of
FLD if any | of
Training
(farmers) | of
Training
(Youths) | Number of
Training
(extension
personnel) | activities | Supply of
seeds
(Qtl.) | plantin
g
materia
Is
(No.) | of live-
stock
(No.) | No. | Kg | | | | | diversificati on in field crops resulting in income insecurity to the farmers | | | | | | | | | | | | | 24 | Health & Nutrition | Nutrition
Garden | Lack of
awareness
on Nutri
Garden &
less
consumptio
n of fruits
and
vegetables | - | Nutri
Garden | 10 | 1 | 3 | 15 | 10 Kg | 200 | - | - | 1025 | | 25 | Post
harvest
technology | Solar
Dryer | Unhygenic
way of
drying of
Red
Chillies | - | Demonstra
tion of
Solar
Dryer | 2 | - | - | 5 | - | - | - | - | - | | 26 | Grain
storage | Super
grain bags | Incidence
of stored
pest | - | Demonstra
iton of
Super
grain bags | 1 | - | - | 1 | - | - | - | - | - | | 27 | Farm
Machineri
es | Bt. Cotton | Incidence of pests, especiall y white flies and thrips Incidence of | Assessme nt of different spraying equipment for effective pest | - | 2 | - | - | 3 | - | - | - | - | - | | | | | | Interventions | | | | | | | | | | | | |----------|--|----------------------|--|---------------------------------|--|---------------------------------------|--------------------------------------|---|-------|------------------------------|--------------------------------------|--------------------------------------|----|----------------------------|--| | S.
No | Thrust area | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of FLD if any | Number
of
Training
(farmers) | Number
of
Training
(Youths) | Number of
Training
(extension
personnel) | (No.) | Supply of
seeds
(Qtl.) | Supply of plantin g materia Is (No.) | Supply
of live-
stock
(No.) | nr | ply of bio
oducts
Kg | | | | | | disease especiall y Angular leaf spot Drudgery of operation in existing spraying methods | managem
ent in Bt.
Cotton | | | | | | | | | | | | | 28 | Farm
Machineri
es and
Drudgery
Reduction | Onion | Drudgery
of
operation
in manual
detopping
of
harvested
onions | - | Demonstra
tion of
Battery
Operated
Onion
Detopper
(Under
Demonstra
tion of ICM
practices
in Red
onion
variety
Bhima
Super) | 2 | - | - | 3 | - | - | - | - | - | | | 29 | Nutrition
Managem
ent in
dairy
animals | Fodder
production | Low
productivity
of milk in
CB cow
due to
Non-
cultivation
of | - | Demonstra
tion of
Fodder
Production | 1 | 12 | 2 | 15 | 1.05 | 40931 | - | - | - | | | | Thrust
area | | | | | Interventions | | | | | | | | | | |----------|----------------|---------------------|---|------------------------|---------------------|---------------------------------------|--------------------------------------|---|-------|------------------------------|--------------------------------------|--------------------------------------|----|----------------------------|--| | S.
No | | Crop/
Enterprise | Identified
Problem | Title of
OFT if any | Title of FLD if any | Number
of
Training
(farmers) | Number
of
Training
(Youths) | Number of
Training
(extension
personnel) | (No.) | Supply of
seeds
(Qtl.) | Supply of plantin g materia Is (No.) | Supply
of live-
stock
(No.) | pr | ply of bio
oducts
Kg | | | | | | perennial
fodder and
grass
species | | | | | | | | | | | | | ## 3.B2. Details of technology used during reporting period | S. | | | | No. of programmes conducted | | | | | | | | |----|---|----------------------|-----------------|-----------------------------|-----|----------|-------------------------------|--|--|--|--| | No | Title of Technology | Source of technology | Crop/enterprise | OFT | FLD | Training | Others (Extension activities) | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | 1 | Demonstration of SPV-2217 variety in Rabi Sorghum crop | UAS, Dharwad | Rabi Sorghum | 1 | 40 | 2 | 6 | | | | | | 2 | ICM in Maize | UAS, Dharwad | Maize | 0 | 20 | 2 | 8 | | | | | | 3 | Demonstration of self propelled Maize harvester | Kissan Kraft | Maize | - | 3 | 3 | 4 | | | | | | 4 | Maize + Redgram intercropping system | UAS, Dharwad | Maize + Redgram | 1 | 6 | 1 | 5 | | | | | | 5 | Demonstration of nutri cereal crop foxtail millet with high yielding variety DHFt-109-3 | UAS, Dharwad | Foxtail Millet | - | 25 | 2 | 2 | | | | | | 6 | Introduction of bio-fortified and drought resistant pearl millet VPMV-9 | UAS, Dharwad | Pearl Millet | - | 3 | 1 | 2 | | | | | | 7 | Assessment of high yielding varieties of Greengram • DGGV-2 • DGGV-7 | UAS, Dharwad | Greengram | 3 | - | 2 | 2 | | | | | | 8 | Demonstration of DGGV-2
variety in Greengram crop (ICM practices) | UAS, Dharwad | Greengram | - | 25 | 2 | 4 | | | | | | | | | | | No. of programmes conducted | | | | | | | | |----------|---|---|---------------------|-----|-----------------------------|----------|----------------------------------|--|--|--|--|--| | S.
No | Title of Technology | Source of technology | Crop/enterprise | OFT | FLD | Training | Others
(Extension activities) | | | | | | | 9 | Assessment of Production potential of different Blackgram varieties under rainfed condition • DBGV-5 • BDU-12 | UAS, Dharwad
UAS, Raichur | Blackgram | 5 | - | 2 | 5 | | | | | | | 10 | Assessment of potential productivity of DBGV-204, NBeG-47 and NBeG-49 varieties | UAS, Dharwad
PJTSAU, Hyderabad | Bengalgram | 5 | 1 | 4 | 5 | | | | | | | 11 | Assessment of conservation agriculture practice for higher productivity in Chickpea preceeded with Maize crop | PAU, Ludhiana | Bengalgram | 3 | - | 3 | 1 | | | | | | | 12 | Demonstration of JAKI-9218 vareity of Bengalgram crop | UAS, Dharwad | Bengalgram | | 25 | 4 | 7 | | | | | | | 13 | Demonstration of tractor operated bund former in Bengalgram crop | UAS, Raichur | Bengalgram | - | 10 | 2 | 5 | | | | | | | 14 | Demonstration of solar nipping machine in Bengalgram crop | UAS, Raichur | Bengalgram | - | 10 | 3 | 8 | | | | | | | 15 | Assessment of Spreading Groundnut varieties for higher productivity | UAS, Dharwad
JAU, Gujarat | Spreading Groundnut | 3 | - | 2 | 6 | | | | | | | 16 | Assessment of different Safflower varieties for higherproductivity under rainfed condition | ICAR-IIOR, Hyderabad & UAS, Dharwad | Safflower | 5 | - | 2 | 5 | | | | | | | 17 | Demonstration of ICM practices in high yielding ISF-764 variety of Safflower | ICAR-IIOR, Hyderabad | Safflower | - | 25 | 2 | 5 | | | | | | | 18 | ICM in Red onion variety Bheema
Super | UHS Bagalkot and ICAR-
DOGR, Pune | Red Onion | - | 25 | 8 | 10 | | | | | | | 19 | ICM in ByadagiChilli | ICAR- IIHR, Bengaluru and UHS, Bagalkot | Red chilli | - | 14 | 9 | 9 | | | | | | | 20 | Assessment of Okra Hybrids for higher productivity | ICAR-IIHR, Bengaluru | Okra | 3 | - | 4 | 10 | | | | | | | 21 | ICM in Vegetable Crop Cafeteria | ICAR-IIHR, Bengaluru | Vegetable crops | 10 | - | 5 | 10 | | | | | | | 22 | Introduction of Ashwagandha crop | CSIR-CIMAP, Lucknow, UP | Ashwagandha | - | 10 | 3 | 5 | | | | | | | S. | | | | No. of programmes conducted | | | | | | | | |----|------------------------------------|--|---------------------------------|-----------------------------|-----|----------|-------------------------------|--|--|--|--| | No | Title of Technology | Source of technology | Crop/enterprise | OFT | FLD | Training | Others (Extension activities) | | | | | | 23 | Introduction of Ajwain crop | ICAR-NRC on seeds spices, Ajmer, Rajasthan | Ajwain | - | 5 | 2 | 3 | | | | | | 24 | Nutrition Garden | UAS, Bengaluru | Health and nutritional security | - | 25 | 14 | 15 | | | | | | 25 | Solar dryer | Rudra solar drier | Chilli | - | 3 | 2 | 5 | | | | | | 26 | Super grain bags | UAS, Raichur | Grain storage | - | 40 | 4 | 6 | | | | | | 27 | Drone Sprayer | UAS, Raichur | Bt. Cotton | 03 | - | 2 | 3 | | | | | | 28 | Battery Operated Onion Detopper | Farmio Pvt. Ltd. | Onion | - | 10 | 2 | 6 | | | | | | 29 | Demonstration of Fodder production | ICAR-IGFRI, RRS, Dharwad & UAS, Dharwad | CB Cows | - | 10 | 14 | 15 | | | | | #### 3.B2 contd.. | | No. of farmers covered | | | | | | | | | | | | | | | | |---|------------------------|-------|----|-----|---------|----|-------|----|----------|----|-------|----|-------------------------------|----|----|-----| | | OFT | | | | FLD | | | | Training | | | | Others (Extension activities) | | | | | | Ger | neral | SC | /ST | General | | SC/ST | | General | | SC/ST | | General | | SC | /ST | | | M | F | M | F | M | F | M | F | M | F | М | F | M | F | М | F | | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | Demonstration of SPV-2217 variety in | 0 | 0 | 0 | 0 | 16 | 9 | 0 | 0 | 38 | 12 | 12 | 8 | 110 | 28 | 10 | 2 | | Rabi Sorghum crop | | | | | | | | | | | | | | | | | | ICM Maize | 0 | 0 | 0 | 0 | 13 | 1 | 6 | 0 | 50 | 6 | 4 | 0 | 60 | 8 | 7 | 12 | | Demonstration of self propelled Maize harvester | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 60 | 20 | 8 | 2 | 65 | 21 | 6 | 4 | | Maize + Redgram intercropping system | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 24 | 3 | 1 | 0 | 53 | 2 | 6 | 0 | | Demonstration of
nutri cereal crop
foxtail millet with high
yielding variety
DHFt-109-3 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 35 | 14 | 5 | 6 | 80 | 20 | 8 | 9 | | Introduction of bio-
fortified and drought
resistant pearl millet
VPMV-9 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 15 | 10 | 3 | 2 | 40 | 20 | 6 | 7 | | | | | | | | | No. | of farme | ers covei | red | | | | | | | |---|-----|-------|----|-----|-----|------|-----|----------|-----------|------|------|-----|-------|-----------|-----------|---------| | | | Ol | FT | | | FL | _D | | | | ning | | Other | s (Extens | ion activ | vities) | | | Ger | neral | SC | /ST | Gen | eral | SC | /ST | Gen | eral | | /ST | | neral | | /ST | | | М | F | M | F | M | F | M | F | М | F | M | F | M | F | М | F | | Assessment of high yielding varieties of Greengram DGGV-2 DGGV-7 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 11 | 4 | 3 | 45 | 23 | 5 | 6 | | Demonstration of
DGGV-2 variety in
Greengram crop
(ICM practices)
DGGV-2 | 0 | 0 | 0 | 0 | 20 | 5 | 0 | 0 | 40 | 20 | 0 | 0 | 65 | 35 | 12 | 10 | | Assessment of Production potential of different Blackgram varieties under rainfed condition | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 35 | 15 | 5 | 6 | 43 | 22 | 10 | 8 | | Assessment of potential productivity of DBGV-204, NBeG-47 and NBeG-49 varieties | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 30 | 10 | 8 | 75 | 46 | 10 | 12 | | Assessment of conservation agriculture practice for higher productivity in Chickpea preceeded with Maize crop | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | 25 | 8 | 2 | 44 | 12 | 5 | 1 | | Demonstration of
JAKI-9218 vareity of
Bengalgram crop | 0 | 0 | 0 | 0 | 23 | 0 | 2 | 0 | 69 | 30 | 8 | 4 | 86 | 43 | 12 | 9 | | Demonstration of tractor operated bund former in Bengalgram crop | 0 | 0 | 0 | 0 | 9 | 0 | 1 | 0 | 41 | 19 | 4 | 3 | 42 | 22 | 5 | 4 | | | | | | | | | No | . of farm | ers cove | red | | | | | | | |---|-----|-------|----|-----|-----|-------|----|-----------|----------|-------|------|-----|-------|-----------|-----------|---------| | | | Ol | FT | | | FI | _D | | | | ning | | Other | s (Extens | sion acti | vities) | | | Ger | neral | SC | /ST | | | М | F | M | F | M | F | M | F | М | F | М | F | М | F | М | F | | Demonstration of
solar nipping
machine in
Bengalgram crop | - | 10 | 3 | 8 | 8 | 0 | 2 | 0 | 37 | 13 | 5 | 2 | 64 | 28 | 10 | 7 | | Assessment of Spreading Groundnut varieties for higher productivity | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 12 | 3 | 2 | 85 | 26 | 12 | 8 | | Assessment of ISF-
764 and A-2020
Safflower varieties
for higher
productivity | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 10 | 4 | 1 | 20 | 10 | 6 | 2 | | Demonstration of
ICM practices in high
yielding ISF-764
variety of Safflower | - | 25 | 2 | 5 | 23 | 0 | 2 | 0 | 34 | 12 | 8 | 4 | 57 | 33 | 6 | 3 | | ICM in Red onion
variety Bheema
Super | 0 | 0 | 0 | 0 | 18 | 3 | 2 | 2 | 117 | 11 | 32 | 4 | 87 | 45 | 11 | 10 | | ICM in ByadagiChilli | 0 | 0 | 0 | 0 | 12 | 2 | 0 | 0 | 112 | 14 | 37 | 3 | 54 | 32 | 4 | 5 | | Assessment of Okra
Hybrids for higher
productivity | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 20 | 16 | 5 | 2 | 34 | 17 | 22 | 12 | | ICM in Vegetable
Crop Cafeteria | 0 | 0 | 0 | 0 | 6 | 1 | 3 | 0 | 90 | 10 | 32 | 18 | 60 | 20 | 23 | 17 | | Introduction of
Ashwagandha crop | 0 | 0 | 0 | 0 | 8 | 0 | 2 | 0 | 45 | 20 | 9 | 4 | 54 | 24 | 8 | 4 | | Introduction of
Ajwain crop | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 0 | 37 | 13 | 6 | 4 | 38 | 20 | 5 | 4 | | Nutrition Garden | 0 | 0 | 0 | 0 | 0 | 23 | 0 | 2 | 42 | 383 | 10 | 49 | 45 | 204 | 5 | 20 | | Solar Dryer | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 35 | 20 | 3 | 2 | 68 | 32 | 4 | 6 | | Supe grain bags | 0 | 0 | 0 | 0 | 2 | 10 | 4 | 4 | 12 | 34 | 2 | 4 | 0 | 35 | 0 | 6 | | | | | | | | | No. | of farme | ers cover | ed | | | | | | | |---|-----|-------|----|-----|-----|-------|-----|----------|-----------|------|------|-----|-------|-----------|------------|---------| | | | Ol | FT | | | FL | _D | | | Trai | ning | | Other | s (Extens | sion activ | vities) | | | Ger | neral | SC | /ST | Ger | neral | SC | /ST | Gen | eral | SC | /ST | Ger | neral | SC | /ST | | | М | F | M | F | M | F | M | F | M | F | M | F | M | F | M | F | | Assessment of different spraying equipment for effective pest management in Bt. Cotton | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35 | 15 | 3 | 2 | 68 | 12 | 2 | 3 | | Demonstration of Battery Operated Onion Detopper (Under Demonstration of ICM practices in Red onion variety of Bhima Super) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 26 | 14 | 4 | 3 | 35 | 26 | 5 | 4 | | Demonstration of Fodder production | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 227 | 45 | 20 | 15 | 92 | 54 | 25 | 17 | # PART IV - On Farm Trial 4.A1. Abstract on the number of technologies assessed in respect of crops: | Thematic areas | Cereals | Oilseeds | Pulses | Commercial Crops | Vegetables | Fruits | Flower | Plantation crops | Tuber
Crops | TOTAL |
---|---------|----------|--------|------------------|------------|--------|--------|------------------|----------------|-------| | Integrated Nutrient Management | | | | | | | | | | | | Varietal Evaluation | | 2 | 3 | | 1 | | | | | 6 | | Integrated Pest Management | | | | | | | | | | | | Integrated Crop Management | | | | | | | | | | | | Integrated Disease Management | | | | | | | | | | | | Small Scale Income Generation Enterprises | | | | | | | | | | | | Weed Management | | | | | | | | | | | | Resource Conservation Technology | | 1 | | | | | | | | 1 | | Farm Machineries | | 1 | 1 | | | | | | | 2 | | Integrated Farming System | | | | | | | | | | | | Seed / Plant production | | | | | | | | | | | | Value addition | | | | | | | | | | | | Drudgery Reduction | | | | | | | | | | | | Thematic areas | Cereals | Oilseeds | Pulses | Commercial
Crops | Vegetables | Fruits | Flower | Plantation crops | Tuber
Crops | TOTAL | |----------------------|---------|----------|--------|---------------------|------------|--------|--------|------------------|----------------|-------| | Storage Technique | | | | | | | | | | | | Mushroom cultivation | | | | | | | | | | | | Total | | 4 | 4 | | 1 | | | | | 9 | 4.A2. Abstract on the number of technologies refined in respect of crops: NIL | Thematic areas | Cereals | Oilseeds | Pulses | Commercial
Crops | Vegetables | Fruits | Flower | Plantation crops | Tuber
Crops | TOTAL | |---|---------|----------|--------|---------------------|------------|--------|--------|------------------|----------------|-------| | Integrated Nutrient Management | | | | | | | | | | | | Varietal Evaluation | | | | | | | | | | | | Integrated Pest Management | | | | | | | | | | | | Integrated Crop Management | | | | | | | | | | | | Integrated Disease Management | | | | | | | | | | | | Small Scale Income Generation Enterprises | | | | | | | | | | | | Weed Management | | | | | | | | | | | | Resource Conservation Technology | | | | | | | | | | | | Farm Machineries | | | | | | | | | | | | Integrated Farming System | | | | | | | | | | | | Seed / Plant production | | | | | | | | | | | | Value addition | | | | | | | | | | | | Drudgery Reduction | | | | | | | | | | | | Storage Technique | | | | | | | | | | | | Mushroom cultivation | | | | | | | | | | | | Total | | | | | | | | | | | 4.A3. Abstract on the number of technologies assessed in respect of livestock enterprises: NIL | Thematic areas | Cattle | Poultry | Piggery | Rabbit | Fisheries | TOTAL | |---|--------|---------|---------|--------|-----------|-------| | Evaluation of Breeds | | | | | | | | Nutrition Management | | | | | | | | Disease of Management | | | | | | | | Value Addition | | | | | | | | Production and Management | | | | | | | | Feed and Fodder | | | | | | | | Small Scale income generating enterprises | | | | | | | | TOTAL | | | | | | | 4.A4. Abstract on the number of technologies refined in respect of livestock enterprises: NIL | Thematic areas | Cattle | Poultry | Piggery | Rabbit | Fisheries | TOTAL | |-------------------------------|--------|---------|---------|--------|-----------|-------| | Evaluation of Breeds | | | | | | | | Nutrition Management | | | | | | | | Disease of Management | | | | | | | | Value Addition | | | | | | | | Production and Management | | | | | | | | Feed and Fodder | | | | | | | | Small Scale income generating | | | | | | | | enterprises | | | | | | | | TOTAL | | | | | | | # 4.B. Achievements on technologies Assessed and Refined ### 4.B.1. Technologies Assessed under various Crops | Thematic areas | Crop | Name of the technology assessed | No. of trials | Number of farmers | Area in ha (Per trial covering all the Technological Options) | |--------------------------------|------------------------|---|---------------|-------------------|---| | Integrated Nutrient Management | | | | | | | Variatel Evaluation | Bengalgram | Assessment of potential productivity of DBGV-204, NBeG-47 and NBeG-49 varieties | 5 | 5 | 2 ha / trial (Total : 10 ha) | | Varietal Evaluation | Safflower | Assessment of ISF-764 and A-
2020 varieties for higher
productivity | 5 | 5 | 0.4 ha/trial (2.0 ha) | | | Okra | Assessment of Okra Hynbrids for higher productivity | 3 | 3 | 0.6 ha / trial (Total: 1.8 ha) | | | Greengram | Assessment of high yielding varieties of Greengram | 3 | 3 | 0.4 ha/trial (1.2 ha) | | | Blackgram | Assessment of production potential of different Blackgram varieties | 5 | 5 | 0.4 ha/trial (2.0 ha) | | | Spreading
Groundnut | Assessment of Spreading Groundnut varieties for higher productivity | 3 | 3 | 0.4 ha/trial (1.2 ha) | | Integrated Pest Management | | | | | | | Integrated Crop Management | | | | | | | Integrated Disease Management | | | | | | | Thematic areas | Crop | Name of the technology assessed | No. of trials | Number of farmers | Area in ha (Per trial covering all the Technological Options) | |---|---------------------|--|---------------|-------------------|---| | Small Scale Income Generation Enterprises | | | | | | | Small Scale income Generation Enterprises | | | | | | | Weed Management | | | | | | | Resource Conservation Technology | Bengalgram | Assessment of conservation agriculture practice for higher productivity | 3 | 3 | 1.2 (0.4 ha/ trial) | | Farm Machineries | Bt.Cotton | Assessment of different spraying equipments in Bt. Cotton | 3 | 3 | 1.2 (0.4 ha/trial) | | | Summer
Groundnut | Assessment of mechanical harvesting of Summer Groundnut for higher productivitry | 3 | 3 | 1.2 (0.4 ha/trial) | | Integrated Farming System | | | | | | | Seed / Plant production | | | | | | | Value addition | | | | | | | Drudgery Reduction | | | | | | | Storage Technique | | | | | | | Mushroom cultivation | | | | | | | Tot | al | | 33 | 33 | | # 4.B.2. Technologies Refined under various Crops: NIL | Thematic areas | Crop | Name of the technology assessed | No. of trials | Number of farmers | Area in ha (Per trial covering
all the Technological
Options) | |---|-------|---------------------------------|---------------|-------------------|---| | Integrated Nutrient Management | | | | | | | Varietal Evaluation | | | | | | | Integrated Pest Management | | | | | | | Integrated Crop Management | | | | | | | Integrated Disease Management | | | | | | | Small Scale Income Generation Enterprises | | | | | | | Weed Management | | | | | | | Resource Conservation Technology | | | | | | | Farm Machineries | | | | | | | Integrated Farming System | | | | | | | Seed / Plant production | | | | | | | Value addition | | | | | | | Drudgery Reduction | | | | | | | Storage Technique | | | | | | | Mushroom cultivation | | | | | | | | Total | | | | | ### 4.B.3. Technologies assessed under Livestock and other enterprises : NIL | Thematic areas | Name of the livestock enterprise | Name of the technology assessed | No. of trials | No. of farmers | |---|----------------------------------|---------------------------------|---------------|----------------| | Evaluation of breeds | | | | | | Nutrition management | | | | | | Disease management | | | | | | Value addition | | | | | | Production and management | | | | | | Feed and fodder | | | | | | Small scale income generating enterprises | | | | | | Total | | | | | 4.B.4. Technologies Refined under Livestock and other enterprises: NIL | Thematic areas | Name of the livestock Name of the technolog enterprise assessed | | No. of trials | No. of farmers | | |---|---|--|---------------|----------------|--| | Evaluation of breeds | | | | | | | Nutrition management | | | | | | | Disease management | | | | | | | Value addition | | | | | | | Production and management | | | | | | | Feed and fodder | | | | | | | Small scale income generating enterprises | | | | | | | Total | | | | | | # 4.B.5. Technologies assessed under various enterprises by KVKs | SI. | Thematic areas | Name of the enterprise | Name of technology(s) | No. of
trials | No. of locations | |-----|-------------------------------|------------------------|-----------------------|------------------|------------------| | 1 | Drudgery reduction | | | | | | 2 | Entrepreneurship Development | | | | | | 3 | Health and nutrition | | | | | | 4 | Processing and value addition | | | | | | 5 | Energy conservation | | | | | | SI. | Thematic areas | Name of the enterprise | Name of technology(s) | No. of
trials | No. of locations | |-----|----------------------------------|------------------------|---|------------------|------------------| | 6 | Small-scale income generation | | | | | | 7 | Storage techniques | | | | | | 8 | Household food security | | | | | | 9 | Organic farming | | | | | | 10 | Agroforestry management | | | | | | 11 | Mechanization | Drone Sprayer | Assessment of different spraying equipments in Bt. Cotton | 3 | 1 | | 12 | Resource conservation technology | | | | | | 13 | Value Addition | | · | | | | 14 | Others | | | | | # 4.B.6.Technologies assessed under various enterprises for women empowerment: NIL | | Thematic areas | Name of enterprise | Name of technology(s) | No. of trials | No. of locations | |---|------------------------------|--------------------|-----------------------|---------------|------------------| | 1 | Drudgery Reduction | | | | | | 2 | Entrepreneurship Development | |
 | | | 3 | Health and Nutrition | | | | | | 4 | Value Addition | | | | | | 5 | Women Empowerment | | | | | | 6 | Others(Home science) | | | | | ### 4.C1.Results of Technologies Assessed #### (I) Results of On Farm Trial | Crop/
enterprise | Farming situation | Problem
definition | Title of
OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield | Unit of
yield | Observations
other than
yield
(No. of pods
per plant) | Gross
Return
Rs./ha | Net
Return
Rs./ ha | BC
Ratio | |---------------------|-------------------|------------------------------------|---------------------------------------|---------------------|---|----------------------|-------|------------------|---|---------------------------|--------------------------|-------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | Croongram | Rainfed | Low
productivity
due to | Assessment
of high | 2 | T.O.1
(Farmer
practice)
Shining
Moong | - | 7.78 | Qtl/ha | 23.29 | 51315 | 28065 | 2.21 | | Greengram | Rainled | cultivation
of local
variety | yielding
varieties of
Greengram | 3 | T.O.2
DGGV-2 | UAS,
Dharwad | 11.93 | Qtl/ha | 31.89 | 78705 | 54955 | 3.31 | | | | | | | T.O.3
DGGV-7 | UAS,
Dharwad | 7.98 | Qtl/ha | 24.22 | 52635 | 28885 | 2.22 | #### 4. C2. Feedback on technologies assessed | Name of technology assessed | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---|---|---| | Assessment of high yielding
varieties of Greengram | DGGV-2 variety grows taller than DGGV-7 and thisis suitable for Mechanical harvesting | - | # 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) 1.Title of Technology Assessed: Assessment of high yielding varieties of Greengram ### 2. Performance of the Technology on specific indicators | Varieties | Duration
(Days) | Plant height (cm) | Pod length
(cm) | 100 seed
weight (g) | Grain yield
(Qtl/ha) | % Increase in yield | Net returns
(Rs/ha) | B:C Ratio | |----------------------|--------------------|-------------------|--------------------|------------------------|-------------------------|---------------------|------------------------|-----------| | Local: Shining Moong | 94 | 33.2 | 8.72 | 4.141 | 7.78 | - | 28065 | 2.21 | | T1: DGGV-2 | 90 | 44.2 | 11.6 | 6.543 | 11.93 | 53.34 | 54955 | 3.31 | | T2: DGGV-7 | 94 | 33.8 | 8.8 | 4.521 | 7.98 | 2.50 | 28885 | 2.22 | - 3. Specific Feedback from farmers: DGGV-2 variety grows taller than DGGV-7 and has got more number of pods. - 4. Specific Feedback from Extension personnel and other stakeholders: Nil - 5. Feedback to Research System based on results and feedback received: DGGV-7 is not suitable for mechanical harvesting - **6. Feedback on usefulness and constraints of technology :** Since most of the Greengram under cultivation undergoes mechanical harvesting, this variety (DGGV-2) suits for the district. (II) Results of On Farm Trial | Crop/
enterprise | Farming
situation | Problem definition | Title of
OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield
(Qt/Ha) | Unit
of
yield | Observations
other than
yield
(Plant
height(cm)) | Gross
Return
Rs./ha | Net
Return
Rs. /
ha | BC
Ratio
(Gross
income/
Gross
Cost) | |---------------------|-----------------------|--------------------------------------|---|--------------------------------------|--|----------------------|------------------|---------------------|--|---------------------------|------------------------------|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | | A | Assessment of potential productivity | T.O.1 (Farmers' practice) Cultivation of JG-11 variety | - | 17.80 | Qtl/ha | 30.12 | 85440 | 50940 | 2.48 | | | | Productivity
of JAKI-
9218 | of potential productivity | | T.O.2 Cultivation of JAKI- 9218 variety | UAS,
Dharwad | 19.78 | Qtl/ha | 30.96 | 94920 | 59420 | 2.67 | | Bengalgram | Protective irrigation | variety is
low under
irrigated | of DBGV-
204, NBeG-
49 and
Phule | 5 | T.O.3 Assessment of DBGV-204 variety | UAS,
Dharwad | 20.50 | Qtl/ha | 31.98 | 97680 | 62180 | 2.75 | | | | condition | Vikram
varieties | | T.O.4 Assessment of NBeG-49 variety | PJTSAU,
Hyderabad | 22.05 | Qtl/ha | 34.62 | 105840 | 70340 | 2.98 | | | | | | | T.O.5 Assessment of Phule Vikram variety | MPKV,
Rahuri | 22.23 | Qtl/ha | 39.34 | 106680 | 71180 | 3.01 | #### 4. C2.Feedback on technologies assessed | Name of technology assessed | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |--|--|---| | Assessment of potential productivity of DBGV-204, NBeG-49 and Phule Vikram varieties | NBeG-49 and Phule Vikram varieties are high yielding and suitable for mechanical harvesting. No constraints in adoption of Technology. | NBeG-49 variety seeds need to be made
available in large quantity in command
area villages. | - 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) - 1. Title of Technology Assessed: Assessment of potential productivity of DBGV-204, NBeG-49 and Phule Vikram varieties - 2. Performance of the Technology on specific indicators | | Performance indicators | | | | | | | | | | |--|-------------------------|-------------------------|---------------|-------------------|-------------------|--------------------|--------------------|--|--|--| | Technology Assessed | Grain Yield
(Qtl/ha) | Net Returns
(Rs./ha) | B.C.
Ratio | Plant height (cm) | No. of pods/plant | Test
weight (g) | Duration
(Days) | | | | | Farmer's practice: Cultivation of JG-11 variety | 17.80 | 50940 | 2.48 | 30.12 | 37.02 | 23.01 | | | | | | | | 1 | | | | | 110 | | | | | Recommended practice: Cultivation of JAKI-9218 variety | 19.78 | 59420 | 2.67 | 30.96 | 38.12 | 24.23 | 110 | | | | | Alternate practice-1: Assessment of DBGV-204 variety | 20.5 | 62180 | 2.75 | 31.98 | 41.87 | 24.45 | 112 | | | | | Alternate practice-2: Assessment of NBeG-49 variety | 22.05 | 70340 | 2.98 | 34.62 | 46.24 | 25.08 | 115 | | | | | Alternate practice-3: Assessment of Phule Vikram variety | 22.23 | 71180 | 3.01 | 39.34 | 46.67 | 25.12 | 112 | | | | - 3. Specific Feedback from farmers: NBeG-49 and Phule Vikram varieties are high yielding and suitable for mechanical harvesting. No constraints in adoption of Technology. - 4. Specific Feedback from Extension personnel and other stakeholders: Check suitability of NBeG-49 under rainfed condition also. - 5. Feedback to Research System based on results and feedback received: NIL - 6. Feedback on usefulness and constraints of technology: (III) Results of On Farm Trial | Crop/
enterprise | Farming situation | Problem definition | Title of OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield
(Qt/Ha) | Unit
of
yield | Observations other than yield (Soil moisture content*(%d.b.)) | Gross
Return
Rs./ha | Net
Return
Rs. /
ha | BC
Ratio
(Gross
income/
Gross
Cost) | |---------------------|-----------------------|---|---|--|---|----------------------|------------------|---------------------|---|---------------------------|------------------------------|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | Non profitability due to moisture stress, | ire Assessment | of onservation agriculture practice for higher 3 | T.O.1 (Farmers' practice) Sowing of Chickpea following conventional tillage after maize harvest | | 19.50 | Qtl/ha | 14.45 | 87750 | 58150 | 2.96 | | Bengalgram | Protective irrigation | deterioration
of soil
physical
properties
due to
repeated | of
conservation
agriculture
practice for | | T.O.2 Direct sowing of Chickpea in standing stubbles after combined harvester operation | PAU,
Ludhiana | 20.85 | Qtl/ha | 21.17 | 94050 | 65750 | 3.32 | | | | use of
machineries
especially
Rotavators&
reduced
water
application
efficiency | in Chickpea
preceeded
with Maize | | T.O.3 Direct sowing of chickpea in cut and spread maize crop residue after harvesting with Self Propelled Single Row Maize Harvester | PAU,
Ludhiana | 21.20 | Qtl/ha | 22.56 | 95400 | 68000 | 3.48 | # 4. C2. Feedback on technologies assessed | Name of technology assessed | Useful characters
as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---|--|---| | Assessment of conservation agriculture practice for higher productivity in Chickpea preceeded with Maize crop | Conservation Agriculture practices in Chickpea enhanced the yield and resulted in early germination of seeds. Soil water holding capacity was also improved. | Lack of knowledge to farmers regarding the technology | - 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) - 1. Title of Technology Assessed: Assessment of conservation agriculture practice for higher productivity in Chickpea preceded with Maize crop - 2. Performance of the Technology on specific indicators | | | | Performar | nce indicators | | | |--|-------------------------|----------------------------|---------------|--|---------------------------------|--| | Technology Assessed | Grain Yield
(Qtl/ha) | Net
Returns
(Rs./ha) | B.C.
Ratio | Soil
Moisture
Content* (%
d.b.) | Soil Bulk
Density
(g/cm3) | Saving in
cost of
cultivation
(%) | | Farmer's practice: Sowing of Chickpea following conventional tillage after maize harvest | 19.50 | 58150 | 2.96 | 14.45 | 1.44 | - | | Recommended practice: Direct sowing of Chickpea in standing stubbles after combined harvester operation | 20.85 | 65750 | 3.32 | 21.17 | 1.32 | 4.39 | | Alternate practice-1: Direct sowing of chickpea in cut and spread maize crop residue after harvesting with Self Propelled Single Row Maize Harvester | 21.20 | 68000 | 3.48 | 22.56 | 1.34 | 7.43 | - 3. Specific Feedback from farmers: Conservation Agriculture practices in Chickpea enhanced the yield and resulted in early germination. Soil water holding capacity was also improved. - 4. Specific Feedback from Extension personnel and other stakeholders: Conservation agriculture practices are well suited for irrigated condition and farmers may adopt the technology. - 5. Feedback to Research System based on results and feedback received: Nil - 6. Feedback on usefulness and constraints of technology: - The technology has to be adopted over a long period to obtain good results. - Incidence of weeds and mites are the major constraints. #### (IV) Results of On Farm Trial | Crop/
enterprise | Farming situation | Problem
definition | Title of
OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield | Unit of
yield | Observations
other than
yield
(No. of pods
per plant) | Gross
Return
Rs./ ha | Net
Return
Rs./ ha | BC
Ratio | |---------------------|-------------------|-----------------------------------|---------------------------------------|---------------------|--|----------------------|-------|------------------|---|----------------------------|--------------------------|-------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | Low
productivity | Assessment of Production potential of | | T.O.1 (Farmer practice) Unidentified variety | - | 5.35 | Qtl/ha | 24.12 | 33170 | 9670 | 1.41 | | Blackgram | Rainfed | due to
cultivation
of local | different
Blackgram
varieties | 5 | T.O.2
DBGV-5 | UAS,
Dharwad | 7.80 | Qtl/ha | 28.12 | 50700 | 26700 | 2.11 | | | | variety | under
rainfed
condition | | T.O.3
BDU-12 | UAS, Raichur | 7.53 | Qtl/ha | 27.14 | 48913 | 24913 | 2.04 | #### 4. C2. Feedback on technologies assessed | Name of technology assessed | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---|---|---| | Assessment of Production potential of different Blackgram varieties under rainfed condition | Both varieties performed well under rainfed condition (T.O.2 & T.O.3) | Non availability of seeds on larger scale | ## 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) 1.Title of Technology Assessed: Assessment of Production potential of different Blackgram varieties under rainfed condition # 2. Performance of the Technology on specific indicators | Varieties | Duration
(Days) | Plant height (cm) | Pod length
(cm) | 100 seed
weight (g) | Grain yield
(Qtl/ha) | % Increase in yield | Net returns
(Rs/ha) | B:C Ratio | |---------------------|--------------------|-------------------|--------------------|------------------------|-------------------------|---------------------|------------------------|-----------| | Local: Unidentified | 85 | 33.20 | 8.60 | 5.167 | 5.35 | - | 9670 | 1.41 | | T1: DBGV-5 | 85 | 39.20 | 10.8 | 6.942 | 7.80 | 45.79 | 26700 | 2.11 | | T2: BDU-12 | 85 | 38.60 | 9.9 | 6.156 | 7.53 | 40.74 | 24913 | 2.04 | - 3. Specific Feedback from farmers: Both varieties have got more number of pods and thus result in higher yield - 4. Specific Feedback from Extension personnel and other stakeholders: Nil - **5. Feedback to Research System based on results and feedback received:** Need to develop taller varieties which can be suitable for mechanical harvesting - 6. Feedback on usefulness and constraints of technology: Nil #### (V) Results of On Farm Trial | Crop/
enterprise | Farming situation | Problem definition | Title of
OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield | Unit of
yield | Observations
other than
yield
(No. of pods
per plant) | Gross
Return
Rs./ha | Net
Return
Rs. /
ha | BC
Ratio | |------------------------|-------------------|------------------------------------|---|---------------------|---------------------------------------|----------------------|-------|------------------|---|---------------------------|------------------------------|-------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | Productivity of existing local | Assessment of Spreading | | T.O.1 (Farmer practice) Maradur local | - | 2.93 | Qtl/ha | 20.05 | 18135 | -13115 | 0.58 | | Spreading
Groundnut | Rainfed | varieties is
very less
under | Spreading
Groundnut
varieties for
higher | 3 | T.O.2
DSG-1 | UAS,
Dharwad | 3.03 | Qtl/ha | 20.13 | 19663 | -8837.5 | 0.69 | | | | rainfed
condition | productivity | | T.O.3
GJG-19 | JAU, Gujarat | 3.58 | Qtl/ha | 23.40 | 23238 | -5262.5 | 0.82 | ^{*}Since crop received high rainfall during early stages, crop performance was very poor. Hence, there is lower yield resulting in negative net returns ### 4. C2. Feedback on technologies assessed | Name of technology assessed | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---|--|---| | Assessment of Spreading Groundnut varieties for higher productivity | - | - | #### 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) 1.Title of Technology Assessed: Assessment of Spreading Groundnut varieties for higher productivity #### 2. Performance of the Technology on specific indicators | Varieties | Duration
(Days) | Plant height (cm) | 100 Kernal
weight (g) | Pod yield
(Qtl/ha) | % Increase in yield | Net returns
(Rs/ha) | B:C Ratio | |----------------------|--------------------|-------------------|--------------------------|-----------------------|---------------------|------------------------|-----------| | Local: Maradur local | 135 | 32.12 | 37.21 | 2.93 | - | -13115 | 0.58 | | T1: DSG-1 | 124 | 31.20 | 37.60 | 3.03 | 3.41 | -8837.5 | 0.69 | | T2: GJG-19 | 124 | 34.29 | 39.80 | 3.58 | 22.18 | -5262.5 | 0.82 | ^{*}Since crop received high rainfall during early stages, crop performance was very poor. Hence, there is lower yield resulting in negative net returns 3. Specific Feedback from farmers: Nil 4. Specific Feedback from Extension personnel and other stakeholders: Nil 5. Feedback to Research System based on results and feedback received: Nil 6. Feedback on usefulness and constraints of technology: Nil # (VI) Results of On Farm Trial | Crop/
enterprise | Farming
situation | Problem definition | Title of
OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield
(Qt/Ha) | Unit
of
yield | Observations
other than
yield
(No. of
capsules/Plant) | Gross
Return
Rs./unit | Net
Return
Rs. /
unit | BC
Ratio
(Gross
income/
Gross
Cost) | |---------------------|----------------------|------------------------------------|--|---------------------|---|----------------------|------------------
---------------------|---|-----------------------------|--------------------------------|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | Cofflower | Deinfod | Low
productivity
due to | Assessment
of ISF-764
and A-2020 | 6 | T.O.1 (Farmers' practice) / Recommended practice Cultivation of local A-1 variety | UAS,
Dharwad | 12.25 | Qtl.
/ha. | 37 | 66600 | 35150 | 2.13 | | Safflower | Rainfed | cultivation
of local
variety | varieties for higher productivity | 6 | T.O.2
Assessment of ISF-764
variety | IIOR,
Hyderabad | 16.25 | Qtl.
/ha | 54 | 87750 | 56750 | 2.83 | | | | | | | T.O.3
Assessment of A-2020
variety | UAS,
Dharwad | 13.75 | Qtl.
/ha | 42 | 74250 | 43250 | 2.39 | # 4. C2. Feedback on technologies assessed | Name of technology assessed | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---|--|---| | Assessment of ISF-764 and A-
2020 varieties for higher
productivity | ISF-764 has following advantagesMore number of capsules per plantHigher grain weight | - | - 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) - 1. Title of Technology Assessed: Assessment of ISF-764and A-2020 varieties for higher productivity - 2. Performance of the Technology on specific indicators | | | | Pe | rformance indicato | rs | | |---|-------------------------|----------------------------|---------------|---------------------|-------------------------|-------------------------| | Technology Assessed | Grain Yield
(Qtl/ha) | Net
Returns
(Rs./ha) | B.C.
Ratio | % increase in yield | No. of capsules / plant | 100 seed
weight (gm) | | Farmer's practice: Cultivation of A-1 variety | 12.25 | 35150 | 2.13 | - | 37 | 4.36 | | Alternate practice-1: Assessment of ISF-764 variety | 16.25 | 56750 | 2.83 | 32.65 | 54 | 5.29 | | Alternate practice-2: Assessment of A-2020 variety | 13.75 | 43250 | 2.39 | 12.24 | 42 | 4.56 | - 3. Specific Feedback from farmers: Number of branches and capsules are more in ISF-764 variety and matures one week earlier than A-2020 - 4. Specific Feedback from Extension personnel and other stakeholders: The variety need to be promoted in large area - 5. Feedback to Research System based on results and feedback received: Need to develop leaf spot resistant variety - **6. Feedback on usefulness and constraints of technology:** More number of branches and capsules per plant in ISF-764 variety resulted in higher grain yield # (VII) Results of On Farm Trial | Crop/
enterprise | Farming
situation | Problem
definition | Title of
OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield
(Qt/Ha) | Unit of yield | Observations
other than
yield
(Fresh fruit
weight in gms) | Gross
Return
Rs./unit | Net
Return
Rs. / unit | BC
Ratio
(Gross
income/
Gross
Cost) | |---------------------|----------------------|--|--|---------------------|--|-------------------------|------------------|---------------|---|-----------------------------|-----------------------------|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | Low yield,
keeping | Assessment | | T.O.1 (Farmer practice) Cultivation of Private Hybrids | - | 126.14 | Qtl/ha | 9.95 | 214444 | 112720 | 2.11 | | Okra | Irrigated | quality and income due to cultivation of local | of Okra
Hybrids for
higher
productivity | 3 | T.O.2 Assessment of CoBH-4 Okra Hybrids | TNAU,
Tamilnadu | 143.21 | Qtl/ha | 10.86 | 243457 | 139104 | 2.33 | | | | variety | | | T.O.3 Assessment of Arka Nikita Okra Hybrids | ICAR-IIHR,
Bengaluru | 149.14 | Qtl/ha | 11.22 | 283360 | 177418 | 2.67 | # 4. C2. Feedback on technologies assessed | Name of technology assessed | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |-----------------------------|--|---| | Assessment of Arka Nikita | Fruits of Arka Nikita are very tender, attractive and preferred in Gadag city market | - | - 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) - 1. Title of Technology Assessed : Assessment of Okra Hybrids for higher productivity - 2. Performance of the Technology on specific indicators : | Technology Assessed | | | Performance | indicators | | | |---|-----------------------------|---------------------------------|---------------------------|-------------------------|------------|---------------------------| | | Fresh fruit
weight (gms) | Average
Plant height
(cm) | Average fruit length (cm) | Net Returns
(Rs./ha) | B.C. Ratio | Market price
(Rs./Qtl) | | Farmers' practice: Cultivation of Private Hybrids | 9.95 | 95.82 | 11.30 | 112720 | 2.11 | 1700 | | Recommended practice: Assessment of CoBH-4 Okra Hybrid | 10.86 | 106.5 | 13.90 | 139104 | 2.33 | 1700 | | Alternate practice-1: Assessment of Arka Nikita Okra Hybrid | 11.22 | 118.25 | 14.70 | 177418 | 2.67 | 1900 | - 3. **Specific Feedback from farmers**: Arka Nikita is suitable for Rabi cultivation, which fetches better price. The fruits are very tender, attractive and preferred in Gadag market. Therefore farmers accepted Arka Nikita Okra Hybrid. - 4. Specific Feedback from Extension personnel and other stakeholders: -- - 5. Feedback to Research System based on results and feedback received : -- - 6. **Feedback on usefulness and constraints of technology:** Arka Nikita is suitable for Rabi cultivation, which fetches better price. The fruits are very tender, attractive and preferred in Gadag market. Therefore farmers accepted Arka Nikita Okra Hybrid. # (VIII) Results of On Farm Trial | Crop/
enterprise | Farming situation | Problem definition | Title of OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield | Unit
of
yield | Observations other than yield | Gross
Return
Rs./ha | Net
Return
Rs. / ha | BC
Ratio | |---------------------|-------------------|--|--|---------------------|--|----------------------|-------|---------------------|---|---------------------------|---------------------------|-------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | a. Incidence of pests, especially white flies and thrips b. Incidence of | Assessment
of different | 3 | T.O.1 (Farmer practice): Spraying by Battery operated knapsack sprayer | - | 13.20 | Qtl./ha | i. Application Rate (I/ha) = 259 ii. Labour requirement (man-h/ha) = 12 iii. Area coverage (ha/h) = 0.09 iv. Percentage reduction in pest (%) = 63.85 v. Droplet size (microns) = 1027.39 vi.Droplet Density(No's/cm²) = 17.34 | 132000 | 75125 | 1.75 | | Bt. Cotton | Rainfed | b. Incidence of disease especially Angular leaf spot c. Drudgery of operation in existing spraying methods | spraying equipment for effective pest management in Bt. Cotton | 3 | T.O.2:
Spraying by
Tractor
Operated
Boom Sprayer | UAS,
Raichur | 13.80 | Qtl./ha | i. Application Rate (I/ha) = 363 ii. Labour requirement (man-h/ha) = 1.5 iii. Area coverage (ha/h) = 1.40 iv. Percentage reduction in pest (%) = 83.13 v. Droplet size (microns) = 1300.74 vi.Droplet Density(No's/cm²) = 14.88 | 138000 | 83750 | 2.54 | | | | | | | T.O.3:
Spraying by
Drone Sprayer | UAS,
Raichur | 13.75 | Qtl./ha | i. Application
Rate (I/ha) = 27
ii.Labour
requirement | 137500 | 84750 | 2.60 | | Crop/
enterprise | Farming situation | Problem definition | Title of OFT | No.
of
trials | Technology
Assessed | Source of technology | Yield | Unit
of
yield | Observations other than yield | Gross
Return
Rs./ha | Net
Return
Rs. / ha | BC
Ratio | |---------------------|-------------------|--------------------|--------------|---------------------|------------------------|----------------------|-------|---------------------|---|---------------------------|---------------------------|-------------| | | | | | | | | | | (man-h/ha) = 0.5
iii.Area coverage
(ha/h) = 2.48
iv. Percentage
reduction in pest
(%) = 74.69
v. Droplet size
(microns) =
980.17
vi. Droplet
Density(No's/cm²)
= 34.14 | | | | #### 4. C2. Feedback on technologies assessed | Name of
technology assessed | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |--|---|--| | Assessment of different spraying equipment for effective pest management in Bt. Cotton | Technologies (Tractor Operated Boom Sprayer and Drone Sprayer) performed well and shown good control of pests in Bt. Cotton. Use of Drone Sprayer resulted in saving of pesticide chemical by 15-20%. There was significant saving in labour and time of operation when compared to Farmers' practice | High Initial cost of machines is the major constraint in adoption of the technologies. | ### 4.C3. Details of Successfully completed / concluded technology assessment (support with necessary summary of data and photographs) - 1. Title of Technology Assessed : Assessment of different spraying equipment for effective pest management in Bt. Cotton - 2. Performance of the Technology on specific indicators | Technologies | Yield
(Qtl/ha) | Application
Rate (I/ha) | Labour requirement | Area coverage | Percentage reduction | Droplet
size | Droplet
Density | Net
Returns | B:C
Ratio | |---------------------------------------|-------------------|----------------------------|--------------------|---------------|----------------------|-----------------|-------------------------|----------------|--------------| | | , | , , | (man-h/ha) | (ha/h) | in pest (%) | (microns) | (No's/cm ²) | (Rs./ha) | | | Farmers Practice: Spraying by Battery | 13.20 | 259 | 12 | 0.09 | 63.85 | 1027.39 | 17.34 | 75125 | 1.75 | | Operated Knapsack Sprayer | | | | | | | | | | | T.O-1: Spraying by Tractor Operated | 13.80 | 363 | 1.40 | 1.40 | 83.13 | 1300.74 | 14.88 | 83750 | 2.54 | | Boom Sprayer | | | | | | | | | | | T.O-2: Spraying by Drone Sprayer | 13.75 | 27 | 0.50 | 2.48 | 74.69 | 980.17 | 34.14 | 84750 | 2.64 | - 3. Specific Feedback from farmers: Drone sprayer reduced the cost of labour and saves time of operation but has lesser efficacy in controlling pests compared to Tractor operated Boom Sprayer. - 4. Specific Feedback from Extension personnel and other stakeholders : Nil. - 5. Feedback to Research System based on results and feedback received: Recommendation of pesticide doses need to be standardized for better results with Drone Sprayer - 6. Feedback on usefulness and constraints of technology: High initial cost and lack of technical skills are the major constraints 4.D1. Results of Technologies Refined: NIL | Crop/
enterprise | Farming situation | Problem definition | Title
of
OFT | No. of trials | Technology
Refined | Source of technology | Yield | Unit of yield | Observations other than yield | Net
Return
Rs. / unit | BC Ratio | Remarks if any | |---------------------|-------------------|--------------------|--------------------|---------------|-------------------------|----------------------|-------|---------------|-------------------------------|-----------------------------|----------|----------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | | | | T.O.1 (Farmer practice) | | | | | | | | | | | | | | T.O.2 | | | | | | | | | | | | | | T.O.3 | #### 4. D2. Feedback on technologies refined | Name of technology refined | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |----------------------------|--|---| | | | | #### 4.D.2. Details of Technologies refined: - 1. Title of Technology Refined - 2. Performance of the Technology on specific indicators - 3. Specific Feedback from farmers - 4. Specific Feedback from Extension personnel and other stakeholders - 5. Feedback to Research System based on results/feedback received - 6. Feedback on usefulness and constraints of technology # PART V - FRONTLINE DEMONSTRATIONS # 5.A. Summary of FLDs implemented | CI. | | Forming | | | Variatul | | Thematic | Tachnalagy | Area (| ha) | Farme | rs (No.) | Farmers | (No.) | |------------|----------|----------------------|--------|--------------|-------------------|--------|---------------------------|--|----------|--------|-------|----------|--------------------|------------| | SI.
No. | Category | Farming
Situation | Season | Crop | Variety/
breed | Hybrid | area | Technology
Demonstrated | Proposed | Actual | SC/ST | Others | Small/
Marginal | Othe
rs | | | | | | | | | | | | | | | | | | | Oilseeds | Rainfed | Rabi | Safflower | ISF-764 | - | Varietal
demonstration | Demonstration
of high yielding
ISF-764 variety
of Safflower | 10 | 10 | 2 | 23 | 23 | 2 | | | Pulses | | | | | | | | | | | | | | | 1 | | Rainfed | Kharif | Greengram | DGGV-2 | - | ICM practices | Demonstration
of DGGV-2
variety in
Greengram
crop | 10 | 10 | 5 | 20 | 21 | 4 | | 2 | | Rainfed | Rabi | Bengalgram | JAKI-9218 | - | ICM practices | Demonstration
of ICM
practices in
JAKI-9218
variety of
Bengalgram
crop | 10 | 10 | 2 | 23 | 20 | 5 | | 3 | | Rainfd | Rabi | Bengalgram | - | - | Farm
Machineries | Demonstration
of tractor
operated
compartment
bund former in
Bengalgram
crop | 4 | 4 | 1 | 9 | 9 | 1 | | 4 | | Rainfed | Rabi | Bengalgram | - | - | Farm
Machinaries | Demonstration
of solar nipping
machine in
Bengalgram
crop | - | - | 2 | 8 | 8 | 2 | | | Cereals | | | | | | | | | | | | | | | 5 | | Rainfed | Rabi | Rabi Sorghum | SPV- 2217 | - | Varietal demonstration | Demonstration of SPV-2217 | 16 | 16 | 3 | 37 | 38 | 2 | | 6 | | Rainfed | Kharif | Maize | - | CP-848 | ICM | Soil test based | 8 | 8 | 6 | 14 | 11 | 9 | | SI. | | Farming | | | Variety/ | | Thematic | Technology | Area (| ha) | Farme | rs (No.) | Farmers | | |-----|------------|-----------|--------------|-----------------|---|--------|---------------------------|---|----------|--------|-------|----------|--------------------|---------| | No. | Category | Situation | Season | Crop | breed | Hybrid | area | Demonstrated | Proposed | Actual | SC/ST | Others | Small/
Marginal | Othe rs | | | | | | | | | | nutrient
application &
soil application
of FeSo4 &
ZnSo4 @ 25
Kg/ha | | | | | | | | 7 | | Rainfed | Kharif | Maize | - | CP-848 | Farm
machinaries | Demonstration
of self
propelled
Maize
harvester | 3 | 3 | 0 | 3 | 0 | 3 | | 8 | | Rainfed | Kharif | Redgram | TS-3R | - | Intercropping system | Maize + Redgram intercropping system with ICM practices | 2.4 | 2.4 | 1 | 5 | 4 | 2 | | | Millets | | | | | | | | | | | | | | | 9 | | Rainfed | Kharif | Foxtail millet | DHFt-109-3 | - | Varietal
demonstration | Demonstration
of high yielding
Nutri cereal
Foxtail millet
crop variety
DHFt-109-3 | 10 | 10 | 0 | 25 | 25 | 0 | | 10 | | Rainfed | Kharif | Pearl millet | VPMV-9 | - | Varietal
demonstration | Demonstration
of biofortified
pearl millet
variety vpmv-9 | 3 | 3 | 0 | 3 | 3 | 0 | | 11 | Vegetables | Irrigated | Rabi
2022 | Vegetable crops | Ridgegourd-
Arka
Prasana
Dolichos
Bean – Arka
Amogh
Spinach –
Arka
Anupam | - | Varietal
demonstration | Introduction of
new varieties
in vegetable
crops of ICAR-
IIHR,
Bengaluru | 4.0 | 4.0 | 3 | 7 | 6 | 4 | | | | F | | | Mantatat | | T I | T | Area (| ha) | Farme | rs (No.) | Farmers | (No.) | |------------|------------------------|----------------------|----------------|------------------------|---|--------|--|---|----------|--------|-------|----------|--------------------|------------| | SI.
No. | Category | Farming
Situation | Season | Crop | Variety/
breed | Hybrid | Thematic area | Technology
Demonstrated | Proposed | Actual | SC/ST | Others | Small/
Marginal | Othe
rs | | | | | | | Radish-
Arka Nishant | | | | | | | | | | | 12 | | Rainfed | Kharif
2022 | Onion | Bheema
Super | - | Varietal demonstration and ICM | Demonstration
of ICM in Red
onion variety
Bheema
Super | 10 | 10 | - | 25 | 8 | 17 | | 13 | | Rainfed | Kharif | Onion | Bhima
Super | | Farm
Machineries | Battery
Operated
Onion
Detopper | - | - | 2 | 8 | 9 | 1 | | | Flowers | Ornamental | | | | | | | | | | | | | | | | Fruit | | | | | | | | | | | | | | | 14 | Spices and condiments | Rainfed | Kharif
2022 | Red chilli | Byadagi
Dabbi | - | ICM in
ByadgiChilli | ICM in
ByadgiChilli | 5.6 | 5.6 | - | 14 | 2 | 12 | | 15 | | Rainfed | Rabi
2022 | Ajwain | Ajmer
Ajwain-1 | - | Crop introduction | Introduction of Ajwain crop | 2 | 2 | 1 | 4 | 5 | 0 | | | Commercial | | | | | | | | | | | | | | | 16 | Medicinal and aromatic | Rainfed | Rabi
2022 | Ashwagandha |
Poshita | 1 | Crop
introduction | Introduction of Ashwagandha crop | 4 | 4 | 2 | 8 | 8 | 2 | | 17 | Fodder | Irrigated | Kharif | Perennial fodder crops | Hybrid Napier-DHN 6, Multicut Jowar-VH- 988, Guinea grass, Rhodes grass, Signal grass: Lucerne, Stylosanthes Hamata 555 | - | Nutrition
Management
in dairy
animals | Demonstration
on Fodder
Production &
feeding to
milch animals
for enhanced
milk
productivity | 1 | 1 | 0 | 10 | 10 | - | | CI | | F | | | Variated | | Themselie | Taskaslamı | Area (| ha) | Farme | rs (No.) | Farmers | (No.) | |------------|--------------------|----------------------|--------|------|--|--------|---------------|----------------------------|----------|--------|-------|----------|--------------------|------------| | SI.
No. | Category | Farming
Situation | Season | Crop | Variety/
breed | Hybrid | Thematic area | Technology
Demonstrated | Proposed | Actual | SC/ST | Others | Small/
Marginal | Othe
rs | | | | | | | &StyloScabra
seeds,
Subabul
K8/B-42 &
Sesbania | | | | | | | | | | | | | | | | grandiflora
&Fodder oats | | | | | | | | | | | | Plantation | | | | | | | | | | | | | | | | Fibre | | | | | | | | | | | | | | | | Dairy | | | | | | | | | | | | | | | | Poultry | | | | | | | | | | | | | | | | Rabbitry | | | | | | | | | | | | | | | | Piggery | | | | | | | | | | | | | | | | Sheep and goat | | | | | | | | | | | | | | | | Duckery | | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | Common carps | Mussels | | | | | | | | | | | | | | | | Ornamental fishes | | | | | | | | | | | | | | | | 1151165 | | | | | | | | | | | | | | | | Oyster
mushroom | Button
mushroom | | | | | | | | | | | | | | | | Vermicompost | 1 | | | | | | | | | | | | | | CI. | | Forming | l l | | Variety/ | | Thomatic | Tooknology | Area (| ha) | Farme | ers (No.) | Farmers | (No.) | |------------|---------------|------------------------|------------------|----------------------|-------------------|--------|---------------|--|----------|--------|----------|-----------|--------------------|--| | SI.
No. | Category | Farming
Situation | Season | Crop | Variety/
breed | Hybrid | Thematic area | Technology
Demonstrated | Proposed | Actual | SC/ST | Others | Small/
Marginal | Othe rs | | | | | | | | | | | | | | | | | | <u> </u> | Sericulture | <u> </u> | <u> </u> | | | | | | | | | | ' | <u> </u> | | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | 1 | | | | <u> </u> | | | | ' | <u> </u> | | <u> </u> | Apiculture | <u> </u> | <u> </u> | <u> </u> | 1 | | | | <u> </u> | | | | ' | <u> </u> | | <u> </u> | | <u> </u> | <u> </u> | | 1 | | | | <u> </u> | | <u> </u> | | ' | <u> </u> | | | Implements | ' | | | 1 | | | | <u> </u> | | | | <u> </u> | | | | Others | 1 | | 1 | 1 | | | • | | | | | ' | | | <u> </u> | (specify) | <u> </u> | <u> </u> | | <u></u> | | | ' | <u> </u> | | | | <u> </u> | | | 18 | Nutri Garden | Irrigated
& Rainfed | Kharif &
Rabi | Vegetables | - | - | Nutrition | Demonstration of Nutri Garden | - | - | 8 | 17 | 22 | 3 | | 19 | PHT | | | Red Chilli | | | PHT | Demonstration
of solar dryer
for drying of
Red chillies | - | - | 0 | 3 | 3 | 0 | | 20 | Grain storage | | | Greengram&Bengalgram | - | - | Grain storage | Demonstration of Super grain bags | - | - | 8 | 12 | 10 | 10 | # 5.A. 1. Soil fertility status of FLDs plots, if analysed | SI.
No. | Category | Farming
Situation | Season
and
Year | Crop | Variety/
breed | Hybrid | Thematic area | Technology Demonstrated | Season
and year | | Status
of soil | | Previous
crop
grown | |------------|----------|----------------------|-----------------------|---------------------|--------------------|--------|---------------------|--|--------------------|---|-------------------|---|---------------------------| | | | | | | | | | | | N | Р | K | | | 1 | Oilseeds | Rainfed | Rabi 2022 | Safflower | ISF-764 | - | ICM practices | Demonstration of ISF-765 variety in Safflower crop | Rabi 2022 | L | М | M | Rabi
Sorghum | | 2 | | Rainfed | Summer
2023 | Summer
Groundnut | Kadari
Lepakshi | - | ICM
practices | Demonstration of Kadari Lepakshi variety in Safflower crop | Summer
2023 | L | L | L | Greengram | | 3 | Pulses | Rainfed | Kharif-
2022 | Greengram | DGGV-2 | - | ICM
practices | Demonstration of DGGV-2 variety in Greengram crop | Kharif-2022 | L | L | M | Bengalgram | | 4 | | Rainfed | Rabi 2022 | Bengalgram | JAKI-9218 | - | ICM
practices | Demonstration of JAKI-9218 variety in Bengalgram crop | Rabi 2022 | L | L | M | Greengram | | 5 | | Rainfed | Rabi 2022 | Bengalgram | - | - | Farm
machinaries | Demonstration of tractor operated compartment bund former in Bengalgram crop | Rabi 2022 | L | L | M | Greengram | | | Cereals | | | | | | | | | | | | | | 6 | | Rainfed | Kharif | Maize | - | CP-848 | Integrated | Integrated Crop Management | Kharif 2022 | L | L | М | Chickpea | | SI.
No. | Category | Farming
Situation | Season
and
Year | Crop | Variety/
breed | Hybrid | Thematic area | Technology Demonstrated | Season
and year | | tatı
f sc | | Previous
crop
grown | |------------|-----------------------|----------------------|-----------------------|--------------------|---|--------|-------------------------------|--|--------------------|-----|--------------|-----|-------------------------------| | | | | | | | | | | | N | Р | K | | | | | | 2022 | | | | Crop
Managem
ent | | | | | | | | 7 | | Rainfed | Kharif
2022 | Maize | - | CP-848 | Farm
machinaries | Demonstration of self propelled Maize harvester | Kharif 2022 | L | L | М | Chickpea | | 8 | | Rainfed | Kharif
2022 | Redgram | TS-3R | - | Intercroppi
ng system | Maize+Redgram intercropping system with ICM practices | Kharif 2022 | L | L | М | Groundnut | | 9 | | Rainfed | Rabi 2022 | Rabi
Sorghum | SPV-2217 | - | ICM | Demonstration of SPV-2217 variety | Rabi
2022 | L | L | Н | Greengram
& fallow
land | | | Millets | | | | | | | | | | | | | | 10 | | Rainfed | Kharif
2022 | Foxtail
Millet | DHFt-190-3 | | Varietal demonstra tion | Demonstration of high yielding DHft-190-3 variety | Kharif 2022 | L | L | М | Ragi
Sorghum | | 11 | | Rainfed | Kharif
2022 | Pearl
Millet | VPMV-9 | | Varietal demonstra tion | Demonstration of high yielding VPMV-9 variety | Kharif 2022 | L | L | М | Rabi
Sorghum | | 12 | Vegetables | Irrigated | Rabi 2022 | Vegetable
crops | Ridgegourd - Arka Prasana Dolichos Bean – Arka Amogh Spincah– Arka Anupam Radish – Arka Nishant | - | Varietal
demonstra
tion | Introduction of new varieties in
vegetable crops of ICAR-IIHR,
Bengaluru | Rabi 2022 | L | L | M | Greengram | | 13 | | Rainfed | Kharif
2022 | Red
Onion | Bheema
Super | - | ICM practices | Demonstration of Bheema Super variety in Red Onion | Kharif 2022 | L | L | М | Chickpea | | | Flowers | | | | | | | | | | | | | | | Ornamental | | | | | | | | | | <u> </u> | | | | 4.4 | Fruit | | | | Dura da ai | | IONA in | | Kh = "if 0000 | ļ., | ļ., | N 4 | Dah: | | 14 | Spices and condiments | Rainfed | Kharif 2022 | Red chilli | Byadagi
Dabbi | - | ICM in
Byadgi | ICM in ByadgiChilli | Kharif 2022 | L | L | М | Rabi
Sorghum | | SI.
No. | Category | Farming
Situation | Season
and
Year | Crop | Variety/
breed | Hybrid | Thematic area | Technology Demonstrated | Season
and year | | tatı
f so | | Previous
crop
grown | |------------|---|----------------------|-----------------------|------------------------------|---|--------|---|---------------------------------------|--------------------|----------|--------------|---|---------------------------| | | | | | | | | | | , , | N | Р | K | J | | 15 | | Rainfed | Rabi 2022 | Ajwain | Ajmer
Ajwain-1 | - | Chilli
Varietal
introduc
tion | Introduction of Ajwain crop | Rabi 2022 | L | L | M | Chickpea | | 16 | Commercial
Medicinal
and aromatic | Ashwagan
dha | Rabi 2022 | Ashwagan
dha | Poshita | - | Varietal introduction | Introduction of Ashwagandha crop | Rabi 2022 | L | L | M | Rabi
Sorghum | | 17 | Fodder | Irrigated | Kharif
2022 | Perennial
Fodder
crops | Hybrid Napier- DHN 6, Multicut Jowar-VH- 988, Guinea grass, Rhodes grass, Signal grass: Lucerne, Stylosanthe s Hamata 555 &StyloScabr a seeds, Subabul K8/B-42 & Sesbania grandiflora & Fodder oats | - | Nutrition
Manageme
nt in dairy
animals | Demonstration on Fodder
Production | Kharif 2022 | L | L | М | Maize | | | Plantation
Fibre | | | | | | | | | \vdash | | | | | | Sericulture | | | | | | | | | \vdash | | | | 5.B. Results of FLDs 5.B.1. Crops | | Name of the | | Ну | Farmi
ng | No. of | Area | | Yield | (q/ha) | | % | | onomics on
stration (R | | | mics of cl
(Rs./ha) | neck | |---------------------|--|--------------------|----------|---------------|--------|------|-------|-------|--------|-------|---------------|-----------------|---------------------------|-----------|-----------------|------------------------|-----------|
 Crop | technology
demonstrat
ed | Variety | bri
d | situati
on | Demo. | (ha) | | Demo | | Check | Incre-
ase | Gross
Return | Net
Return | **
BCR | Gross
Return | Net
Return | **
BCR | | | | | | | | | Н | L | Α | | | | | | | | | | Oilseeds | | | | | | | | | | | | | | | | | | | Safflower | Demonstrati
on of ISF-
764 variety
in Safflower | ISF-764 | - | Rainfed | 25 | 10 | 16.5 | 13.6 | 15.35 | 12.05 | 27.38 | 82890 | 51090 | 2.61 | 65070 | 34670 | 2.14 | | Summer
Groundnut | Demonstrati
on of Kadari
Lepakshi
variety in
Summer
Groundnut | Kadari
Lepakshi | - | Rainfed | 25 | 10 | | | | | Re | esults are a | waited | | | | | | Pulses | | | | | | | | | | | | | | | | | | | Greengram | Demonstrati
on of
DGGV-2
variety in
Greengram
crop | DGGV-2 | - | Rainfed | 25 | 10 | 12.62 | 7.91 | 10.30 | 8.35 | 23.4 | 67975 | 44225 | 2.86 | 54246 | 30996 | 2.33 | | Bengalgra
m | Demonstrati
on JAKI-
9218 variety
in
Bengalgram
crop | JAKI-
9218 | - | Rainfed | 25 | 10 | 18.3 | 15.4 | 17.8 | 14.0 | 27.14 | 83660 | 53200 | 2.75 | 65800 | 37480 | 2.38 | | Cereals | | | | | | | | | | | | | | | | | | | Rabi
Sorghum | Demonstrati
on of SPV-
2217 variety | SPV-
2217 | - | Rainfed | 40 | 16 | 22.8 | 17.9 | 21.02 | 17.50 | 20.11 | 54652 | 27152 | 1.99 | 45500 | 18000 | 1.65 | | | Name of the | | Ну | Farmi
ng | No. of | Area | | Yield | (q/ha) | | % | | conomics of stration (R | | | mics of cl
(Rs./ha) | heck | |-------------------|--|-------------------|-------------------------------|----------------|--------|------|--------------------------|--------------------------|---------------------------|-------|---------------|-----------------|-------------------------|-----------|-----------------|------------------------|-----------| | Crop | technology
demonstrat
ed | Variety | bri
d | | Demo. | (ha) | | Demo | | Check | Incre-
ase | Gross
Return | Net
Return | **
BCR | Gross
Return | Net
Return | **
BCR | | | | | | | | | Н | L | Α | | | | | | | | | | Maize | Integrated
Crop
Management | | CP-
848 | Kharif
2022 | 20 | 8 | 59.00 | 51.25 | 56.16 | 51.51 | 9.0 | 112320 | 65224 | 2.38 | 103020 | 56904 | 2.23 | | Maize+
Redgram | Maize+
Redgram
intercropping
system with
ICM practices | | CP-
848
in
Mai
ze | Rainfed | 6 | 2.4 | CEY of
Maize:
66.8 | CEY of
Maize:
62.1 | CEY of
Maize:
65.01 | 54.83 | 18.56 | 130033 | 77887 | 2.48 | 109666 | 62166 | 2.30 | | Millets | • | | | | | | | | | | | | | | | | | | Foxtail Millet | Demonstratio
n of DHFt-
109-3 variety | DHFt-
109-3 | - | Rainfed | 25 | 10 | | | | | Crop vitia | ted due to e | excess rain | fall | | | | | Pearl Millet | Demonstratio
n of VPM-9
variety | VPM-9 | - | Rainfed | 3 | 1.2 | | | | | Crop vitia | ted due to e | excess rain | fall | | | | | Vegetables: | Introductio
n of new | Ridgego
urd: | - | Irrigat
ed | 10 | 4 | 27.62 | 20.72 | 23.92 | 18.92 | 26.42 | | | | | | | | | varieties of
ICAR-IIHR
Bengaluru | Arka
Prasanna | | | | | 27.02 | 20.72 | | 10.92 | 20.42 | | | | | | | | | under
Vegetable | Dolichos
bean: | | | | | | | | | | | | | | | | | | Crop
Cafeteria | Arka
Amogh | | | | | 23.75 | 19.37 | 21.50 | 17.90 | 20.11 | 265635 | 196000 | 3.81 | 212048 | 147338 | 3.28 | | | | Radish : | | | | | | | | | | | | | | | | | | | Arka
Nishant | | | | | 69.00 | 53.12 | 61.12 | 47.50 | 28.67 | | | | | | | | | | Spinach: | | | | | 33.75 | 24.57 | 28.85 | 23.35 | 23.55 | | | | | | | | | | Arka
Anupam | | | | | | | | | | | | | | | | | | Name of the | | Ну | Farmi
ng | No. of | Area | | Yield | (q/ha) | | % | | conomics of stration (R | | | mics of cl
(Rs./ha) | neck | |----------------------------|---|-------------------|----------|-------------|--------|------|-------|-------|--------|-------|---------------|-----------------|-------------------------|-----------|-----------------|------------------------|-----------| | Crop | technology
demonstrat
ed | Variety | bri
d | | Demo. | (ha) | | | | Check | Incre-
ase | Gross
Return | Net
Return | **
BCR | Gross
Return | Net
Return | **
BCR | | | | | | | | | Н | L | Α | | | | | | | | | | Red Onion | Demonstrat
ion of ICM
in Red
onion
variety
Bheema
Super | Bheema
Super | 1 | Rainf
ed | 25 | 10 | 46.25 | 30.00 | 37.78 | 29.79 | 26.80 | 45330 | 22154 | 1.97 | 29790 | 8205 | 1.39 | | Flowers | | | | | | | | | | | | | | | | | | | Ornamental | | | | | | | | | | | | | | | | 1 | Fruit | | | | | | | | | | | | | | | | | | | Spices and condiments | | | | | | | | | | | | | | | | | | | Ajwain | Introduction of Ajwain crop | Ajmer
Ajwain-1 | - | Rainfed | 5 | 2 | 7.25 | 6.0 | 6.50 | * | | 58500 | 28138 | 1.93 | | | | | Chilli | Integrated
Crop
Management
in
ByadagiChilli | Byadagi
Dabbi | - | Rainfed | 14 | 5.6 | 9.50 | 5.20 | 6.10 | 4.96 | 22.84 | 213438 | 150761 | 3.02 | 173750 | 116155 | 3.40 | | Commer cial | | | | | | | | | | | | | | | | | | | Fibre crops
like cotton | | | | | | | | | | | | | | | | | | | Medicinal and aromatic | | | | | | | | | | | | | | | | | | | Ashwagan
dha | Introduction of Ashwagand ha crop | Poshita | - | Rainfed | 10 | 4 | 4.00 | 3.00 | 3.58 | * | | 71500 | 51934 | 3.65 | | | | | | Name of the | Hy Rami Yield (q/na) | | % | *Economics of demonstration (Rs./ha) | | | *Economics of check
(Rs./ha) | | | | | | | | | |------------------------|--------------------------------|----------------------|----------|-----------|--------------------------------------|---|------|---------------------------------|--|---------------|-----------------|---------------|-----------|-----------------|---------------|-----------| | Crop | technology
demonstrat
ed | Variety | bri
d |
Demo. | (ha) | | Demo | Demo | | Incre-
ase | Gross
Return | Net
Return | **
BCR | Gross
Return | Net
Return | **
BCR | | | | | | | | Н | L | Α | | | | | | | | | | Fodder | Plantation | Fibre | Others
(pl.specify) | | | | | | | | | | | | | | | | | ^{**} BCR= GROSS RETURN/GROSS COST H – Highest Yield, L – Lowest Yield A – Average Yield #### 1)Data on additional parameters other than yield : Demonstration of DGGV-2 variety in Greengram crop | Data on other parameters in relation to technology demonstrated | | | | | | | | | | |---|--------------------|------------------|--|--|--|--|--|--|--| | Parameter with unit | Demonstration plot | Local check plot | | | | | | | | | Plant height | 43.42 | 36.20 | | | | | | | | | No. of pods per plant 30.12 23.81 | | | | | | | | | | ### 2) Data on additional parameters other than yield: Demonstration of SPV-2217 variety in Rabi Sorghum | Data on other parameters in relation to technology demonstrated | | | | | | | | | | |---|--------------------|------------------|--|--|--|--|--|--|--| | Parameter with unit | Demonstration plot | Local check plot | | | | | | | | | Lodging of plants (Percentage) at harvest | 2.12 | 9.16 | | | | | | | | | Plant height (cm) 217 196 | | | | | | | | | | ^{*} Ajwain and Ashwagandha crop demonstrations do not have local check as these cropsare new introduction during rabi season. Hence, Ajwain is compared with Bengalgram and Ashwagandha is compared with Rabi Sorghum crop as local checks to show that Ajwain and Ashwagandha are more profitable compared to traditional rabi season cropsi.eBengalgram and Rabi Sorghum respectively. ### 3) Data on additional parameters other than yield : FLD on ICM in Onion | | Data on other parameters in relation to technolo | gy demonstrated | |---------------------|--|-----------------| | Parameter with unit | Demo | Check | | Bulb weight (gms) | 102.78 | 91.83 | ### 4) Data on additional parameters other than yield: Demonstration of Battery Operated Onion Detopper (FLD on ICM in Onion) | | Data on other parameters in relation to technology demonstrated | | | | | | | | | | |----------------------------------|---|-------|--|--|--|--|--|--|--|--| | Parameter with unit | Demo | Check | | | | | | | | | | Rate of detopping (Kg/hour) | 180 | 130 | | | | | | | | | | Labour requirement (man-h/tonne) | 11 | 16 | | | | | | | | | | Saving in Time (%) | 38.50 | - | | | | | | | | | | Saving in Labour (%) | 31.25 | - | | | | | | | | | #### 5) Data on additional parameters other than yield: FLD on Introduction of new varieties of vegetable crops of ICAR -IIHR, Bengaluru | Data on other parameters in relation to technology demonstrated | | | | | | | | | | | |---|--------|--------|--|--|--|--|--|--|--|--| | Parameter with unit | Demo | Check | | | | | | | | | | Ridgegourd | | | | | | | | | | | | Average number of fruits / vine (Nos.) | 11.74 | 9.64 | | | | | | | | | | Average fruit weight (gm/fruit) | 112.10 | 99.89 | | | | | | | | | | Dolichos bean | | | | | | | | | | | | Number of days for 1st harvest | 48.50 | 45.25 | | | | | | | | | | Number of pods / plant | 30.10 | 23.50 | | | | | | | | | | Radish | | | | | | | | | | | | Number of days for harvest | 46 | 43 | | | | | | | | | | Root length (Cms) | 15.20 | 12.70 | | | | | | | | | | Fresh root weight (gms) | 160.25 | 125.56 | | | | | | | | | | Spinach | | | | | | | | | | | | Leaf length (Cms) | 25 | 18
 | | | | | | | | | Leaf width (Cms) | 8.25 | 6.50 | | | | | | | | | # 6) Data on additional parameters other than yield : Demonstration on introduction of Ajwain crop | | Data on other parameters in relation to technological | gy demonstrated | |--|---|-----------------| | Parameter with unit | Demo | Check | | Test weight (1000 seeds weight) of the seeds (gms) | 0.93 | - | 5. B2. Feedback on technologies demonstrated | Name of technology demonstrated | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |--|--|---| | Demonstration of DGGV-2 variety in Greengram crop | The variety demonstrated is taller in stature and resistant to pod shattering which makes it suitable for mechanical harvesting | - | | Demonstration of SPV-2217 variety in Rabi Sorghum | Variety is comparatively lodging resistant besides having higher productivity | - | | Maize + Redgram intercropping system with ICM technology | The Maize + Redgram intercropping system is suitable for dryland area to enhance the income of the farmers | - | | Demonstration of vegetable crop cafeteria | Ridgegourd - Arka Prasan variety An early variety, Gives more yield Low incidence of powdery mildew compared to local variety Fruits are tender with good taste and cooking quality Dolichos bean - Arka Amogh More yield, good marketability and cosumer acceptability Radish - Arka Nishant More yield Mild in pungency Attractive roots and foliage Spinach- Arka Anupam More yield, thick and big leaves make large bunch & attractive green leaf colour and Good Shelf life | - | | Demonstration of ICM in Red onion variety Bheema Super | Bheema Super Bulb weight and quality is superior Attractive pink bulbs fetches better market price (Rs. 200/-more per Qtl) compared to local variety Low incidence of thrips and purple blotch compared to local variety Application of Gypsum helped in less bulb rotting compared to local varieties Application of Arka Vegetable Special helped to get large and dark pink coloured bulbs. | - | | Name of technology demonstrated | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |--|---|--| | ICM in ByadgiChilli | Pure seeds of Byadagi Dabbi supplied to farmers are very good, farmers saved the seeds for next season Maize as border crop and Marigold as trap crop resulted in less incidence of sucking pest and fruit borer respectively Application of Arka Vegetable Special (Micornutrient mixture) resulted in better flower and fruit set and dark red coloured fruits Timely management of Fruit rot resulted in better fruit yield and quality | - | | Demonstration of Battery
Operated Onion Detopper
(Under FLD on ICM in Onion) | Battery operated Onion Detopper resulted in reduction of drudgery involved in manual detopping method. There was significant saving in labour requirement and time of operation. | Since the detopping of onion is done mostly by the women labour, there was hesitation in using the machine due to poor ergonomical design. | | Demosntration of introduction of Ajwain and Ashwagandha crops | These crops withstand vagaries of mansoon and grows well under residual soil moisture conditions compared to field crops. Ashwagandha crop has assured buyback system and green seeds of improved Ajwain variety fetches better market price. Therefore, crop diversification through introduction of these climate resilient crops are more profitable and sustainable than traditional crops during less rainfall years | - | 5.B.3. Livestock and related enterprises | Type of | Name of the technology | Breed | No. | No. | , | Yield (| (kg/aı | nimal) | % | *Econ | omics of
Rs./ເ | demonstr
ınit) | ation | *E | conomics
(Rs./ı | s of chec
unit) | k | |-----------|---|---------|------------|-------------|------|---------|--------|--------------|----------|---------------|-------------------|-------------------|-----------|---------------|--------------------|--------------------|-----------| | livestock | demonstrated | breed | of
Demo | of
Units | Demo | | | Check if any | Increase | Gross
Cost | Gross
Return | Net
Return | **
BCR | Gross
Cost | Gross
Return | Net
Return | **
BCR | | | | | | | Н | L | Α | | | | | | | | | | | | Dairy | Demonstration on
Fodder
Production&
feeding to cows
for higher milk
productivity | CB Cows | 10 | 10 | 12 | 5.5 | 6.7 | 5.2 | 27.61 | 25904 | 54270 | 28366 | 2.09 | 25018 | 42525 | 17507 | 1.69 | | Poultry | Rabbitry | Pigerry | | | | | | | | | | | | | | | | | | | Type of | Name of the technology | Breed | No.
of | No.
of | ١ | rield (| (kg/ar | nimal) | % | *Econ | omics of
Rs./u | demonstr
ınit) | ation | *E | conomics
(Rs./ı | s of chec
unit) | k | |---------------------|------------------------|--------|-----------|-----------|---|---------|----------|--------------|----------|---------------|-------------------|-------------------|-----------|---------------|--------------------|--------------------|-----------| | livestock | demonstrated | Di eeu | Demo | Units | | Demo | o | Check if any | Increase | Gross
Cost | Gross
Return | Net
Return | **
BCR | Gross
Cost | Gross
Return | Net
Return | **
BCR | | Sheep and goat | | | | | | | | | | | | | | | | | | | Duckery | | | | | | | | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | | | | | | | ^{**} BCR= GROSS RETURN/GROSS COST Data on additional parameters other than yield (viz., reduction of percentage diseases, increase in conceiving rate, inter-calving period etc.) ## **FLD on Fodder production** Data on additional parameters other than yield (viz., reduction of percentage diseases, increase in conceiving rate, inter-calving period etc.) Data on additional parameters : Demonstration on Fodder production | | Data on other parameters in relation to technology demonstrated | | | | | | | | | | | | | |---------------------|---|-------------------------|--|--|--|--|--|--|--|--|--|--|--| | Parameter with unit | Demonstration | Check | | | | | | | | | | | | | | Gradual improvement in the general condition of the animal health | | | | | | | | | | | | | | Feeding of Fodder | Increase in intake of dry fodder | - | | | | | | | | | | | | | | Cows are coming to heat within the period | | | | | | | | | | | | | | Nutrition | 30 Kg green fodder, 10 Kg dry fodder and 2 Kg concentrated feed / Cow / day | No systematic nutrition | | | | | | | | | | | | ## 5. B4. Feedback on livestock technologies demonstrated | Name of livestock technology | Useful characters as well as constraints of | Socio-economic as well as administrative | |------------------------------|--|--| | demonstrated | technology | constraints for its adoption | | FLD on Fodder production | After production and feeding of perennial green fodder, | - | | | and grasses to milking cow, there was | | | | Enhanced intake of fodder | | | | Increased Milk production | | | | Improvement in health condition and reduced cost | | | | of cattle feed | | #### 5.B.5. Fisheries: NIL | Type of | Name of the technology | Breed | No. of | Units/
Area | ` | /ield | (q/ha) | % | | | demonstra
r (Rs./m2) | ation | | | s of chec
r (Rs./m2) | | |--------------|---|-------|--------------|----------------|---------------|-----------------|---------------|-----------|---------------|-----------------|-------------------------|-----------|--|--|-------------------------|--| | Breed | demonstrated Demo (m²) Domo Che | | Check if any | Increase | Gross
Cost | Gross
Return | Net
Return | **
BCR | Gross
Cost | Gross
Return | Net
Return
| **
BCR | | | | | | | | | | | ΗΙ | _ A | | | | | | | | | | | | Common | | | | | | | | | | | | | | | | | | carps | | | | | | | | | | | | | | | | | | Mussels | | | | | | | | | | | | | | | | | | Mussels | | | | | | | | | | | | | | | | | | Ornamental | | | | | | | | | | | | | | | | | | fishes | Others | | | | | | | | | | | | | | | | | | (pl.specify) | | | | | | | | | | | | | | | | | ^{*} Economics to be worked out based total cost of production per unit area and not on critical inputs alone. H-High L-Low, A-Average Data on additional parameters other than yield (viz., reduction of percentage diseases, effective use of land etc.) | | Data on other parameters in relation to technology demonstrated | | | | | | | | | | | | | |---------------------|---|--------------|--|--|--|--|--|--|--|--|--|--|--| | Parameter with unit | Demo | Check if any | ## 5. B6. Feedback on fisheries technologies demonstrated | Name of fisheries technology demonstrated | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---|--|---| | | | | ^{**} BCR= GROSS RETURN/GROSS COST 5.B.7. Other enterprises | Enterprise | Name of the technology | Variety/ | No.
of | Units/ Area | Name of the parameter | , | Yiel | d (Q | tl/ha) | %
Increase | den | onomics on
nonstration
on (Rs. | n | | mics of (
it) or (Rs | | |---------------|------------------------|----------|-----------|-------------|-----------------------|---|------|------|--------------|---------------|-----------------|--------------------------------------|-----------|-----------------|-------------------------|-----------| | | demonstrated | species | Demo | {m²} | with unit | D | em | 0 | Check if any | Increase | Gross
Return | Net
Return | **
BCR | Gross
Return | Net
Return | **
BCR | | | | | | | | Н | L | Α | | | | | | | | | | Oyster | | | | | | | | | | | | | | | | | | mushroom | Button | | | | | | | | | | | | | | | | | | mushroom | | | | | | | | | | | | | | | | | | Vermicompost | Sericulture | Apiculture | | | | | | | | | | | | | | | | | | Others | | | | | | | | | | | | | | | | | | (pl. specify) | | | | | | | | | | | | | | | | | | Enterprise | Name of the technology | Variety/ | No.
of | Units/ Area | Name of the parameter | | Yiel | d (Q | tl/ha) | % | *Economics of
demonstration
(Rs./unit) or (Rs./m2) | | | *Economics of check
(Rs./unit) or (Rs./m2) | | | |----------------------------|--|----------|-----------|---------------|---|------|------|------|--------------|----------|--|---------------|-----------|---|---------------|-----------| | · | demonstrated | species | Demo | {m²} | with unit | Demo | | 0 | Check if any | Increase | Gross
Return | Net
Return | **
BCR | Gross
Return | Net
Return | **
BCR | | | | | | | | Н | L | Α | | | 11000111 | 110001111 | | 11000 | 11000111 | | | Nutrition &
Health | Demonstration
of Nutri
Garden | - | 25 | 3439.78Sq.mts | Amount spent towards purchase of vegetables/ye ar Percentage adequacy of vegetables Availability of leafy vegetables, other vegetables and roots and tubers per day/ member | - | - | - | - | | 134960 | 82460 | 2.47 | - | - | - | | Post Harvest
Technology | Demonstration
of Solar dryer
for drying of
Red Chillies | - | 3 | | No. of days required for drying of chillies Quantity of dry chillies obtained after drying (Kg) Moisture removal rate (Kg/day) Moisture content in Chilli powder (%) Aflatoxin content in Chilli powder (mg/Kg) | - | - | - | - | - | - | - | - | - | - | - | | Enterprise | Name of the technology demonstrated | | | | technology | | | technology | technology | technology | technology | Variety/ | No.
of | Units/ Area
{m²} | Name of the parameter | , | Yiel | d (Q | tl/ha) | Increase | *Economics of
demonstration
(Rs./unit) or (Rs./m2) | | | | *Economics of check
(Rs./unit) or (Rs./m2) | | |---------------|---|---------|------|-------|---|---|-----|------------|--------------|------------|-----------------|---------------|-----------|---------------------|-----------------------|-----------|------|------|--------|----------|--|--|--|--|---|--| | | | species | Demo | (III) | with unit | |)em | 0 | Check if any | iliciease | Gross
Return | Net
Return | **
BCR | Gross
Return | Net
Return | **
BCR | | | | | | | | | | | | | | | | | | Н | L | Α | Grain Storage | Demonstration
of Super Grain
Bags | - | 40 | | No. of live insects per Kg (Nos./Kg) Weight loss of grains (Kgs) Percentage weight loss of grains (%) | | - | 1 | - | - | - | - | - | - | - | - | | | | | | | | | | | #### Data on additional parameters other than yield: Nutri Garden | Data on other parameters in relation to technology demonstrated | | | | | | | | | | | |---|---------------------------|-----------------------|--|--|--|--|--|--|--|--| | Parameter with unit | Demo | Local | | | | | | | | | | Amount spent towards purchase of vegetables/year | Rs.3600
(Rs.300/month) | 19200 (Rs.1600/month) | | | | | | | | | | Percentage adequacy of vegetables | 45.40 | - | | | | | | | | | | Availability of leafy vegetables, other vegetables and roots and tubers per day/ member (gms) | 227.00 | - | | | | | | | | | # Data on additional parameters other than yield : Post Harvest Technology (Solar dryer) | Data on other parameters in relation to technology demonstrated | | | | | | | | | | | |---|--------------|--------------|--|--|--|--|--|--|--|--| | Parameter with unit | Demo | Local | | | | | | | | | | | ByadagiDabbi | ByadagiDabbi | | | | | | | | | | Quantity of chillies taken (Kg) | 32 | 32 | | | | | | | | | | Number of days required for drying of ByadagiChilli | 4.6 | 9.6 | | | | | | | | | | Quantity of dried chillies obtained after drying (Kg) | 11.75 | 10.40 | | | | | | | | | | Moisture removal rate (Kg/day) | 4.40 | 2.25 | | | | | | | | | | Minimum and Maximum temperature recorded | 30°C to 55°C | 21°C to 32°C | | | | | | | | | | | (Dec-Jan) | (Dec-Jan) | |--|-----------|-----------| | Moisture content in Byadagichilli powder (%) | 3.28 | 5.42 | | Aflatoxin content (mg/Kg) | Not found | Not found | | Market price (Rs.) | 55000 | 47000 | # Data on additional parameters other than yield : Demonstration of Super Grain Bags | Data on other parameters in relation to technolog | gy demonstrated | | | |---|-----------------|-----------|----------------------| | | Greengram | (20 Demo) | Bengalgram (20 Demo) | | Parameter with unit | Demo | Local | | | No. of live insects / Kg (Nos.) | 0 | 5.65 | | | Initial weight of grains (Kg) | 50 Kg | 50 Kg | Results are awaited | | Final weight of grains (Kg) | 49.47 | 44.93 | Results are awaited | | Weight loss of grains / 50 Kg (Kg) | 0.53 | 5.07 | | | Weight loss of grains (%) | 1.06 | 10.14 | | # 5. B8. Feedback on enterprises demonstrated | Name of enterprise demonstrated | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---------------------------------|--|--| | Nutrition | <u>Useful characters :</u> | Socio-economic constraints | | Garden | Fresh vegetables were available to families Cost incurred for purchase of vegetables has been reduced All family members including children came to know about the cultivation of various vegetables Exchange of vegetables with neighbors and friends Constraints: Water problem and heavy rainfall Management of pest and diseases | Due to small land holding, many families may show dis-interest in cultivation of vegetables in smaller quantity
Lack of resources Fencing problem Damage of Nutri-Garden occurs due to stray cattles and livestock Administrative constraints Nil | | Solar drier | Useful characters: • Drying is uniform and faster • Chillies are free from dust, mud and other particles • Labour requirement is less Constraints: • Not suitable for big farmers • Small quantities can be dried • Susceptable to damage during transportation to Solar drier | Socio-economic constraints Damage of solar drier during drying due to monkeys and cattles Machine is costly Durability of drier is less. Problem of damage of solar panel. Administrative constraints No subsidy from Government for small machines More space required for tunnel drier (Large scale) High investment for installation | | Grain storage | Useful characters : | Socio-economic constraints | | Name of enterprise demonstrated | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |---------------------------------|---|---| | | Storage is easyNo pest incidence | Cost is more Repeated purchase of bags due to tearing of bags | ## 5.B.9. Farm implements and machinery | Name of the implement implement | | ent demonstrated | | Area
covered
under | Labour
requirement in
Mandays | | %
save | Savings
in labour
(Rs./ha) | *Economics of demonstration (Rs./ha) | *Economics of check
(Rs./ha) | | |---|--------|--|------|--------------------------|-------------------------------------|-------|-----------|----------------------------------|--------------------------------------|---------------------------------|--| | Implement | in Rs. | | Demo | demo
in ha | Demo | Check | Save | | demonstration (No./na) | (13./114) | | | Compartment bund former | 55000 | Tractor operated compartmental bund former | 10 | 4 | 0.34 | 1.67 | 79.64 | 335 | 1250 | 1800 | | | Solar nipping machine | 10500 | Solar nipping
machine in
Chickpea | 10 | 4 | 1.4 | 5 | 72 | 2100 | 600 | 3000 | | | Self
propelled
Maize
harvester | 110000 | Self propelled
single row
Maize
harvester | 3 | 1.2 | 2.4 | 9 | 73.3 | 2100 | 600 | 2700 | | ^{*} Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST # Data on additional parameters other than laboursaved (viz., reduction in drudgery, time etc.) | Data on other parameters in relation to technology demonstrated | | | | | | | | | | | |---|-------|-------|--|--|--|--|--|--|--|--| | Parameter with unit | Demo | Local | | | | | | | | | | Reduction in time of operation (%) | | | | | | | | | | | | Compartmental bund former | 82.5% | - | | | | | | | | | | Solar nipping machine | 54% | - | | | | | | | | | | Self propelled Maize harvester | 52% | - | | | | | | | | | 5. B10. Feedback on farm implements demonstrated | Name of farm implement demonstrated | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | | | | | | |-------------------------------------|---|---|--|--|--|--|--| | Compartmental bund former | Forms uniform sized compartmental bunds Incurs additional cost of cultivation in terms of diesel expenses. | Lack of knowledge to the farmers about compartmental bunding technology & in-situ soil moisture conservation Design of the equipment can be improved to vary the length & width of bunds as desired. | | | | | | | Solar nipping machine | Reduces drudgery of operation involved in hand nipping Yield as well as number of pods/plant also increases due to nipping Solar panel needs to be backed by a storage battery for operating during low solar intensity hours | Nipping operation in Chickpea is considerably being ignored by the farmers due to higher use of chemicals Solar nipping machine is not available for farmers in the subsidsed price | | | | | | 5.B.11.Extension and Training activities under FLD | SI.No. | Activity | No. of activities organised | Number of participants | Remarks | |--------|--------------------------------------|-----------------------------|------------------------|---------| | 1 | Field days | 10 | 469 | - | | 2 | Farmers Training | 62 | 1793 | - | | 3 | Media coverage | 12 | - | - | | 4 | Training for extension functionaries | 9 | 364 | - | | 5 | Others (Please specify) | | | | ## PART VI – DEMONSTRATIONS ON CROP HYBRIDS **Demonstration details on crop hybrids:** | Type of
Breed | Name of the technology demonstrated | | | | | | | | | | | | | | Name | No. | Area | | Yield | l (q/ha) | | % | *Econe | omics of one (Rs./ | | ation | *E | conomics
(Rs./ | | k | |------------------|-------------------------------------|------------------|------|---------|---|------|---|-------|----------|---------------|-----------------|---------------|-----------|---------------|-----------------|---------------|-----------|--|-------|----------|--|---|--------|--------------------|--|-------|----|-------------------|--|---| | | | of the
hybrid | Demo | of (ha) | | Demo | | Check | Increase | Gross
Cost | Gross
Return | Net
Return | **
BCR | Gross
Cost | Gross
Return | Net
Return | **
BCR | Н | L | Α | Cereals | Bajra | Type of | Name of the technology | Name of the | No.
of | Area | | Yield | (q/ha) | | % | *Econo | omics of (| | ation | *Е | conomics
(Rs./ | | | |--------------|------------------------|-------------|-----------|------|-------|-------|--------|-------|----------|---------------|-----------------|---------------|-----------|---------------|-------------------|---------------|-----------| | Breed | demonstrated | hybrid | Demo | (ha) | | Demo | | Check | Increase | Gross
Cost | Gross
Return | Net
Return | **
BCR | Gross
Cost | Gross
Return | Net
Return | **
BCR | | Maize | ICM in Maize | CP-
848 | 20 | 8 | 59.00 | 52.40 | 56.16 | 51.51 | 9.0 | 47096 | 112320 | 65224 | 2.38 | 46116 | 103020 | 56904 | 2.23 | | Paddy | | | | | | | | | | | | | | | | | | | Sorghum | | | | | | | | | | | | | | | | | | | Wheat | | | | | | | | | | | | | | | | | | | Others | | | | | | | | | | | | | | | | | | | (pl.specify) | | | | | | | | | | | | | | | | | | | Total | | | | | | | | | | | | | | | | | | | Oilseeds | | | | | | | | | | | | | | | | | | | Castor | | | | | | | | | | | | | | | | | | | Mustard | | | | | | | | | | | | | | | | | | | Safflower | | | | | | | | | | | | | | | | | | | Sesame | | | | | | | | | | | | | | | | | | | Sunflower | | | | | | | | | | | | | | | | | | | Groundnut | | | | | | | | | | | | | | | | | | | Soybean | | | | | | | | | | | | | | | | | | | Others | | | | | | | | | | | | | | | | | | | (pl.specify) | | | | | | | | | | | | | | | | | | | Total | | | | | | | | | | | | | | | | | | | Pulses | | | | | | | | | | | | | | | | | | | Greengram | | | | | | | | | | | | | | | | | | | Blackgram | | | | | | | | | | | | | | | | | | | Bengalgram | | | | | | | | | | | | | | | | | | | Redgram | | | | | | | | | | | | | | | | | | | Others | | | | | | | | | | | | | | | | | | | (pl.specify) | | | | | | | | | | | | | | | | | | | Total | | | | | | | | | | | | | | | | | | | Vegetable | | | | | | | | | | | | | | | | | | | crops | | | | | | | | | | | | | | | | | | | Bottle gourd | | | | | | | | | | | | | | | | | | | Capsicum | | | | | | | | | | | | | | | | | | | Others | | | | | 1 | | 1 | | | | | | | | | | | | (pl.specify) | | | | | | | | | | | | | | | | | | | Total | | | | | | | | | | | | | | | | | | | Cucumber | | | | | | | | | | | | | | | | | | | Tomato | | | | | | | | | | | | | | | | | | | Brinjal | | | | |] | |] | | | | | | | | | | | | Type of | Name of the | Name of the | No.
of | Area | Yield | (q/ha) | | % | *Econo | omics of (| demonstr
'ha) | ation | *E | conomics
(Rs./ | | k | |------------------------|----------------------------|-------------|-----------|------|-------|--------|-------|----------|---------------|-----------------|------------------|-----------|---------------|-------------------|---------------|-----------| | Breed | technology
demonstrated | hybrid | Demo | (ha) | Demo | | Check | Increase | Gross
Cost | Gross
Return | Net
Return | **
BCR | Gross
Cost | Gross
Return | Net
Return | **
BCR | | Okra | | | | | | | | | | | | | | | | | | Onion | | | | | | | | | | | | | | | | | | Potato | | | | | | | | | | | | | | | | | | Field bean | | | | | | | | | | | | | | | | | | Others | | | | | | | | | | | | | | | | | | (pl.specify) | | | | | | | | | | | | | | | | | | Total | | | | | | | | | | | | | | | | | | Commercial crops | | | | | | | | | | | | | | | | | | Sugarcane | | | | | | | | | | | | | | | | | | Coconut | | | | | | | | | | | | | | | | | | Others | | | | | | | | | | | | | | | | | | (pl.specify) | | | | | | | | | | | | | | | | | | Total | | | | | | | | |
 | | | | | | | | Fodder crops | | | | | | | | | | | | | | | | | | Maize
(Fodder) | | | | | | | | | | | | | | | | | | Sorghum
(Fodder) | | | | | | | | | | | | | | | | | | Others
(pl.specify) | | | | | | | | | | | | | | | | | | Total | | | | | | | | | | | | | | | | | Feedback on crop hybrids demonstrated | Name of crop
hybrid
demonstrated | Useful characters as well as constraints of technology | Socio-economic as well as administrative constraints for its adoption | |--|--|---| | | | | | | | | # PART VII. TRAINING # 7.A. Training of Farmers and Farm Women including sponsored training programmes (On campus) | | No. of | | | | No. of I | Participa | nts | | | | |--|--------|------|---------|-------|----------|-----------|-------|------|----------|-----| | Area of training | Cours | | General | | | SC/ST | | G | rand Tot | al | | | es | Male | Female | Total | Male | Female | Total | Male | Female | | | Crop Production | | | | | | | | | | | | Weed Management | 1 | 38 | 2 | 40 | 0 | 0 | 0 | 38 | 2 | 40 | | Resource Conservation
Technologies | | | | | | | | | | | | Cropping Systems | 1 | 20 | 0 | 20 | 25 | 0 | 25 | 45 | 0 | 45 | | Crop Diversification | | | | | | | | | | | | Integrated Farming | 7 | 47 | 155 | 202 | 0 | 16 | 16 | 47 | 171 | 218 | | Micro Irrigation/Irrigation | | | | | | | | | | | | Seed production | | | | | | | | | | | | Nursery management | | | | | | | | | | | | Integrated Crop Management | 7 | 202 | 51 | 253 | 12 | 1 | 13 | 214 | 52 | 266 | | Soil and Water Conservation | | | | | | | | | | | | Integrated Nutrient Management | 3 | 103 | 14 | 117 | 10 | 0 | 10 | 113 | 14 | 127 | | Production of organic inputs | 1 | 10 | 14 | 24 | 0 | 1 | 1 | 10 | 15 | 25 | | Others (pl.specify) | | | | | | | | | | | | Natural Farming | 13 | 235 | 191 | 426 | 82 | 46 | 128 | 317 | 237 | 554 | | Horticulture | | | | | | | | | | | | a) Vegetable Crops | | | | | | | | | | | | Production of low value and high volume crop | | | | | | | | | | | | Off-season vegetables | | | | | | | | | | | | Nursery raising | | | | | | | | | | | | Exotic vegetables | | | | | | | | | | | | Export potential vegetables | | | | | | | | | | | | Grading and standardization | | | | | | | | | | | | Protective cultivation | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Weed management | 1 | 12 | 0 | 12 | 3 | 0 | 3 | 15 | 0 | 15 | | ICM in vegetable crops | 4 | 51 | 18 | 69 | 10 | 7 | 17 | 61 | 25 | 86 | | b) Fruits | | | | | | | | | | | | Training and Pruning | | | | | | | | | | | | Layout and Management of Orchards | 1 | 0 | 4 | 4 | 4 | 7 | 11 | 4 | 11 | 15 | | Cultivation of Fruit | | | | | | | | | | | | Management of young plants/orchards | | | | | | | | | | | | Rejuvenation of old orchards | | | | | | | | | | | | Export potential fruits | | | | | | | | | | | | Micro irrigation systems of orchards | | | | | | | | | | | | | No. of | | | | No. of I | Participa | nts | | | | |--|--------|------|---------|-------|----------|-----------|-------|------|----------|-------| | Area of training | Cours | | General | | | SC/ST | | G | rand Tot | al | | | es | Male | Female | Total | Male | Female | Total | Male | Female | Total | | Plant propagation techniques | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Integrated Horticulture
System | 1 | 0 | 20 | 20 | 0 | 5 | 5 | 0 | 25 | 25 | | c) Ornamental Plants | | | | | | | | | | | | Nursery Management | | | | | | | | | | | | Management of potted plants | | | | | | | | | | | | Export potential of ornamental plants | | | | | | | | | | | | Propagation techniques of
Ornamental Plants | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | d) Plantation crops | | | | | | | | | | | | Production and Management technology Processing and value addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | e) Tuber crops | | | | | | | | | | | | Production and Management technology Processing and value | | | | | | | | | | | | addition Others (pl.specify) | | | | | | | | | | | | f) Spices | | | | | | | | | | | | Production and Management technology Processing and value addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | g) Medicinal and Aromatic
Plants | | | | | | | | | | | | Nursery management | | | | | | | | | | | | Production and management technology in Ashwagandha crop | | | | | | | | | | | | Post harvest technology and value addition Others (pl.specify) | | | | | | | | | | | | Soil Health and Fertility Management | | | | | | | | | | | | Soil fertility management | 1 | 20 | 0 | 20 | 0 | 0 | 0 | 20 | 0 | 20 | | Integrated water management | _ | | | | | | | | | | | Integrated nutrient management | | | | | | | | | | | | Production and use of organic inputs | 2 | 8 | 35 | 43 | 5 | 12 | 17 | 13 | 47 | 60 | | Management of Problematic soils | | | | | | | | | | | | | No. of | | | | No. of I | Participa | nts | _ | | | |--|--------|------|---------|-------|---------------|-----------|---------|---------|-----------|-------| | Area of training | Cours | | General | | | SC/ST | | | rand Tot | | | | es | Male | Female | Total | Male | Female | Total | Male | Female | Total | | Micro nutrient deficiency in | | | | | | | | | | | | Crops Nutrient use efficiency | | | | | | | | | | | | Balanced use of fertilizers | Soil and water testing | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Livestock Production and
Management | | | | | | | | | | | | Dairy Management | | | | | | | | | | | | Poultry Management | | | | | | | | | | | | Piggery Management | | | | | | | | | | | | Rabbit Management | | | | | | | | | | | | Animal Nutrition | | | | | | | | | | | | Management | | | | | | | | | | | | Animal Disease | | | | | | | | | | | | Management Feed and Fodder | | | | | | | | | | | | technology | | | | | | | | | | | | Production of quality animal products | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Home Science/Women | | | | | | | | | | | | empowerment | | | | | | | | | | | | Household food security by kitchen gardening and | 10 | 14 | 215 | 229 | 7 | 71 | 78 | 21 | 286 | 307 | | nutrition gardening | 10 | 17 | 213 | 223 | , | '' | 70 | 21 | 200 | 307 | | Design and development of | | | | | | | | | | | | low/minimum cost diet | | | | | | | | | | | | Designing and development for high nutrient efficiency | 2 | 5 | 73 | 78 | 0 | 0 | 0 | 5 | 73 | 78 | | diet | _ | J | " | 10 | O | | Ŭ | O | 10 | 70 | | Minimization of nutrient loss | | | | | | | | | | | | in processing Processing and cooking | | | 0.5 | | | | 0- | | | 440 | | | 3 | 26 | 65 | 91 | 0 | 25 | 25 | 26 | 90 | 116 | | Gender mainstreaming through SHGs | | | | | | | | | | | | Storage loss minimization techniques | | | | | | | | | | | | Value addition | 2 | 26 | 31 | 57 | 4 | 0 | 1 | 20 | 21 | 61 | | Women empowerment | 4 | 0 | 95 | 95 | <u>4</u>
6 | 29 | 4
35 | 30
6 | 31
124 | 130 | | Location specific drudgery | 4 | U | 90 | 90 | U | 23 | 33 | U | 124 | 130 | | production | | | | | | | | | | | | Rural Crafts | | | | | | | | | | | | Women and child care | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | EDP for women | 1 | 0 | 40 | 40 | 0 | 10 | 10 | 0 | 50 | 50 | | Waste management | 5 | 0 | 0 | 0 | 0 | 148 | 148 | 0 | 148 | 148 | | Agril. Engineering | 5 | U | 0 | U | U | 140 | 140 | U | 140 | 140 | | | | | | | | | | | | | | Farm machinery and its maintenance | 9 | 211 | 28 | 239 | 58 | 4 | 62 | 269 | 32 | 301 | | | No. of | | | | No. of I | Participa | nts | | | | |---|--------|------|---------|----------|----------|-----------|-------|------|----------|--| | Area of training | Cours | | General | | | SC/ST | | G | rand Tot |
al | | _ | es | Male | Female | Total | Male | Female | Total | Male | Female | | | Installation and maintenance | | | | 1 0 1011 | | | | | | 1 0 1011 | | of micro irrigation systems | | | | | | | | | | | | Use of Plastics in farming | | | | | | | | | | | | practices | | | | | | | | | | | | Production of small tools | | | | | | | | | | | | and implements Repair and maintenance of | | | 1 | | | | | | | | | farm machinery and | | | | | | | | | | | | implements | | | | | | | | | | | | Small scale processing and | | | | | | | | | | | | value addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Mechanisation in straw | | | | | _ | | 4.0 | | | 10 | | management | 1 | 30 | 9 | 39 | 7 | 3 | 10 | 37 | 12 | 49 | | Energy efficient pumps and | 3 | 105 | 25 | 130 | 24 | 0 | 24 | 129 | 25 | 154 | | water conservation | 3 | 103 | 25 | 130 | 24 | U | 24 | 123 | 20 | 134 | | Plant Protection | | | | | | | | | | | | Integrated Pest | 4 | 124 | 31 | 155 | 16 | 4 | 20 | 140 | 35 | 175 | | Management | | | 01 | 100 | 10 | | 20 | 1 10 | | | | Integrated Disease | | | | | | | | | | | | Management Bio-control of pests and | | | | | | | | | | | | diseases | | | | | | | | | | | | Production of bio control | | | | | | | | | | | | agents and bio pesticides | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Fisheries | | | | | | | | | | | | Integrated fish farming | | | | | | | | | | | | Carp breeding and hatchery | | | | | | | | | | | | management | | | 1 | | | | | | | | | Carp fry and fingerling rearing | | | | | | | | | | | | Composite fish culture | | | | | | | | | | | | Hatchery management and | | | | | | | | | | | | culture of freshwater prawn | | | | | | | | | | | | Breeding and culture of | | | | | | | | | | | | ornamental fishes | | | | | | | | | | | |
Portable plastic carp | | | | | | | | | | | | hatchery | | | | | | | | | | | | Pen culture of fish and | | | | | | | | | | | | prawn
Shrimp farming | Edible oyster farming | | | | | | | | | | | | Pearl culture | | | | | | | | | | | | Fish processing and value addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Production of Inputs at site | | | | | | | | | | | | Seed Production | | | | | | | | | | | | Planting material production | + | | | | | 1 | | | | | | Bio-agents production | | | | | | 1 | | | | | | Pio-agento production | | | | | | | | | | | | | No. of | | | | No. of I | Participa | nts | | | | |--|--------|------|---------|-------|----------|-----------|-------|------|-----------|-------| | Area of training | Cours | | General | | | SC/ST | | G | rand Tota | al | | | es | Male | Female | Total | Male | Female | Total | Male | Female | Total | | Bio-pesticides production | | | | | | | | | | | | Bio-fertilizer production | | | | | | | | | | | | Vermi-compost production | 2 | 30 | 35 | 65 | 0 | 5 | 5 | 30 | 40 | 70 | | Organic manures production | 1 | 35 | 0 | 35 | 4 | 0 | 4 | 39 | 0 | 39 | | Production of fry and fingerlings Production of Bee-colonies | | | | | | | | | | | | and wax sheets | | | | | | | | | | | | Small tools and implements | | | | | | | | | | | | Production of livestock feed and fodder | | | | | | | | | | | | Production of Fish feed | | | | | | | | | | | | Mushroom production | | | | | | | | | | | | Apiculture | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Capacity Building and Group Dynamics | | | | | | | | | | | | Leadership development | | | | | | | | | | | | Group dynamics | | | | | | | | | | | | Formation and Management of SHGs | | | | | | | | | | | | Mobilization of social capital | | | | | | | | | | | | Entrepreneurial development of farmers/youths | | | | | | | | | | | | Others (pl. specify) | | | | | | | | | | | | Farmers' Producer Organisation | | | | | | | | | | | | Agro-forestry | | | | | | | | | | | | Production technologies | | | | | | | | | | | | Nursery management | | | | | | | | | | | | Integrated Farming Systems | 1 | 15 | 0 | 15 | 7 | 3 | 10 | 22 | 3 | 25 | | Others (Pl. specify) | | | | | | | | | | | | TOTAL | 91 | 1367 | 1151 | 2518 | 284 | 397 | 681 | 1612 | 1545 | 3199 | # 7.B Training of Farmers and Farm Women including sponsored training programmes (Off campus) | | No. of | | | | No. | of Partic | ipants | | | | |--|-------------|------|---------|-------|------|-----------|--------|------|-----------|-------| | Area of training | Cours
es | | General | 1 | | SC/ST | | | rand Tota | | | Crop Production | 62 | Male | Female | Total | Male | Female | Total | Male | Female | Total | | Weed Management | | | | | | | | | | | | Resource Conservation | | | | | | | | | | | | Technologies | | | | | | | | | | | | Cropping Systems | 1 | 25 | 0 | 25 | 5 | 0 | 5 | 30 | 0 | 30 | | Crop Diversification | | | | | | | | | | | | Integrated Farming | | | | | | | | | | | | Micro Irrigation/Irrigation | | | | | | | | | | | | Seed production | | | | | | | | | | | | Nursery management | | | | | | | | | | | | Integrated Crop | 5 | 140 | 24 | 164 | 35 | 6 | 41 | 175 | 30 | 205 | | Management Soil and Water Conservation | | | | | | | | 170 | 00 | | | Integrated Nutrient | | | | | | | | | | | | Management | | | | | | | | | | | | Production of organic inputs | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Organic farming | 2 | 3 | 55 | 58 | 0 | 17 | 0 | 3 | 72 | 80 | | Horticulture | | | | | | | | | | | | a) Vegetable Crops | | | | | | | | | | | | Production of low value and | 1 | 8 | 2 | 10 | 5 | 0 | 5 | 13 | 2 | 15 | | high volume crop Off-season vegetables | | | | | | | | | _ | | | Nursery raising | | | | | | | | | | | | Exotic vegetables | | | | | | | | | | | | Export potential vegetables | | | | | | | | | | | | Grading and standardization | | | | | | | | | | | | Protective cultivation | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | IPDM in White Onion | | | | | | | | | | | | Vegetable cultivation | | | | | | | | | | | | Post harvest management of | | | | | | | | | | | | Onion | | | | | | | | | | | | ICM in vegetable crops | 2 | 20 | 12 | 32 | 10 | 3 | 13 | 30 | 15 | 45 | | Onion seed production | | | | | | | | | | | | &post harvest handling of
seeds | | | | | | | | | | | | INM in vegetable crops | 2 | 18 | 0 | 18 | 10 | 0 | 10 | 28 | 0 | 28 | | b) Fruits | | | | | | | | | | | | Training and Pruning | | | | | | | | | | | | Layout and Management of Orchards | 1 | 8 | 4 | 12 | 8 | 2 | 10 | 16 | 6 | 22 | | Cultivation of Fruit | | | | | | | | | | | | | No. of | | | | No. o | of Partic | ipants | | | | |---|--------|------|---------|-------|-------|-----------|--------|------|-----------|-------| | Area of training | Cours | | General | | | SC/ST | • | G | rand Tota | al | | | es | Male | Female | Total | Male | Female | Total | Male | Female | Total | | Management of young plants/orchards | | | | | | | | | | | | Rejuvenation of old orchards | | | | | | | | | | | | Export potential fruits | | | | | | | | | | | | Micro irrigation systems of orchards | | | | | | | | | | | | Plant propagation techniques | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | c) Ornamental Plants | | | | | | | | | | | | Nursery Management | | | | | | | | | | | | Management of potted plants Export potential of | | | | | | | | | | | | ornamental plants Propagation techniques of Ornamental Plants Others (pl.specify) | | | | | | | | | | | | d) Plantation crops | | | | | | | | | | | | Production and | | | | | | | | | | | | Management technology Processing and value | | | | | | | | | | | | addition Others (pl.specify) | | | | | | | | | | | | e) Tuber crops | | | | | | | | | | | | Production and Management technology Processing and value addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | f) Spices Production and Management technology | 1 | 15 | 0 | 15 | 7 | 0 | 7 | 22 | 0 | 22 | | Processing and value addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | g) Medicinal and Aromatic
Plants | | | | | | | | | | | | Nursery management | | | | | | | | | | | | Production and management technology | 1 | 15 | 0 | 15 | 4 | 0 | 4 | 19 | 0 | 19 | | Post harvest technology and value addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Soil Health and Fertility Management | | | | | | | | | | | | Soil fertility management | | | | | | | | | | | | Integrated water management | 2 | 27 | 0 | 27 | 8 | 0 | 8 | 35 | 0 | 35 | | Integrated nutrient management | | | | | | | | | | | | | No. of | | | | No. o | of Partici | pants | | | | |--|--------|-----|---------|-------|-------|------------|-------|------|-----------|-----| | Area of training | Cours | | General | | | SC/ST | | G | rand Tota | al | | | es | | Female | Total | Male | Female | Total | Male | Female | | | Production and use of | | | | | | | | | | | | organic inputs Management of Problematic | | | | | | | | | | | | soils | | | | | | | | | | | | Micro nutrient deficiency in | | | | | | | | | | | | crops | | | | | | | | | | | | Nutrient use efficiency | | | | | | | | | | | | Balanced use of fertilizers | | | | | | | | | | | | Soil and water testing | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Livestock Production and | | | | | | | | | | | | Management | | | | | | | | | | | | Dairy Management | | | | | | | | | | | | Poultry Management | | | | | | | | | | | | Piggery Management | | | | | | | | | | | | Rabbit Management | | | | | | | | | | | | Animal Nutrition | | | | | | | | | | | | Management | | | | | | | | | | | | Animal Disease | | | | | | | | | | | | Management Feed and Fodder technology | Production of quality animal products | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Home Science/Women | | | | | | | | | | | | empowerment | | | | | | | | | | | | Household food security by kitchen gardening and | 14 | 107 | 229 | 336 | 8 | 61 | 69 | 115 | 290 | 405 | | nutrition gardening | | | | | | | | 115 | 290 | 405 | | Design and development of | | | | | | | | | | | | low/minimum cost diet | | | | | | | | | | | | Designing and development | 3 | 7 | 58 | 65 | 0 | 2 | 2 | _ | | | | for high nutrient efficiency diet | | | | | | | | 7 | 60 | 67 | | Minimization of nutrient loss | | | | | | | | | | | | in processing | | | | | | | | | | | | Processing and cooking | 2 | 0 | 45 | 45 | 0 | 20 | 20 | 0 | 65 | 65 | | Gender mainstreaming | | | | | | | | | | | | through SHGs | _ | | | | | | 4.0 | | | | | Storage loss minimization techniques | 5 | 37 | 29 | 66 | 8 | 11 | 19 | 45 | 40 | 85 | | Value addition | 2 | 9 | 27 | 36 | 2 | 9 | 11 | 11 | 36 | 47 | | Women empowerment | | | | | | | | ,,, | 00 | 71 | | Location specific drudgery | | | | | | | | | | | | production | | | | | | | | | | | | Rural Crafts | | | | | | | | | | | | Women and child care | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Kitchen waste management | 1 | 18 | 14 | 32 | 0 | 0 | 0 | 18 | 14 | 32 | | | l I | 10 | 14 | 32 | U | U | U | 10 | 14 | | | | No. of | | | | No. | of Partic | ipants | | | | |---|--------|------|---------|-------|------|-----------|--------|------|-----------|-----| | Area of training | Cours | | General | | | SC/ST | • | G | rand Tota | al | | _ | es | Male | Female | Total | Male | Female | Total | Male | Female | | | Agril. Engineering | | | | | | | | | | | | Farm machinery and its maintenance | 3 | 67 | 0 | 67 | 17 | 0 | 17 | 84 | 0 | 84 | | Installation and maintenance | | | | | | | | | | | | of
micro irrigation systems Use of Plastics in farming | | | | | | | | | | | | practices Production of small tools | | | | | | | | | | | | and implements | | | | | | | | | | | | Repair and maintenance of farm machinery and implements | | | | | | | | | | | | Small scale processing and value addition | | | | | | | | | | | | Post Harvest Technology | 5 | 94 | 51 | 145 | 22 | 11 | 33 | 116 | 62 | 178 | | Others (pl.specify) | 4 | 47 | | 47 | | 4 | | | | | | Operation of solar nipping machine | 1 | 17 | 0 | 17 | 3 | 1 | 4 | 20 | 1 | 21 | | Conservation in agriculture practices | 1 | 4 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 4 | | Plant Protection | | | | | | | | | | | | Integrated Pest
Management | 2 | 22 | 0 | 22 | 10 | 0 | 10 | 32 | 0 | 32 | | Integrated Disease
Management | | | | | | | | | | | | Bio-control of pests and diseases | | | | | | | | | | | | Production of bio control agents and bio pesticides | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Integrated pest and disease management | | | | | | | | | | | | Organic farming | | | | | | | | | | | | Fisheries | | | | | | | | | | | | Integrated fish farming | | | | | | | | | | | | Carp breeding and hatchery management | | | | | | | | | | | | Carp fry and fingerling rearing | | | | | | | | | | | | Composite fish culture | | | | | | | | | | | | Hatchery management and culture of freshwater prawn | _ | | | | | | | | | | | Breeding and culture of ornamental fishes | | | | | | | | | | | | Portable plastic carp hatchery | | | | | | | | | | | | Pen culture of fish and prawn | | | | | | | | | | | | Shrimp farming | | | | | | | | | | | | Edible oyster farming | | | | | | | | | | | | Pearl culture | | | | | | | | | | | | Fish processing and value | | | | | | | | | | | | | No. of | | | | No. | of Partici | ipants | | | | |---|--------|------|---------|-------|------|------------|--------|------|-----------|-------| | Area of training | Cours | | General | | | SC/ST | | G | rand Tota | al | | | es | Male | Female | Total | Male | Female | Total | Male | Female | Total | | addition | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Production of Inputs at | | | | | | | | | | | | site | | | | | | | | | | | | Seed Production | | | | | | | | | | | | Planting material production | | | | | | | | | | | | Bio-agents production | | | | | | | | | | | | Bio-pesticides production | | | | | | | | | | | | Bio-fertilizer production | | | | | | | | | | | | Vermi-compost production | | | | | | | | | | | | Organic manures production | | | | | | | | | | | | Production of fry and fingerlings | | | | | | | | | | | | Production of Bee-colonies | | | | | | | | | | | | and wax sheets | | | | | | | | | | | | Small tools and implements | | | | | | | | | | | | Production of livestock feed and fodder | | | | | | | | | | | | Production of Fish feed | | | | | | | | | | | | Mushroom production | | | | | | | | | | | | Apiculture | | | | | | | | | | | | Others (pl.specify) | | | | | | | | | | | | Capacity Building and Group Dynamics | | | | | | | | | | | | Leadership development | | | | | | | | | | | | Group dynamics | | | | | | | | | | | | Formation and Management of SHGs | | | | | | | | | | | | Mobilization of social capital | | | | | | | | | | | | Entrepreneurial development of farmers/youths | 1 | 8 | 6 | 14 | 0 | 0 | 0 | 8 | 6 | 14 | | Others (pl.specify) | | | | | | | | | | | | Agro-forestry | | | | | | | | | | | | Production technologies | | | | | | | | | | | | Nursery management | | | | | | | | | | | | Integrated Farming Systems | 2 | 3 | 37 | 40 | 0 | 17 | 17 | 3 | 54 | 57 | | Others (Pl. specify) | | | | | | | | | | | | TOTAL | 60 | 672 | 593 | 1265 | 162 | 160 | 305 | 834 | 753 | 1592 | # 7.C. Training for Rural Youths including sponsored training programmes (on campus) | | No. | | | ı | No. of F | Participa | nts | | | | |---|--|------|--------|-------|----------|-----------|-------|------|------------|-------| | Area of training | of General SC/ST Cou rses Male Female Total Male Fem | | | | | | 1 | Gr | and To | tal | | | | Male | Female | Total | Male | Fem ale | Total | Male | Fem
ale | Total | | Nursery Management of Horticulture crops | | | | | | uio | | | uio | | | Training and pruning of orchards | | | | | | | | | | | | Protected cultivation of vegetable crops | | | | | | | | | | | | Commercial fruit production | | | | | | | | | | | | Integrated farming | 2 | 20 | 40 | 60 | 0 | 0 | 0 | 20 | 40 | 60 | | Seed production | | | | | | | | | | | | Production of organic inputs | | | | | | | | | | | | Planting material production | | | | | | | | | | | | Vermi-culture | | | | | | | | | | | | Mushroom Production | | | | | | | | | | | | Bee-keeping | | | | | | | | | | | | Sericulture | | | | | | | | | | | | Repair and maintenance of farm machinery and implements Value addition | | | | | | | | | | | | Small scale processing | | | | | | | | | | | | Post Harvest Technology | | | | | | | | | | | | Tailoring and Stitching | | | | | | | | | | | | Rural Crafts | | | | | | | | | | | | Production of quality animal | | | | | | | | | | | | products | | | | | | | | | | | | Dairying | 6 | 71 | 38 | 109 | 18 | 15 | 33 | 89 | 53 | 142 | | Sheep and goat rearing | 2 | 27 | 3 | 30 | 14 | 0 | 14 | 41 | 3 | 44 | | Quail farming | | | | | | | | | | | | Piggery | | | | | | | | | | | | Rabbit farming | | | | | | | | | | | | Poultry production | 1 | 9 | 2 | 11 | 3 | 2 | 5 | 12 | 4 | 16 | | Ornamental fisheries | | | | | | | | | | | | Composite fish culture | | | | | | | | | | | | Freshwater prawn culture | | | | | | | | | | | | Shrimp farming | | | | | | | | | | | | Pearl culture | | | | | | | | | | | | Cold water fisheries | | | | | | | | | | | | Fish harvest and processing technology | | | | | | | | | | | | Fry and fingerling rearing | | | | | | | | | | | | Any other (pl.specify) | | | | | | | | | | | | Health and nutrition | | | | | | | | | | | | TOTAL | 11 | 127 | 83 | 210 | 35 | 17 | 52 | 162 | 100 | 262 | # 7.D. Training for Rural Youths including sponsored training programmes (off campus) | | No. | | | | No. o | f Partic | ipants | | | | |---|-------------|------|------------|-------|-------|------------|--------|------|---------|-------| | Area of training | of | | Genera | I | | SC/ST | | G | rand To | tal | | 7 ou or a ug | Cour
ses | Male | Fem
ale | Total | Male | Fem
ale | Total | Male | Fem ale | Total | | Nursery Management of
Horticulture crops | | | u.0 | | | <u></u> | | | uic | | | Training and pruning of orchards | | | | | | | | | | | | Protected cultivation of vegetable crops | | | | | | | | | | | | Commercial fruit production | | | | | | | | | | | | Integrated farming | | | | | | | | | | | | Seed production | | | | | | | | | | | | Production of organic inputs | | | | | | | | | | | | Planting material production | | | | | | | | | | | | Vermi-culture Mushroom Production | | | | | | | | | | | | Bee-keeping | | | | | | | | | | | | Sericulture | | | | | | | | | | | | Repair and maintenance of farm machinery and implements | | | | | | | | | | | | Value addition | | | | | | | | | | | | Small scale processing | | | | | | | | | | | | Post Harvest Technology | | | | | | | | | | | | Tailoring and Stitching | 2 | 0 | 48 | 48 | 0 | 12 | 12 | 0 | 60 | 60 | | Rural Crafts Production of quality animal products | | | | | | | | | | | | Dairying | | | | | | | | | | | | Sheep and goat rearing | | | | | | | | | | | | Quail farming | | | | | | | | | | | | Piggery | | | | | | | | | | | | Rabbit farming | | | | | | | | | | | | Poultry production | | | | | | | | | | | | Ornamental fisheries | | | | | | | | | | | | Composite fish culture Freshwater prawn culture | | | | | | | | | | | | Shrimp farming | | | | | | | | | | | | Pearl culture | | | | | | | | | | | | Cold water fisheries | | | | | | | | | | | | Fish harvest and processing technology | | | | | | | | | | | | Fry and fingerling rearing | | | | | | | | | | | | Any other (pl.specify) | | | | | | | | | | | | ICT in agriculture | 1 | 10 | 20 | 30 | 3 | 2 | 5 | 13 | 22 | 35 | | TOTAL | 3 | 10 | 68 | 78 | 3 | 14 | 17 | 13 | 82 | 95 | # 7.E. Training programmes for Extension Personnel including sponsored training programmes (on campus) | | No. | | | | No. of | Partic | ipants | | | | |---|-------------|------|---------|-------|--------|---------|--------|------|---------|-------| | Area of training | of | | Genera | | | SC/ST | | Gı | and To | tal | | 7 ii ou or ii ummig | Cour
ses | Male | Fem ale | Total | Male | Fem ale | Total | Male | Fem ale | Total | | Productivity enhancement in field crops | 2 | 60 | 20 | 55 | 5 | 0 | 5 | 65 | 20 | 85 | | Integrated Pest Management | | | | | | | | | | | | Integrated Nutrient management | | | | | | | | | | | | Rejuvenation of old orchards | | | | | | | | | | | | Protected cultivation technology | | | | | | | | | | | | Production and use of organic inputs | | | | | | | | | | | | Care and maintenance of farm machinery and implements | 2 | 37 | 34 | 71 | 1 | 2 | 3 | 38 | 3 | 41 | | Gender mainstreaming through SHGs | 1 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | | Formation and Management of SHGs | | | | | | | | | | | | Women and Child care | 2 | 0 | 60 | 60 | 0 | 0 | 0 | 0 | 60 | 60 | | Low cost and nutrient efficient diet designing | | | | | | | | | | | | Group Dynamics and farmers organization | 3 | 27 | 71 | 98 | 2 | 22 | 24 | 29 | 93 | 122 | | Information networking among farmers | | | | | | | | | | | | Capacity building for ICT application | 3 | 101 | 5 | 106 | 12 | 0 | 12 | 113 | 5 | 118 | | Management in farm animals | 1 | 30 | 12 | 42 | 0 | 0 | 0 | 30 | 12 | 42 | | Livestock feed and fodder production | | | | | | | | | | | | Household food security | 3 | 29 | 59 | 88 | 0 | 10 | 10 | 29 | 69 | 98 | | Any other
(pl.specify) | | | | | | | | | | | | Women entrepreneur | 5 | 0 | 129 | 129 | 3 | 21 | 24 | 3 | 150 | 153 | | Health and Nutrition | 5 | 0 | 179 | 179 | 0 | 46 | 46 | 0 | 225 | 225 | | Micro food processing enterprise | 2 | 0 | 66 | 66 | 0 | 14 | 14 | 0 | 80 | 80 | | Total | 29 | 284 | 662 | 921 | 23 | 115 | 138 | 307 | 744 | 1051 | # 7.F. Training programmes for Extension Personnel including sponsored training programmes (off campus) | | No. of | | | | No. of I | Particip | ants | | | | |--|--------|------|---------|-------|----------|------------|-----------|----------|------------|-------| | Area of training | Cours | (| General | | | SC/ST | | G | rand To | otal | | Area or training | es | Male | Fem ale | Total | Male | Fem
ale | Tot
al | Ma
le | Fem
ale | Total | | Productivity enhancement in | | | | | | | | | | | | field crops | | | | | | | | | | | | Integrated Pest Management | | | | | | | | | | | | Integrated Nutrient management | | | | | | | | | | | | Rejuvenation of old orchards | | | | | | | | | | | | Protected cultivation technology | | | | | | | | | | | | Production and use of organic | | | | | | | | | | | | inputs | | | | | | | | | | | | Care and maintenance of farm | | | | | | | | | | | | machinery and implements | | | | | | | | | | | | Gender mainstreaming through | | | | | | | | | | | | SHGs | | | | | | | | | | | | Formation and Management of SHGs | | | | | | | | | | | | Women and Child care | | | | | | | | | | | | Low cost and nutrient efficient diet designing | | | | | | | | | | | | Group Dynamics and farmers organization | | | | | | | | | | | | Information networking among farmers | | | | | | | | | | | | Capacity building for ICT application | | | | | | | | | | | | Management in farm animals | | | | | | | | | | | | Livestock feed and fodder | | | | | | | | | | | | production | | | | | | | | | | | | Good food & nutrition garden | | | | | | | | | | | | Any other (pl.specify) | | | | | | | | | | | | Entrepreneurship development | 2 | 0 | 58 | 58 | 0 | 30 | 30 | 0 | 88 | 88 | | Women empowerment | 1 | 0 | 18 | 18 | 0 | 3 | 3 | 0 | 21 | 21 | | Total | 3 | 0 | 76 | 76 | 0 | 33 | 33 | 0 | 109 | 109 | # 7.G. Sponsored training programmes conducted | | | No. | | | | No. of | Partici | pants | | | | |-------|---|-------------|---------|--------|----------|--------|---------|----------|----------|---------|-----------| | S. | Avec of training | of | | Genera | l | | SC/ST | P | Gr | and To | tal | | No. | Area of training | Cour
ses | Male | Fem | Total | Male | Fem | Total | Male | Fem | Total | | | | 363 | Wate | ale | TOtal | IVIAIC | ale | I Otal | Wale | ale | IOtai | | 1 | Crop production and management | | | | | | | | | | | | 1.a. | Increasing production and productivity of crops | 6 | 109 | 88 | 197 | 0 | 11 | 11 | 109 | 99 | 208 | | 1.b. | Commercial production of vegetables | | | | | | | | | | | | 2 | Production and value addition | | | | | | | | | | | | 2.a. | Fruit Plants | | | | | | | | | | | | 2.b. | Ornamental plants | | | | | | | | | | | | 2.c. | Spices crops | | | | | | | | | | | | 3. | Soil health and fertility | | | | | | | | | | | | | management | | | | | | | | | | | | 4 | Production of Inputs at site | | | | | | | | | | | | 5 | Methods of protective | | | | | | | | | | | | | cultivation | | | | | | | | | | | | 6 | Others (pl.specify) | | | | | | | | | | | | | Soil and water conservation | | | | | | | | | | | | 7 | Post harvest technology | | | | | | | | | | | | | and value addition | | | | | | | | | | | | 7.a. | Processing and value | 1 | 1 | 29 | 30 | 0 | 0 | 0 | 1 | 29 | 30 | | | addition | _ | - | | 30 | | | | | | 00 | | 7.b. | Others (pl.specify) | | | | | | | | | | | | | Storage loss minimization | | | | | | | | | | | | | techniques | | | | | | | | | | | | 8 | Farm machinery | | | | | | | | | | | | 8.a. | Farm machinery, tools and implements | 13 | 385 | 87 | 472 | 77 | 22 | 99 | 462 | 109 | 571 | | 8.b. | Others (pl.specify) | | | | | | | | | | | | 9. | Livestock and fisheries | | | | | | | | | | | | 10 | Livestock production and | | | | | | | | | | | | | management | | | | | | | | | | | | 10.a. | Animal Nutrition | | | | | | | | | | | | | Management | | | | | | | | | | | | 10.b. | Animal Disease | | | | | | | | | | | | 4.0 | Management | | | | | | | | | | | | 10.c | Fisheries Nutrition | | | | | | | | | | | | 10.d | Fisheries Management | | | | | | | | | | | | 10.e. | Others (pl.specify) | E | 64 | 20 | 00 | 10 | 15 | 20 | 71 | EO | 107 | | | Scientific dairy management | 5
1 | 61
9 | 38 | 99
11 | 13 | 15
2 | 28
5 | 74
12 | 53
4 | 127
16 | | | Poultry management Scientific management of | | 9 | | 11 | 3 | | 5 | IΖ | | 10 | | | sheep & goat | 2 | 27 | 3 | 30 | 14 | 0 | 14 | 41 | 3 | 44 | | | Management in farm | | | | | | | | | | | | | animals | 1 | 30 | 12 | 42 | 0 | 0 | 0 | 30 | 12 | 42 | | 11. | Home Science | | | | | | | | | | <u> </u> | | 11.a. | Household nutritional | | | | | | | | | | <u> </u> | | 11.α. | security | 10 | 5 | 327 | 332 | 0 | 61 | 61 | 5 | 433 | 388 | | 11.b. | Economic empowerment of | | _ | 3_/ | | | | | | | | | | women | 6 | 0 | 154 | 0 | 0 | 32 | 32 | 0 | 186 | 186 | | 11.c. | Drudgery reduction of | | | | | | | | | | <u> </u> | | | women | | | | | | | | | | | | 11.d. | Others (pl.specify) | | | | | | | | | | | | | Waste management | 5 | 0 | 0 | 0 | 0 | 148 | 148 | 0 | 148 | 148 | | | Tailoring & stitching | 1 | 0 | 24 | 24 | 0 | 6 | 6 | 0 | 30 | 30 | | | | No. | | | | No. of | Partici | pants | | | | |-------|--------------------------------------|-------------|------|---------|-------|--------|---------|-------|------|---------|-------| | S. | Area of training | of | | Genera | l | , | SC/ST | | Gr | and To | tal | | No. | Area or training | Cour
ses | Male | Fem ale | Total | Male | Fem ale | Total | Male | Fem ale | Total | | | Women and child care | 2 | 0 | 60 | 60 | 0 | 0 | 0 | 0 | 60 | 60 | | | Value addition | 1 | 25 | 2 | 27 | 4 | 0 | 4 | 29 | 6 | 35 | | 12 | Agricultural Extension | | | | | | | | | | | | 12.a. | Capacity Building and Group Dynamics | 6 | 101 | 134 | 235 | 12 | 50 | 62 | 113 | 184 | 297 | | 12.b. | Others (pl.specify) | | | | | | | | | | | | | Integrated Farming systems | 2 | 1 | 65 | 66 | 0 | 4 | 4 | 1 | 69 | 70 | | | Organic farming practice | 2 | 8 | 35 | 43 | 5 | 12 | 17 | 13 | 47 | 60 | | | Natural farming | 1 | 0 | 33 | 33 | 0 | 0 | 0 | 0 | 33 | 33 | | | ICT in agriculture | 1 | 10 | 20 | 30 | 3 | 2 | 5 | 13 | 22 | 35 | | | Total | 66 | 772 | 1113 | 1731 | 131 | 365 | 496 | 903 | 1527 | 2380 | ## Details of sponsoring agencies involved - i) Dept of Animal Husbandry and Veterinary Sciences - ii) NRLM - iii) ATMA - iv) PCRA - v) SBI-ASF RSETI, Hulkoti - vi) SCSP - vii) SKDRDP - viii) Department of health and family welfare - ix) Zilla Panchayat ## 7.H. Details of Vocational Training Programmes carried out by KVKs for rural youth | | | No. of | | | | No. of | f Partic | cipant | S | | | |------|---|--------|------|---------|-----------|--------|------------|-----------|------|---------|-------| | SI. | Area of training | Cour | (| General | | | SC/ST | | G | rand T | otal | | No. | Area of training | ses | Male | Fem ale | Tot
al | Male | Fem
ale | Tot
al | Male | Fem ale | Total | | 1 | Crop production and management | | | | | | | | | | | | 1.a. | Commercial floriculture | | | | | | | | | | | | 1.b. | Commercial fruit production | | | | | | | | | | | | 1.c. | Commercial vegetable production | | | | | | | | | | | | 1.d. | Integrated crop management | | | | | | | | | | | | 1.e. | Organic farming | | | | | | | | | | | | 1.f. | Others (pl.specify) | | | | | | | | | | | | 2 | Post harvest technology and | | | | | | | | | | | | | value addition | | | | | | | | | | | | 2.a. | Value addition | | | | | | | | | | | | 2.b. | Others (pl.specify) | | | | | | | | | | | | 3. | Livestock and fisheries | | | | | | | | | | | | 3.a. | Dairy farming | 8 | 90 | 73 | 163 | 29 | 21 | 50 | 119 | 94 | 213 | | 3.b. | Composite fish culture | | | | | | | | | | | | 3.c. | Sheep and goat rearing | 3 | 58 | 4 | 62 | 21 | 1 | 22 | 79 | 5 | 84 | | 3.d. | Piggery | | | | | | | | | | | | 3.e. | Poultry farming | 1 | 9 | 2 | 11 | 3 | 3 | 6 | 12 | 5 | 17 | | 3.f. | Others (pl.specify) | | | | | | | | | | | | 4. | Income generation activities | | | | | | | | | | | | 4.a. | Vermi-composting | | | | | | | | | | | | 4.b. | Production of bio-agents, bio-
pesticides,
bio-fertilizers etc. | | | | | | | | | | | | | | No. of | | | | No. o | f Partic | cipant | s | | | |------|---|--------|------|---------|-----------|-------|------------|-----------|------|---------|-------| | SI. | Area of training | Cour | (| General | | | SC/ST | 1 | G | rand T | otal | | No. | Area or training | ses | Male | Fem ale | Tot
al | Male | Fem
ale | Tot
al | Male | Fem ale | Total | | 4.c. | Repair and maintenance of farm machinery and implements | | | | | | | | | | | | 4.d. | Rural Crafts | | | | | | | | | | | | 4.e. | Seed production | | | | | | | | | | | | 4.f. | Sericulture | | | | | | | | | | | | 4.g. | Mushroom cultivation | | | | | | | | | | | | 4.h. | Nursery, grafting etc. | | | | | | | | | | | | 4.i. | Tailoring, stitching, embroidery, dying etc. | 1 | 0 | 24 | 24 | 0 | 6 | 6 | 0 | 30 | 30 | | 4.j. | Agril. para-workers, para-vet training | | | | | | | | | | | | 4.k. | Others (pl.specify) | | | | | | | | | | | | 5 | Agricultural Extension | | | | | | | | | | | | 5.a. | Capacity building and group dynamics | | | | | | | | | | | | 5.b. | Others (pl.specify) | | | | | | | | | | | | | ICT in agriculture | 1 | 10 | 20 | 30 | 3 | 2 | 5 | 13 | 22 | 35 | | | Grand Total | 13 | 167 | 123 | 290 | 56 | 33 | 89 | 223 | 156 | 379 | # 7.I. Details of Skill Training Programmes carried out by KVKs
under ASCI : NIL | | | | | | | | | No. o | f Partic | ipant | s | | | No of Partic | |-----------|---------------------|------------------|----------------------|--------------------------|------|------------|-----------|----------|------------|-----------|----------|------------|-------|------------------------------| | | | | Date | Total | | enera | | | SC/ST | | G | rand T | otal | ipants | | S.
No. | Name of Job
Role | Date
of Start | of
Assessme
nt | Expenditur
e
(Rs.) | Male | Fem
ale | To
tal | Ma
le | Fem
ale | To
tal | Ma
le | Fem
ale | Total | passe
d
asses
sment | | | | | | | | | | | | | | | | | # **PART VIII – EXTENSION ACTIVITIES** 8.1 Extension Programmes (including extension activities undertaken in FLD programmes) | | n Programmes | | | | | | | | | | |------------------------|--------------|----------|---------------------------|-------|------|------------------------|-------|------|--------------------------|-------| | Nature of
Extension | No. of | No. | of Participa
(General) | ants | No. | of Particip
SC / ST | ants | No | o.of extens
personnel | | | | Programmes | Male | Female | Total | Male | Female | Total | Male | Female | Total | | Programme | 12 | | 83 | 384 | | 24 | 97 | 12 | | | | Field Day | | 301 | | | 73 | | | | 9 | 21 | | Kisan Mela | 3 | 536 | 185 | 721 | 52 | 34 | 86 | 0 | 4 | 4 | | Kisan Ghosthi | 1 | 0 | 385 | 385 | 0 | 30 | 30 | 16 | 4 | 20 | | Exhibition | 4 | 14000 | 7135 | 21135 | 1795 | 1880 | 3675 | 177 | 161 | 338 | | Film Show | 8 | 66 | 288 | 354 | 59 | 46 | 105 | 2 | 6 | 8 | | Method | _ | | | | | | | | | | | Demonstrations | 8 | 170 | 159 | 329 | 28 | 14 | 42 | 9 | 29 | 38 | | Farmers | _ | | | | | | | | _ | | | Seminar | 5 | 241 | 184 | 425 | 122 | 37 | 159 | 11 | 7 | 18 | | Workshop | 6 | 250 | 770 | 1020 | 10 | 24 | 34 | 5 | 2 | 7 | | Group | _ | | | | | _ | | _ | | | | meetings | 9 | 123 | 45 | 168 | 24 | 8 | 32 | 7 | 5 | 12 | | Lectures | | | | | | | | | | | | delivered as | | | | | | | | | | | | resource | | | | | | | | | | | | persons | 12 | 325 | 291 | 616 | 39 | 67 | 106 | 11 | 13 | 24 | | Advisory | | | | | | | | _ | | | | Services | 108 | 100 | 9 | 109 | 0 | 0 | 0 | 3 | 2 | 5 | | Scientific visit | | | | | | | | | | | | to farmers field | 117 | 664 | 103 | 767 | 0 | 0 | 0 | 3 | 1 | 4 | | Farmers visit to | | | | | | | | | | | | KVK | 160 | 607 | 305 | 912 | 67 | 79 | 146 | 50 | 7 | 57 | | Diagnostic | | | | | | | | | | | | visits | 12 | 55 | 0 | 55 | 5 | 0 | 5 | 0 | 0 | 0 | | Exposure visits | 3 | 93 | 9 | 102 | 2 | 0 | 2 | 2 | 0 | 2 | | Soil health | | | | | | | | | | | | Camp | 4 | 200 | 75 | 275 | 53 | 10 | 63 | 5 | 0 | 5 | | Animal Health | _ | 00 | 00 | 00 | _ | | _ | 4 | | 4 | | Camp | 1 | 60 | 20 | 80 | 0 | 0 | 0 | 1 | 0 | 1 | | Soil test | • | 0.5 | 4.0 | 47 | 4 | | 4 | _ | 4 | 4 | | campaigns | 2 | 35 | 12 | 47 | 4 | 0 | 4 | 3 | 1 | 4 | | Celebration of | | | | | | | | | | | | important | | | | | | | | | | | | days (specify) | | | | | | | | | | | | International | _ | _ | | | | _ | | _ | _ | | | Women's Day | 1 | 5 | 51 | 56 | 16 | 8 | 24 | 2 | 2 | 4 | | Vigilance | | | | | | | | | | | | awareness | 1 | 175 | 30 | 205 | 0 | 0 | 0 | 3 | 2 | 5 | | week | | | | | | | | | _ | | | World food day | 1 | 32 | 40 | 72 | 10 | 13 | 23 | 3 | 2 | 5 | | World soil day | 1 | 88 | 204 | 292 | 34 | 0 | 34 | 8 | 0 | 8 | | Kisan Diwas | 1 | 65 | 2 | 67 | 0 | 0 | 0 | 4 | 2 | 6 | | Mahila Kisan | | | | | _ | | _ | | | | | Diwas | 1 | 22 | 50 | 72 | 5 | 18 | 23 | 4 | 2 | 6 | | World | | | | | | | | | | | | environment | 1 | 20 | 4 | 24 | 3 | 3 | 6 | 3 | 2 | 5 | | day | ' | 20 | | | | 3 | | | _ | | | World water | | | | | | | | | | | | day | 1 | 59 | 52 | 111 | 16 | 8 | 24 | 2 | 2 | 4 | | Special day | | <u> </u> | | | | | | | | | | celebrations | | | | | | | | | | | | 94th ICAR | | | | | | | | - | | | | | 4 | 160 | 40 | 200 | 0 | 0 | 0 | 6 | _ | 11 | | Foundation | 1 | 100 | 40 | 200 | 0 | U | 0 | 6 | 5 | '' | | Day | 404 | 10453 | 10534 | 20002 | 2417 | 2202 | 4720 | 252 | 270 | 633 | | Total | 484 | 18452 | 10531 | 28983 | 2417 | 2303 | 4720 | 352 | 270 | 622 | # 8.2 Other extension activities like print and electronic media etc. | Sl. No. | Type of media/activity | Number of activities/Number | |---------|---|-----------------------------| | 1 | Popular articles | 3 | | 2 | Newspaper coverage | 24 | | 3 | Extension Literature | 12 | | 4 | Radio Talks | 46 | | 5 | CD/DVD/Video clips | 4 | | 6 | Animal health camps (no. of animal treated) | 1 (50) | | | Total | 90 | # PART IX - PRODUCTION OF SEED, PLANT AND LIVESTOCK MATERIALS (2022) # 9.A. Production of seeds by the KVKs | Crop category | Name of the crop | Variety | Quantity of
seed
(qtl) | Value
(Rs) | Number of farmers to whom provided | |---------------------|-------------------------|--------------|------------------------------|---------------|------------------------------------| | Cereals (crop wise) | Rabi Jowar | SPV-2217 | 1.92 | 9600 | 64 | | | Foxtailmillet | DHFt-109-3 | 0.62 | 3720 | 31 | | | Pearlmillet | VPMV-7 | 0.36 | 5400 | 18 | | Oilseeds | Groundnut | Dh-256 | 10.32 | 87960 | 14 | | | | KDG-123 | 26.8 | 189400 | 53 | | | | DSG-1 | 0.9 | 10800 | 3 | | | | GJG-19 | 0.9 | 19800 | 3 | | | Safflower | ISF-764 | 10.32 | 103200 | 60 | | | | A-2020 | 0.175 | 1750 | 5 | | Pulses | Bengalgram | JAKI-9218 | 18.6 | 186000 | 83 | | | Bengalgram | Phule Vikram | 1.0 | 10000 | 5 | | | Bengalgram | NBEG-47 | 1.0 | 10000 | 5 | | | Bengalgram | DBGV-204 | 1.0 | 10000 | 5 | | | Greengram | DGGV-2 | 3.97 | 47640 | 51 | | | Redgram | TS-3R | 1.08 | 16200 | 36 | | | Blackgram | LBG-791 | 1.05 | 15750 | 15 | | | Blackgram | DBGV-5 | 0.35 | 4970 | 5 | | | Blackgram | BDU-12 | 0.35 | 8750 | 5 | | Commercial crops | | | | | | | Vegetables | Onion | Bhima super | 0.75 | 150000 | 37 | | - | | Arka kalyan | 0.18 | 36000 | 4 | | | Chilli | Byadgidabbi | 0.14 | 35000 | 14 | | Flower crops | | | | | | | Spices | | | | | | | Fodder crop seeds | Sorghum
Multi-cut | COFS-31 | 22.10 Kg | 20065 | 21 | | | Fodder
Cowpea | | 8.00 Kg | 1042 | 20 | | | Stylohaemata | | 4.90Kg | 1499 | 20 | | | Styloscabra | | 1.50 Kg | 720 | 20 | | | Lucerne | | 5.15 Kg | 5272 | 21 | | | Subabul | | 4.55 Kg | 2112 | 20 | | | Hedge
Lucerne | | 0.50 Kg | 700 | 2 | | | Sesbenia
grandiflora | | 1.50 Kg | 2250 | 20 | | | Fodder Oats | | 125.50Kg | 15820 | 30 | | Fiber crops | | | | | | | Forest Species | | | | | | | Others (specify) | | | | | | | Total | | | 83.522 | 1011420 | 690 | ## 9.B. Production of hybrid seeds by the KVKs: Nil | Crop category | Name of the crop | Hybrid | Quantity of
seed
(qtl) | Value
(Rs) | Number of
farmers to
whom provided | |---------------|------------------|--------|------------------------------|---------------|--| | | | | | | | | | | | | | | # 9.C. Production of planting materials by the KVKs | Crop category | Name of the crop | Variety | Number | Value
(Rs.) | Number of farmers to whom provided | |-----------------------|------------------|------------|--------|----------------|------------------------------------| | Commercial | | | | | _ | | Vegetable seedlings | Drumstick | Bhagya | 225 | 4500 | 36 | | Fruits | Mango | Alphanso | 182 | 31850 | 36 | | | Tamarind | PKM-1 | 70 | 7000 | 35 | | | Amla | NA-7 | 350 | 38500 | 0 | | | Amla | Krishna | 250 | 25000 | 0 | | | Jamun | AJG-85 | 105 | 15750 | 36 | | | Guava | Lucknow-49 | 365 | 32850 | 36 | | | Custard apple | Golden | 225 | 22500 | 36 | | | Citrus | Balaji | 225 | 33750 | 35 | | | Papaya | Red lady | 125 | 6250 | 36 | | | Fig | Bellary | 40 | 1400 | 0 | | Ornamental plants | | | | | | | Medicinal and Aromati | С | | | | | | Plantation | Cashewnut | Vengurla-4 | 172 | 21500 | 1 | | Spices | Curryleaf | Suhashini | 175 | 5250 | 1 | | Tuber | | | | | | | Fodder crop saplings | Guiniea grass | | 14092 | 16910 | 20 | | | Congo signal | | 5202 | 5352 | 20 | | | Rhodes grass | | 11737 | 11737 | 20 | | | Super Napier | | 9250 | 18500 | 22 | | Forest Species | Mahagani | | 400 | 20000 | 8 | | | Teak | | 400 | 16000 | 8 | | | Sandalwood | | 800 | 28000 | 0 | | Others(specify) | | | | | | | Total | | | 44390 | 362599 | 386 | # 9.D. Production of planting materials by the KVKs | Crop category | Name of the crop | Hybrid | Number | Value (Rs.) | Number of farmers to whom provided | |---------------------|------------------|-------------|--------|-------------|------------------------------------| | Vegetable seedlings | Chilli | Byadgidabbi | 5000 | 5000 | 2 | #### 9.E. Production of Bio-Products | Bio Products | Name of the bio-
product | Quantity
Kg | Value (Rs.) | Number of farmers to whom provided | |-----------------|-----------------------------|----------------|-------------|------------------------------------| | Bio Fertilizers | Vermiwash | 240 lit | 9600 | 30 | | | Vermicompost | 152 Qtl | 60800 | 48 | | | Rhizobium | 44.0 kg | 5500 | 60 | | | PSB | 58.0 kg | 7000 | 60 | | | Azospirillum | 6.0 kg | 600 | 27 | | Bio-pesticide | | _ | 0 | | | Bio-fungicide | Trichoderma | 28.0 kg | 5950 | 64 | | Bio Agents | Earthworms | 93.0 kg | 28800 | 48 | | Others | Azolla | | | | | (specify) | | 5.0 Kg | 500 | 4 | | Total | | 15674 | 118750 | 341 | ## 9.F. Production of livestock materials | Particulars of Live stock | Name of the breed | Number | Value (Rs.) | Number of farmers to whom provided | |---------------------------|-------------------|--------|-------------|------------------------------------| | Dairy animals | | | | | | Cows | | | | | | Buffaloes | | | | | | Calves | | | | | | Others (Pl. specify) | | | | | | RAM | Nari Suvarna | 4 | 120000 | 4 | | Poultry | | | | | | Broilers | | | | | | Layers | | | | | | Duals (broiler and layer) | | | | | | Japanese Quail | | | | | | Turkey | | | | | | Emu | | | | | | Ducks | | | | | | Others (Pl. specify) | | | | | | Piggery | | | | | |
Piglet | | | | | | Others (Pl.specify) | | | | | | Fisheries | | | | | | Fingerlings | | | | | | Others (Pl. specify) | | | | | | Total | | | | | #### PART X - PUBLICATION, SUCCESS STORY, INNOVATIVE MTHODOLOGY, ITK, TECHNOLOGY WEEK #### 10. A. Literature Developed/Published (with full title, author & reference) (A) KVK Newsletter: Date of start: English News Letters - January, 2003 & Krishi Darpana in Kannada language - October 2015 Periodicity: Monthly Copies printed in each issue: 250 (B) Literature developed/published | Item | Number | |-----------------------------------|--------| | Research papers- International | 0 | | Research papers- National | 0 | | Technical reports | 0 | | Technical bulletins | 4 | | Popular articles - English | 0 | | Popular articles – Local language | 3 | | Extension literature | 2 | | Others (Pl. specify) | | | TOTAL | 9 | (iii) Details of Literature developed/published Please provide the details of above publication in the following format: - 1. Research articles in journals: NIL - **2.Technical Reports/ bulletins:** Authors name, Title of the technical report, name of publishing KVK, number of pages. KVK Scientists, (April-June, 2022) Krishi Vigyan Patrike, Volume-12, Issue-2, ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti, 8p. KVK Scientists, (July-September, 2022) Krishi Vigyan Patrike, Volume-12, Issue-3, ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti, 8p. KVK Scientists, (October-December, 2022) Krishi Vigyan Patrike, Volume-12, Issue-4, ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti, 10p. KVK Scientists, (January-March, 2023) Krishi Vigyan Patrike, Volume-12, Issue-1, ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti, 9p. **3. Popular articles:** Authors name, Title of the article, date of publication, Name of the newspaper/magazine, page no. Dr. Sudha V. M. (July 2022), Aarogya Vardhak - Kusube Enne, Krishi Kamadenu, 15(7)34-36 Dr.Gururaj Kombali. (27-11-2022), Pulse Magic, Neladanudi,2 Dr.Gururaj Kombali. (05-12-2022), Manne Manikya, Neladanudi,2 **4. Extension literature**; Authors name, month and year of publication, Title of extension literature like folders, pamphlets etc., name of publishing KVK, number of pages. Dr.Gururaj Kombali(December, 2022), Natural Farming, ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti, 12p Mr. N.H.Bhandi (June 2022), The Journey towards Sustainablility through NICRA Interventions in MahalingapurCluste Villages of Gadag district, ICAR-K.H.Patil Krishi Vigyan Kendra, 12p #### 10.B. Details of Electronic Media Produced | Sl. | Type of media | Title | Details | |-------|---------------------------------------|--|--| | No. 1 | CD / DVD | Sahakar Radio Gadag
(Community Radio Station of
KVK) | About Sahakar Radio Gadag. Type of programmes broadcasted through Radio. | | | | Improved Agronomic Practices | Lecture on Improved Agronomic Practices for higher productivity in Greengram | | 2 | Mobile Apps | - | - | | 3 | Social media groups with KVK as Admin | WhatsApp – • KVK, HULKOTI, GADAG group • Cashew Growers group • Mango Growers group • GADAG FPO's • Nutri-Garden farmers • Dairy entrepreneurs : KVK | 2876 members | | 4 | Facebook account name | KhpKvkHulkoti | 519 followers | | 5 | Instagram account name | KVKGadag | 80 followers | | 6 | Twitter Account | ICAR-KVK Gadag | 59 followers | | 7 | Youtube Account | K.H.Patil Krishi Vigyan Kendra
Hulkoti | 4740 subscribers | #### 10.C. Success Stories / Case studies #### i) Doubling of Income of Blackgram Farmer: Shri Mruthunjaya S. Malimath of Akkigunda village in Shirahatti block is one of the young farmer who participated in CFLD-Blackgram programme under NFSM Project of KVK during 2022-23. He was very enthusiastic to adopt improved technologies to address productivity constraints in Blackgram. He used to cultivate Local Blackgram variety. Incidence of wilt, thrips and powdery mildew were the major problems that affected the yield to the extent of 40-45 percent. Apart from this, there was also knowledge gap in management of pod borer and nutrient application. Demonstration was laid out in his farm under the supervision of KVK Scientists. Details of technologies demonstrated were use of high yielding and wilt tolerant variety (DBGV-5), seed treatment with trichoderma and bio-fertilizers. Local check was also laid out adjacent to the demonstrated plot. Shri Mruthunjaya adopted all the suggested technologies related to sowing method, seed rate, nutrition, intercultivation and management of pod borer. KVK Scientists periodically visited his plot and gave him timely suggestions. As a result of this, a very good crop was raised and all the farmers in the village visited this plot and learnt about the technologies adopted. The performance of demonstrated plot against local check is given below. | | Performance of technologies in demonstration | | | | | | | |------|--|----------|----------------------|--------|----------|-----------------------|--| | | | | | _ | | Yield gap (q/ha) over | | | | Yield (Q | /ha) | Net returns (Rs./ha) | | | check | | | Demo | Check | % | Demo | Check | % | | | | Demo | OHECK | increase | Demo | Cileck | increase | 2.91 | | | 9.24 | 6.33 | 45.97 | 33288 | 17996 | 84.97 | | | Thus farmer could get 45.97 per cent increased yield and 84.97 per cent increased net income. His net income was almost doubled. Potential yield of the variety was achieved. This yield was 3 times the yield of State and District average. KVK Scientist interacting with Blackgram farmers Field day organised on farmers' field #### ii) Intercropping System for Enhancing Farmers Income: Shri Heggappa N. Gudami of Singatarayankeri village in Mundaragi block is one of the farmers who participated under NICRA project of KVK during 2022-23. He adopted Maize+Redgram, a new technology to address the productivity constraints in Maize. He used to cultivate Maize as a sole crop, but due to moisture stress, incidence of fall army worm and turciccum leaf blight, the yield of Maize was very low and net returns was also less. Hence, through KVK guidance he adopted Maize+Redgram intercropping system in Kharif, 2022 and followed ICM practices as advised by KVK Scientists like medium duration TS-3R variety of Redgram crop, seed treatment with bio-fertilizers, trichoderma, nipping, foliar spray of pulse magic etc. The farmer managed fall army worm and turciccum leaf blight in Maize. As a result of this, bumper crop was raised in intercropping system as compared to sole crop of Maize. The neighboring farmers visited the demonstration plot and learnt about the different technologies adopted in his field. The results of the demonstration plot against local check is given below. | Performance of technologies | | | | | | | | |--|----------------------------------|---------------|-------|-----------|--------------------------------|---------------|--| | Yield (Q/ha) | | | Net | returns (| Yield gap (q/ha)
over check | | | | Demo | Check
(Maize as sole
crop) | %
increase | Demo | Check | %
increase | CEY of Maize: | | | CEY of Maize:67.50
Maize : 49.50
Redgram: 7.50 | 54.75 | 23.28 | 90375 | 69750 | 29.56 | 12.75 | | The farmer could get 23.28 percent increase in yield and 29.56 percent increase in net returns as compared to local. Hence, this intercropping system helped the farmer to gain more income. #### iii) High Density Planting in Cashew- A Novel Approach for Doubling Farmers Income: Mr. Basavaraj Halli is native to Shagoti village of Gadag block in Gadag District. He used to cultivate spreading groundnut crop in his 3 acres of land. Due to frequent occurrence of drought coupled with high cost of cultivation, he could not get sustainable income from groundnut cultivation. The red soil with poor moisture holding capacity restricted him to take up only one crop in a year during *kharif* season. Mr.Halli has decided to plant Cashew crop in his 3 acres of land during 2017. Grafts were supplied by Directorate of Cashewnut and Cocoa Development, Cochin with 3 years of financial assistance under Cashew Promotion Scheme. With the guidance of KVK, Gadag, he has planted 480 grafts of cashew at 5m × 5m (HDP) spacing. Latest technologies in soil and water conservation, Pruning and training of plants, Drip irrigation system and fertigation techniques for efficient utilization of water and nutrients, timely Integrated Pest and Disease Management (IPDM) were practiced by him under KVK guidance. As a result, Yield of raw cashew doubled every year and in 2021, he harvested 14.50 quintals of raw nut. He has undertaken Banana as intercrop in cashew for initial 3 years under protective irrigation and earned Rs.1.50 lakhs from Banana crop. Income of the farmer has increased by 410 % since he has taken up cashew planting. More than 600 farmers from various districts of Karnataka visited his cashew orchard. The farmer got Best Cashew Farmer Award in Cashew cultivation on 30-01-2023 by Directorate of Cashew and Cocoa Development Board, Cochin during National Conference of Cashew at Bhubaneshwar, Odisha. #### iv) Successful Dairy Unit of a Youth Every unemployed youth should learn from Mr. Sharanappa S. Nagavimath of Kurtakoti village in Gadag taluk. MrSharanappa, who studied upto Diploma is a successful dairy entrepreneur. He has an ancestral land of 5 acres. He used to cultivate field crops viz., Bengalgram, Jowar, Sunflower etc. Due to frequent occurrence of agricultural drought, income from the agriculture was not sufficient to meet his family needs. He thought of starting the dairy unit for getting additional income. But the main issue for him was guidance and support. During 2020-21, he participated in the
dairy training organised by SBI-ASF-RSETI, Hulkoti in collaboration with KVK Hulkoti. He discussed with the experts about his dream project of dairy. KVK provided him the necessary guidance and support. Mr. Sharanappa spent Rs.3.5 lakhs for construction of dairy shed. Initially he purchased 1 she Buffaloe from Gadag Animal Market. After 2 months, he again purchased 2 she Buffaloes, later after 6 months he bought 5 Buffaloes. Totally He has purchased 8 she buffaloes including heifer in a span of 1 year period and was getting sustainable income from milk production of 7 liters / day / buffaloe. Among 8 she buffaloes only 6 were milking and daily milk collection was 40-42 litres. He sells the milk in the Kurtakoti village. He says that, he gets price of Rs.40 per litre for Buffalo milk. Monthly he spends Rs.15,000 towards purchase of animal feed and for transportation of milk from his dairy farm to village. He says that he gets gross income of Rs.42,000/- from sale of milk per month and his net monthly income is around Rs.27,000/-. This is one of the good example of how a youth plunged into dairy enterprise in drought prone area succeeded by utilising existing resources. When asked about his future plan, he says that he would extend the unit to 20 animals in next two years. #### v) Agriculture Graduate became Entrepreneur Smt. Mangala Kiran Neelagund is an agriculture graduate from University of Agriculture Sciences, Dharwad. She is resident of Mulgund which is 20 kms from Gadag city as well as KVK Campus. Initially, she took the responsibility of nurturing her children and family and her husband to take care of business and agriculture farm. Once the children grew up she got involved in agriculture works with more focus on entrepreneurship. From the beginning, she wanted to start sheep and goat rearing enterprise but because of family tradition her father-in-law did not allow her to start the enterprise. Slowly she convinced her in-laws and she started the dairy enterprise and sheep and goat rearing unit in 2016, under the technical guidance of ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti. Later in 2021, under the technical guidance of ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti she established chilli processing unit under one district one product (ODOP) programme. She had marketed more than 10 quintals of organic chilli powder, turmeric and chilli value added products worth of Rs.8.00 lakhs. Under Entrepreneurship Development Programme, KVK facilitated her to get FSSAI Registration as well as Udyan Registration. In addition, the product label designing with all the technical information was facilitated by KVK. She started marketing of chilli products through local shops, exhibitions and her friends. The chilli products got popularized because of their quality, colour and taste. Then, she contacted Karnataka State Department of Agriculture, Gadag and established chilli pounding machine. Then, her works became easy and she provided employment to 5 women during season. She participated in Zonal Workshop of KVKs of Zone-11 organised by ICAR-ATARI, Bengaluru and UAS, Dharwad and exhibited chilli products. From then her products got more popular as orders started pouring in from many places. The economic details of Chilli enterprise was given below: | | | Income | Expenditure | | | | | |---------|----------------------------|---------------------------------|----------------------------|----------------|--|----------------------------|------------------------| | Year | Product name | Quantity
produced
(qtls.) | Market
rate/kg
(Rs.) | Total
(Rs.) | Raw materials
& other
expenses
(Rs.)/ kg. | Total
expenses
(Rs.) | Net
income
(Rs.) | | 2021-22 | Red chilli
powder | 1.50 | 450 | 67500 | 300 | 45000 | 22500 | | | Masala
chilli
powder | 0.20 | 600 | 72000 | 450 | 19000 | 3000 | | 2022-23 | Red chilli
powder | 10.00 | 600 | 600000 | 500 | 500000 | 100000 | | | Masala
chilli
powder | 0.50 | 600 | 30000 | 500 | 26000 | 5000 | Within a span of 3 to 4 months, she earned a net income of Rs.1,00,000 from the chilli enterprise. To handhold other women in her surrounding, she established Unnati Mahila Samaja Seva and Multipurpose Society at Mulagund village comprising of 150 women members. Among them, she created employment opportunities for 25 women entrepreneurs in packing and marketing of products like Ethnic sweets, crisp roties, kumkum, papads and sandige. By seeing her success many organizations have awarded her with honors and certificates. The details are enclosed. | SI
No | Award Name | Year
of | Field | Level
of | Awarding body | |----------|--|------------|--|-------------|--| | NO | | Award | | award | | | 1 | Taluk Level best
Farmer Award | 2020 | Integrated Farming
System (IFS) and
Entrepreneur | Others | Agriculture Department under ATMA Scheme | | 2 | Best Women
Farmer Award | 2021 | IFS, Goat Farming and Entrepreneur | Others | ICAR-K.H.Patil Krishi
Vigyan Kendra, Hulkoti | | 3 | Raitha Ratna
Award | 2021 | IFS, Goat Farming,
SHGs and Entrepreneur | Others | Irkal Mutt, Raichur | | 4 | Raitha Ratna
Award | 2022 | Integrated Farming System | State | Krushika Samaja, New
Delhi | | 5 | Recognition Award for outstanding contribution | 2022 | Women Agriculture
Entrepreneur & IFS | State | Kissan Pragati Award
Outgrow Organisation,
Bangalore | | 6 | Shresta Krishi
Mahila Award | 2022 | Women Agriculture
Entrepreneur | State | University of Agricultural Sciences, Dharwad | Smt. Mangala is identified as Innovative Farmer and DFI Farmer by ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti and UAS, Dharwad during 2021-22. By seeing the demand and the successful venture, now she is thinking of establishing large scale chilli processing unit. Hope this year her dream may come true. #### vi) Enhancing Livelihood through Food Processing Enterprise Smt. Shamala Ellaraddi Karuru aged 43 is resident of Binkadakatti village in Gadag block which is 8 kms away from K.H.Patil Krishi Vigyan Kendra, Hulkoti. She is SSLC passed and looking after SHGs organized by KSRLPS under NRLM for the last 7 years. She works as Main Book Keeper (MBK) at her own village and looking after 20 SHGs. Her husband supplies newspapers to families and he owns 2 acres of dryland. The income they got from both works was not sufficient to meet the livelihood needs of the family as her son is a handicapped. Meanwhile, during her free time she used to prepare ethnic sweets and marketing through exhibitions and local consumers. She visited KVK for attending training organized by ICAR-K.H.Patil Krishi Vigyan Kendra, Hulkoti under National Rural Livelihood Mission. By seeing the interest, KVK selected her as entrepreneur for the Entrepreneurship Development Programme for the year 2021-22. During 2020-21, under ODOP the chilli crop had been identified for Gadag district. Smt.Shamala in her 2 acres land used to cultivate red chilli. She showed interest in marketing of chilli products rather than selling dried red chillies. She realized that marketing of chilli products will give more training at of chilli licensing FSSAI materials, marketing. income. Accordingly she attended 3 days KVK during January, 2022 on preparation value added products, packing, labeling, and marketing. KVK later facilitated her in licensing and provided packaging helped her in designing of labels and The products were neatly packed in standup pouches with attractive labels. | | | Income | Expenditure | | | | | |---------|----------------------------|---------------------------|----------------------|----------------|--|----------------------|------------------| | Year | Product name | Quantity produced (qtls.) | Market rate/kg (Rs.) | Total
(Rs.) | Raw materials
& other
expenses
(Rs.)/ kg. | Total expenses (Rs.) | Net income (Rs.) | | 2021-22 | Red chilli
powder | 2.00 | 450 | 90000 | 250 | 50000 | 40000 | | | Masala
chilli
powder | 0.25 | 600 | 15000 | 450 | 11250 | 3750 | | 2022-23 | Red chilli
powder | 3.00 | 600 | 180000 | 500 | 150000 | 30000 | | | Masala
chilli
powder | 0.50 | 600 | 30000 | 500 | 25000 | 5000 | She started marketing the chilli products through KVK sales outlet, local shops, off shoot marketing, exhibition etc., Apart from chilli products, she purchased small flour mill and prepares turmeric powder and other products. Thus she could add additional income of Rs.40,000 to Rs.50,000 to her family to meet the livelihood needs of the family. Her daughter and her husband also support in production and packing of chilli products. She gives credit to KVK for the technical support and hand holding by KVK Scientist in her entrepreneurship journey. # 10.D. Give details of innovative methodology or innovative approach of technology developed and used during the year #### I) TECHNOLOGY TRANSFER THROUGH COMMUNITY RADIO STATION In order to disseminate the technologies to the farming community in an effective manner, Community Radio Station (FM 89.6) has been started at KVK, Gadag. This radio station covers all the blocks of Gadag District covering a radius of 60 km around KVK. An android app has also been developed which can be installed in smart phones and the programmes can be listened from any part of the world. Number of radio talks related to crop production technologies, animal husbandry, soil and water conservation, entrepreneurship development in agriculture, dryland horticulture and agricultural mechanization were given by the scientists. Apart from this, daily weather forecast is also being broadcasted every day which helps farmers to take decisions in various field operations. #### List of
radio talks broadcasted are given below - 1. Nano Urea: Importance and Uses - 2. Integrated Crop Management practices in different kharif crops for higher productivity - 3. Improved practices in Chickpea cultivation - 4. Integrated Crop Management in Bt. Cotton cultivation - 5. Integrated Crop Management in Rabi Sorghum cultivation - 6. Natural Farming Practices - 7. Importance of Soil in Agriculture - 8. Cultivation of Cashew in Dryland Horticulture - 9. Cultivation of Mango in Dryland Horticulture - 10. Entrepreneurship in Food Processing Sector - 11. Use of Renewable Energy Sources in Agriculture - 12. Drone Sprayer and its Utility - 13. Malnutrition and Importance of Balanced Diet - 14. Agri Nutri Garden - 15. Disease Management in Dairy Animals - 16. Scientific Dairy Farming - 17. Resources for Poultry Farming - 18. Rain Water Harvesting Practices - 19. Kisan Sarathi - 20. Use of ICT in agriculture - 21. Calf a year - 22. Animal reproduction and its importance - 23. Importance of Artificial Insemination and causes of reproductive diseases - 24. Animal Husbandry in Organic Farming - 25. Lumpy Skin Disease - 26. Animal based Integrated Farming System - 27. Foot and Mouth Disease - 28. Azolla Production #### II) TRANSFER OF TECHNOLOGY THROUGH VIRTUAL MODE Farmersface various problems in crop cultivation. It is very difficult to reach the farmers physically to address their problems with limited human resource in the KVK. Hence, interactive audio conference (Group calling), video conference and online trainings were conducted to disseminate the technologies and to provide timely suggestions with respect to production of different crops to farmers of various villages in the district. KVK has also formed WhatsApp groups of different crop growers and timely messages are being sent to these groups. Video conferences, You Tube Live streaming and Audio conferences were also held for various crops. Thus, the TOT through virtual mode is enabling KVK scientists to reach more number of farmers. 10.E. Give details of indigenous technology practiced by the farmers in the KVK operational area which can be considered for technology development (in detail with suitable photographs) | S.
No. | Crop /
Enterprise | ITK Practiced | Purpose of ITK | Scientific Rationale | |-----------|----------------------|--|---|---| | 1 | Crops | To reduce the infestation of weed i.e Cyprus rotundus, the farmers practice weekly harrowing throughout the end of rainy season i.e from April to October. Then they will take up Rabi Sorghum crop. | Every week harrowing with blade goes on cutting the fresh sprouting meristems of the weed Cyprus rotundus. This weekly cutting results in exhausting of the nutrients present in the bulbs of weeds and no chance for photosynthesis by leaves. Hence, the roots get deprived of the fresh photosynthates on one hand and on other the stored energy gets lost due to growth of fresh meristems every week, but they get cut off with harrowing blade. Thus, the weed has no chance of re-growth when weekly harrowing is done regularly from April to October. | The weekly cutting results in exhausting of the nutrients present in the bulbs of weeds and no chance for photosynthesis by leaves. Hence, the roots get deprived of the fresh photosynthates on one hand and on other the stored energy gets lost due to growth of fresh meristems every week, but they get cut off with harrowing blade. Thus, the weed has no chance of regrowth when weekly harrowing is done regularly from April to October | | 2 | Livestock | Turmeric powder mixed in ghee, heated and applied | For the healing of wound | Turmeric has got anti microbial properties. | | 3 | Livestock | Washing of hoves of | For the treatment of foot and | Lime has antiseptic | | S.
No. | Crop /
Enterprise | ITK Practiced | Purpose of ITK | Scientific Rationale | |-----------|----------------------|---|--|--| | | | animals with lime water | mouth disease | property. It kills germs and healing is fast. | | 4 | Livestock | Zeera & Garlic are boiled in water and is fed | For the treatment of fever | Act as anti cold& fever. | | 5 | Livestock | Tobacco shoot with
Kerosine oil paste is
made and applied Leaves of neem or
neem oil | For the treatment of ecto parasite infestation | Tobacco contain nicotine that kills ecto parasite. Neem has got ectoparasiticadal properties. | | 6 | Livestock | Feeding of Brinjal 1 Kg/day for 10 days to dairy animal | Reduced high temperature stress leads the dairy animals come into heat | Potassium content is more in Brinjal. So Potassium helps to reduce high temperature stress. | | 7 | Livestock | Feeding of handful of curry leaves to dairy animals / day for 10 days after Al done. | Increased percentage of conception rate | They are rich in Proteins, Phosphorus, Calcium, Iron, Folic acid, Vitamins like A,B,C & E and these help in higher percentage of conception. | #### 10 F. Technology Week celebration: Period of observing Technology Week: From 23-01-2023 to 28-01-2023 Total number of farmers visited :7500 Total number of agencies involved : 1 Number of demonstrations visited by the farmers within KVK campus: 6 #### Other Details | Types of Activities | No. of
Activities | Number of
Farmers | Related crop/livestock technology | |---|----------------------|----------------------|--| | Lectures organized | 3 | 220 | Lectures organized on crop & dairy technologies | | Exhibition | 1 | 7500 | Both crop and livestock technologies | | Film show | 1 | 40 | Nutri Garden | | Fair | | | | | Farm Visit | 3 | 152 | Rabi crops, Livestock, Agricultural Machineries | | Diagnostic Practicals | 3 | 87 | Method demonstration on use of Phermone traps, spray of Pulse Magic & solar operated sprayer | | Supply of Literature (No.) | 8 | 6400 | Crop technology& others | | Supply of Seed (q) | 3.12 | 6 | Groundnut seeds | | Supply of Planting materials (No.) | - | - | - | | Bio Product supply (Kg) | 12.5 | 6 | Earthworms& Azolla | | Bio Fertilizers (q) | - | - | - | | Supply of fingerlings | - | - | - | | Supply of Livestock specimen (No.) | - | - | - | | Total number of farmers visited the technology week | | 7500 | | #### 10 E. Recognition and Awards: Nil #### PART XI – SOIL AND WATER TEST # 11.1 Activities of Soil and Water Testing Laboratory A. Status of establishment of Lab : 2005-06 1. Year of establishment : 01.07.2005 2. List of equipments purchased with amount : | SI.
No | Name of the Equipment | Qty. | Cost | |-----------|---|------|--------| | 110 | A) Non-recurring contingency | | | | 1 | Spectrophotmeter | 1 | 0.60 | | 2 | Flame photometer | 1 | 0.50 | | 3 | pH meter | 1 | 0.10 | | 4 | Conductivity bridge | 1 | 0.10 | | 5 | Physical balance | 1 | 0.10 | | 6 | Chemical balance | 1 | 1.00 | | 7 | Water distillation still | 1 | 1.00 | | 8 | Orbital shaker | 2 | 0.60 | | 9 | Shaker | 2 | 0.50 | | 10 | Refrigerator | 1 | 0.20 | | 11 | Oven with optional attachments | 1 | 0.15 | | 12 | Hot plate with all models | 1 | 0.25 | | 13 | Grinder with motor | 1 | 0.30 | | 14 | Laboratory set up (all basic facilities) | | 3.20 | | 15 | PUSHA STFR meter Kit | 1 | 0.75 | | 16 | MRIDAPARIKSHA | 1 | 0.903 | | | Total (A) | | 10.253 | | | B) Recurring contingency | | | | 1 | Chemical &glasswares | | 3.50 | | 2 | Miscellaneous items | | 0.20 | | 3 | Soil and plant sample processing and storage facility | | 0.50 | | | Total (B) | | 4.20 | | | Grand Total (A+B)) | | 14.453 | #### B. Details of samples analyzed so far since establishment of SWTL: | Details | No. of Samples analyzed | No. of Farmers benefited | No. of Villages | |------------------|-------------------------|--------------------------|-----------------| | Soil Samples | 10973 | 24275 | 362 | | Water Samples | 5618 | 5396 | ű | | Plant samples | 116 | 116 | ű | | Manure samples | - | - | - | | Others (specify) | = | - | - | | Total | 16591 | 29787 | 362 | #### C. Details of samples analyzed : | Details | No. of Samples analyzed | No. of Farmers benefited | No. of Villages | |------------------|-------------------------|--------------------------|-----------------| | Soil Samples | 523 | 1367 | 58 | | Water Samples | 227 | 218 | 41 | | Plant samples | | | | | Manure samples | | | | | Others (specify) |
| | | | Total | 750 | 1585 | 58 | #### 11.2 Mobile Soil Testing Kit: #### A. Date of purchase and current status | Mobile Kits | Date of purchase | Current status | |------------------------|------------------|----------------| | 1. PUSA SFTR meter kit | 22-02-2016 | Working | | 1. MRIDA PARIKSHAK | 31-03-2017 | Working | | | | | #### B. Details of soil samples analyzed and since establishment with Mobile Soil Testing Kit: | | During 2021 | During 2022 | Cumulative progress (Total) | |-------------------------|-------------|-------------|-----------------------------| | Samples analyzed (No.) | 325 | 253 | 1813 | | Farmers benefited (No.) | 909 | 654 | 5288 | | Villages covered (No.) | 6 | 5 | 28 | #### 11.3 Details of soil health cards issued based on SWTL & Mobile Soil Testing Kit: | Particulars | Date (s) | Villages
(No.) | Farmers
(No.) | Samples
analyzed
(No.) | Soil health
cards issued
(No.) | |-------------------------|--------------------------------|-------------------|------------------|------------------------------|--------------------------------------| | SWTL | 1 st April, 2022 to | 53 | 713 | 270 | 713 | | | 31 st March, 2023 | | | | | | Mobile Soil Testing Kit | 1 st April, 2022 to | 5 | 654 | 253 | 654 | | | 31 st March, 2023 | | | | | #### 11.4 World Soil Health Day celebration | SI.
No. | Farmers
participated
(No.) | Soil
health
cards
issued
(No.) | VIPs (MP/
Minister/MLA
attended
(No.) | Other Public
Representatives
participated | Officials
participated
(No.) | Media coverage
(No.) | |------------|----------------------------------|--|--|---|------------------------------------|-------------------------| | 1 | 122 farmers + 204 students | 115 | - | - | 10 | 2 | #### **PART XII. IMPACT** #### 12.A. Impact of KVK activities (Not restricted for reporting period) | Name of specific | No of | No. of % of | | Change in income (Rs.) | | | |--|-----------------------|-------------|---------------------------|--------------------------|--|--| | technology/skill
transferred | participants adoption | | Before
(Rs./Unit) | After (Rs./Unit) | | | | Nipping in Bengalgram | 160 | 50 | Rs.22,500/ha | Rs.29,800/ha | | | | Feeding of Silage Fodder | 130 | 24 | Rs.15,066/ | Rs.19,576/ | | | | to CB Cows | 130 | 24 | lactation/cow | lactation/cow | | | | Mango special (micronutrient mixture) application | 86 | 80 | Rs.80,000/ha | Rs.1,20,000/ha | | | | Introduction of Arka Prasanna improved variety in Ridegourd crop | 37 | 55 | Rs.83,000/ha | Rs.1,25,000/ha | | | | Azolla as animal feed | 150 | 35 | Rs.9300/cow
/lactation | Rs.13287/cow / lactation | | | | Use of ISF-764 variety of Safflower along with ICM Practices | 154 | 80 | Rs.25,000/ha | Rs.35,000/ha | | | | Use of Arka Vegetable special for micronutrient management in vegetables | 60 | 55 | Rs.67,000/ ha | Rs.79,000/- ha | | | | Use of Chickpea Magic
for foliar spray in
Bengalgram | 1000 | 90 | Rs.75,000/ha | Rs.93750/ha | | | | Use of DGGV-2 variety of Greengram along with ICM Practices | 533 | 40 | Rs.58900/ha | Rs.77500/ha | | | | Fruit fly traps for management of Mango and Guava fruit fly | 25 | 50 | Ra.80,000/ha | Rs.100000/ha | | | # 12.B. Cases of large scale adoption (Please furnish detailed information for each case with suitable photographs) #### i) Large scale adoption of DGGV-2 variety of Greengram Greengram is the important pulse crop of Gadag District, mainly cultivated under rainfed conditions during kharif season. It is being grown in an area of 1,20,000 ha. The productivity of the crop was very less due to decreasing yield potential of Selection-4 and Shining Moong varieties cultivated by the farmers. From 2016-17 onwards, KVK started promoting DGGV-2, a high yielding variety of Greengram which is suitable for mechanical harvesting as well. Integrated Crop Management Practices were also demonstrated in DGGV-2 variety of Greengram. Since 2016-17, KVK has organized Front Line Demonstrations in 245 hectares of area covering 612 farmers. The demonstrations were organized under KVK's FLD programme as well as Cluster Front Line Demonstration under NFSM programme. The demonstrations have been very successful as there was increase in yield by 24 %. Seven years of demonstration programme has produced more than 2600 quintals of seed material which the FLD farmers supplied to the other farmers. Apart from this, KVK has also produced 89 quintals of DGGV-2 variety and supplied to the farmers from various villages of the District. Thus the variety has reached to most of the villages in the district and resulting in enhanced productivity. #### ii) Large Scale Adoption of ISF-764 variety of Safflower Safflower being one the prominent oilseed crop is grown during rabi season under rainfed condtion in Gadag. The crop is being grown in an area of 4500 ha in the District. The productivity of the crop was less due to decreasing yield potential of A-1 variety. ISF-764 variety was promoted by KVK, Gadag for higher yield and productivity. Since 2016-17, KVK has organized Front Line Demonstrations in 106 hectares of area covering 265 farmers. The demonstrations were organized under KVK's FLD programme as well as Cluster Front Line Demonstration under NFSM Oilseeds programme. The demonstrations have been very successful as there was increase in yield by 21.8 %. 750 quintals of seed material was produced by demonstration for 7 years. Apart from this, KVK also produced 140 quintals of seeds and supplied to the farmers. Thus the productivity of crop has been enhanced considerably. #### iii) Large scale adoption of JAKI-9218 variety of Bengalgram crop: Bengalgram is the important Pulse crop of Gadag district, mainly cultivated under rainfed situation. It is being grown in an area of 75,000 ha. The productivity of the crop was very less due to decreasing yield potential of Annigeri-1 and JG-11 varieties cultivated by the farmers. From 2014-15 onwards, KVK started promoting JAKI-9218, a high yielding variety. Integrated Crop Management practices were also demonstrated along with JAKI-9218 variety. From 2014-15 to 2022-23, KVK organised Front Line Demonstrations in 402 hectares of area covering 665 farmers and farm women. The demonstrations were organised under KVK's FLD programme as well as Cluster Front Line Demonstration under NFSM programme. The demonstrations have been very successful as there was 20-25 percent increase in yield. Nine years of demonstration programme has produced 4700 quintals of seed material which FLD farmers supplied to other farmers. Apart from this, KVK produced 116 quintals of JAKI-9218 variety and supplied to farmers. There was heavy demand for the seed and KSSC took up seed production and supplied more than 10800 quintals of seeds during last four year period. Thus, JAKI-9218 variety is spread in nearly 70 percent of total area cultivated in Gadag district. #### iii) Adoption of Chickpea magic Chickpea Magic is a nutrient consortium which contains macro and micro nutrients along with growth regulators for chickpea crop. It reduces the flower dropping and increases pod formation thereby the yield of chickpea will be enhanced significantly. The chickpea magic was procured by KVK Gadag and tested during 2018-19. After getting good results, wide publicity was given about its utility through newspaper articles, radio talk and by distributing pamphlets in various melas. During 2021-22, about 200 packets of Chickpea magic were supplied which accounts to the spread of 160 ha. There was a positive response from the farmers who used the product. As a result, during 2022-23, the technology was spread to around 1052 ha wherein 2000 packets were sold to the farmers. #### 12.C. Details of impact analysis of KVK activities carried out during the reporting period : # IMPACT ANALYSIS OF SPV-2217 VARIETY OF RABI SORGHUM ALONG WITH ICM PRACTICES #### INTRODUCTION Rabi Sorghum is an important cereal crop cultivated predominantly under rainfed situation during Rabi season in Gadag District. It occupies 10-15 per cent of the total cultivable area. The average productivity of crop decreased from 12 Qtls./ha during last decade to 8 Qtls/ha during current decade. The major reasons for decreased productivity are use of local low yielding variety M-35-1, incidence of stem rot disease and lodging problem. Farmers expressed helplessness in finding solution to the problems faced in the cultivation of Rabi Sorghum. #### **KVK INTERVENTIONS** ICAR-KVK, Gadag has then introduced high yielding and charcoal stem rot resistant SPV-2217 variety of Rabi Sorghum crop with ICM practices since 2017-18 in KVK and NICRA project adopted clusters of villages. Demonstration of ICM practices such as seed treatment with Azatobacter, Azospirillum& PSB and Seed priming with CaCl₂ were demonstrated. Moisture stress, zinc and sulphur nutrition problems were addressed by demonstrating compartmental bunding and application of zinc sulphate. SPV-2217 variety of Rabi Sorghum was demonstrated in an area of 228 ha covering 570 farmers in a span of six years. In addition to this, KVK has also taken up production of SPV-2217 seeds and made available 28.50 qtl of seeds benefiting 575 farmers. Programmes implemented by KVK year-wise in popularizing SPV 2217 variety of Rabi Jowar with ICM practices is presented in Table 1. Table 1.: Details of Demonstration of SPV-2217 Variety of Rabi Sorghum with ICM Practices | SI. | Year | Area | No. of | Culster villages | |---------------|---------|-------|---------|---| | No | | (ha.) | farmers | | | 1. | 2017-18 | 40 | 100 | Kochalapur, Mahalingpur, Madolli&Binkadakatti | | 2. | 2018-19 | 40 | 100 | Mahalingpur, Bevinakatti,
Hiremannur, Gangapur | | ۷. | 2010-19 | 40 | 100 | &Ranatur | | 3. | 2019-20 | 40 | 100 | Mahalingpur, Kalakeri, Chikkasavanur and Shirol | | 4. | 2020-21 | 42 | 105 | KalakeriChikkasavanur, Mahalingpur and Shirol | | 5. | 2021-22 | 30 | 75 | Mahalingpur, Chikkasavanur and Shirol | | | 2022.22 | 20 | 00 | Mahalingpur, Halligudi, Akkigund, Muganur and | | 6. | 2022-23 | 36 | 90 | Asundi | | TOTAL 228 570 | | | 570 | | #### **DETAILS OF TECHNOLOGIES DEMONSTRATED** SPV-2217 variety of Rabi Sorghum was demonstrated with following technologies: - Seed treatment with Bio-fertilizers (PSB, Azospirillum&Azatobacter) which facilitates drought tolerance in crops through the supply of nutrients. - Seed priming with Calcium Chloride @ 2% to enhance germination percentage, to improve the crop vigour and to induce drought tolerance to the crop. - Demonstration of compartmental bunding for *in-situ* soil moisture conservation. - Application of zinc sulphate to combat zinc and sulphur deficiency. #### **ECONOMIC PERFORMANCE OF DEMONSTRATION** KVK demonstrated SPV-2217 variety of Rabi Sorghum along with ICM practices in adopted clusters of villages by KVK as well as under NICRA project during 6 years period. From Table:-2, it can be observed that farmers obtained yield of 12.99 qtl./hafrom cultivation of SPV-2217 variety as against 10.62 qtl./ha in local check. An increase of 22.73 per centin yield was realized. Adoping ICM practices along with SPV-2217 variety of Rabi Sorghum has resulted in net additional returns of Rs. 10,415per hectare with an average increase in net income of 44.60%. Table 2. Economic performance of SPV 2217 variety of Rabi Jowar with ICM Practices | SI. | Year Area (ha.) | a No. of | Yield (qtl/ha) | | Increase
in yield | Net Income
(Rs./ha) | | Increase
in | | |-----|-----------------|----------|----------------|-------|----------------------|------------------------|-------|----------------|---------------| | No | | (ha.) | farmers | Local | Demo | (%) | Local | Demo | Income
(%) | | 1. | 2017-18 | 40 | 100 | 9.95 | 12.03 | 20.90 | 16200 | 23020 | 42.10 | | 2. | 2018-19 | 40 | 100 | 5.11 | 6.55 | 28.20 | 16110 | 23060 | 43.15 | | 3. | 2019-20 | 40 | 100 | 8.42 | 9.65 | 14.60 | 16470 | 24410 | 48.20 | | 4. | 2020-21 | 42 | 105 | 9.91 | 12.52 | 26.33 | 16950 | 24190 | 42.60 | | 5. | 2021-22 | 30 | 75 | 12.8 | 16.16 | 26.25 | 18280 | 26470 | 42.70 | | 6. | 2022-23 | 36 | 90 | 17.5 | 21.02 | 20.11 | 18000 | 27150 | 48.80 | | TO | TAL/AVG. | 228 | 570 | 10.62 | 12.99 | 22.73 | 14301 | 24716 | 44.60 | #### **SPREAD OF TECHNOLOGY TO OTHER FARMERS:** As a result of KVK interventions through Front Line Demonstrations, Capacity Building Programmes and extension programmes, there has been a spread of the technology in more than 2500 ha. of area including area under demonstrations during last four years. The spread has been noticed mainly in KVK adopted clusters of villages. Farmers also expressed happiness over the yield levels of SPV 2217 variety. Quality of Rotis made from the flour of demonstrated variety was also superior when compared to other varieties. This indicates that farmers have been convinced about the profitability of the demonstrated variety and ICM practices. During 2022-23, SPV-2217 variety was spread in 2500 hectares. Thus, it has contributed considerate net income to the district farmers. #### **ORGANOLEPTIC EVALUATION OF RABI SORGHUM VARIETIES:** | SI.
No | Parameters | M 35-1 | SPV-2217 | |-----------|-----------------------------|--------|----------| | 1 | Color of roti | II | 1 | | 2 | Taste of roti | II | | | 3 | Stickiness of dough | II | | | 4 | Non-watery texture of dough | II | I | | 5 | Overall acceptability | | I | M 35-1 SPV-2217 #### **CONCLUSION** Demonstration of SPV-2217 variety of Rabi Sorghum along with ICM practices has created a tremendous impact in Gadag District in terms of increased yield and net returns. Front Line Demonstration, Trainings and Extension activities conducted by KVK in the adopted cluster of villages covering an area of 228 ha and 570 farmers has given fruitful results in spreading of SPV-2217 variety. Farmers have been convinced about the profitability of new variety as good net returns were achieved in a span of six years from 2017-18 to 2022-23. There has been a spread of technologies in about 2500 ha. in last six years and these farmers got increased net returns by about 44.60%. Thus the demonstrations had a huge impact in improving the income of farmers in rain shadow district of Gadag. #### **PART XIII - LINKAGES** #### 13.A. Functional linkage with different organizations | Name of organization | Nature of linkage | |--|---| | University of Agricultural Sciences,
Dharwad | DAESI programme for input dealers Krishi Sakhi programme Technical back-stopping | | Karnataka State Department of Agriculture | Training programmes, Workshops & serving as Resource Persons in different schemes, joint organisation of extension activities | | Karnataka State Department of Horticulture | Capacity building training programmes under NHM Scheme | | Department of Animal Husbandry and Veterinary Services | Organisation of Trainings/Workshop on Livestock Management | | Rural Development and Panchayat Raj
University, Gadag | Facilitation and guidance for students belonging to different disciplines of RDPR University, Gadag | | Reliance Foundation | Capacity Building Programme for FPOs and advisory services for farmers | | Shree Kshetra Dharmastala Rural Development Foundation | Training programmes for SHG Members and participation as Resource Person | 13.B. List special programmes undertaken by the KVK and operational now, which have been financed by State Govt./Other Agencies | Name of the scheme | Date/ Month of initiation | Funding agency | Amount (Rs.) | | |--------------------|---------------------------|----------------|--------------|--| | - | - | - | - | | #### 13.C. Details of linkage with ATMA a) Is ATMA implemented in your district: Yes If yes, role of KVK in preparation of SREP of the district? KVK provided input on problem identification , prioritization, researchable issues and strategies / technologies for different agro-eco systems in the district #### Coordination activities between KVK and ATMA: | S.
No. | Programme | Particulars | No. of programmes attended by KVK staff | No. of programmes Organized by KVK | Other
remarks
(if any) | |-----------|-----------|--|---|------------------------------------|------------------------------| | 01 | Meetings | KVK-ATMA Intefernce
Meetings and ATMA
Steering Committee
meetings | 2 | 4 | - | | S.
No. | Programme | Particulars | No. of programmes attended by KVK staff | No. of programmes Organized by KVK | Other
remarks
(if any) | |-----------|----------------------------|--|---|------------------------------------|-----------------------------------| | 02 | Research
projects | Assessment of Improved Bunch Groundnut varieties for higher productivity under Irrigated situation in Rabi-Summer season Assessment of ISF-764 and A-2020 varieites of Safflower for higher productivity Assessment of NBeG-49 and Phule Vikram varieties of Bengalgram for higher productivity under irrigated situation Upgradation of local sheep with Nari Suvarna Ram for high productivity of meat | - | - | Jointly
organised
with ATMA | | 03 | Training
programmes | ICM in Kharif & Rabi crops Post Harvest Technology Farmers' Producers Organisation Integrated Farming System Health, nutrition and terrace garden | - | 10 | Jointly
organised
with ATMA | | 04 | Demonstrations | ICM practices in
Bengalgram | - | 4 | Jointly
organised
with ATMA | | 05 | Extension
Programmes | | 12 | 7 | Jointly
organised
with ATMA | | | Kisan Mela | | - | 1 | Jointly
organised
with ATMA | | | Technology Week | | 1 | 1 | Jointly
organised
with ATMA | | | Exposure visit | | - | - | | | | Exhibition | | - | - | - | | | Soil health camps | | - | - | - | | | Animal Health
Campaigns | | - | - | - | | | Others (Pl. specify) | | - | - | - | | | Field Day | | 4 | 2 | Jointly
organised
with ATMA | | | Jal Shakti
Abhiyaan | | 4 | 2 | - | | S.
No. | Programme | Particulars | No. of programmes attended by KVK staff | No. of programmes Organized by KVK | Other
remarks
(if any) | |-----------|--------------------------------------|-------------|---|------------------------------------|-----------------------------------| | | World Food Day | | - | - | - | | | International
Womens' Day | | - | - | - | | | World Soil Health
Day | | 1 | 1 | Jointly
organised
with ATMA | | | Farmers' field school | - | - | • | - | | | Farmer-Scientist
Interaction Meet | - | - | 2 | Jointly
organised
with ATMA | | 06 | Publications | | | | | | | Video Films | - | - | - | - | | | Books | - | - | - | - | | | Extension | <u>_</u> | _ | _ | _ | | | Literature | _ | | _ | _ | | | Pamphlets | - | - | - | - | | | Others (Pl. specify) | - | - | - | - | | 07 | Other Activities (PI. specify) | | | | | #### 13.D. Give details of programmes
implemented under National Horticultural Mission: NIL | S.
No. | Programme | Nature of linkage | Funds received if any Rs. | Expenditure during the reporting period in Rs. | Constraints if any | |-----------|-----------|-------------------|---------------------------|--|--------------------| | | | | | | | 13.E. Nature of linkage with National Fisheries Development Board : NIL | | i italaio oi iiiikag | tatale of linkage with rational floriories bevolephiont board : Itiz | | | | | | | | | | | |-----------|----------------------|--|---------------------------|--|---------|--|--|--|--|--|--|--| | S.
No. | Programme | Nature of linkage | Funds received if any Rs. | Expenditure during the reporting period in Rs. | Remarks | 13.F. Details of linkage with RKVY: NIL | S.
No. | Programme | Nature of linkage | Funds received if any Rs. | Expenditure during the reporting period in Rs. | Remarks | |-----------|-----------|-------------------|---------------------------|--|---------| | | | | | | | #### 13G. Kisan Mobile Advisory Services | Month | Message | | | SMS/voice | calls sen | t (No.) | | Total | Farmers | |--------------|-------------------|------|---------------|-----------|---------------|---------------|--------------------------|--------------------------------------|---------| | | type (Text/Voice) | Crop | Livest
ock | Weather | Marke
ting | Awaren
ess | Other
enterpri
ses | SMS/
Voice
calls sent
(No.) | (No.) | | April 22 | Text | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 1280 | | May 22 | Text | 1 | 0 | 1 | 0 | 2 | 0 | 4 | 1284 | | June 22 | Text | 1 | 0 | 1 | 0 | 0 | 1 | 3 | 1286 | | July 22 | Text | 1 | 1 | 2 | 1 | 1 | 0 | 6 | 1286 | | August 22 | Text | 2 | 0 | 3 | 0 | 0 | 0 | 5 | 1286 | | September 22 | Text | 2 | 1 | 2 | 0 | 0 | 0 | 5 | 2850 | | October 22 | Text | 2 | 0 | 2 | 1 | 0 | 1 | 6 | 2850 | | November 22 | Text | 2 | 0 | 2 | 0 | 1 | 1 | 6 | 2855 | | Decemer 22 | Text | 1 | 0 | 2 | 2 | 0 | 1 | 6 | 2865 | | January 23 | Text | 2 | 0 | 2 | 1 | 0 | 0 | 5 | 8210 | | February 23 | Text | 1 | 1 | 1 | 1 | 1 | 0 | 5 | 8200 | | March 23 | Text | 2 | 1 | 1 | 0 | 1 | 0 | 5 | 8200 | | Total | | 17 | 4 | 20 | 7 | 6 | 4 | 58 | 42452 | # PART XIV- PERFORMANCE OF INFRASTRUCTURE IN KVK 14.A. Performance of demonstration units (other than instructional farm) | SI.
No. | Demo
Unit | Year of establi shment | Area
(ha) | Details of production | | | Amoun | t (Rs.) | Remar | |------------|----------------|------------------------|--------------|----------------------------|-----------|------|----------------|--------------|-------| | | | | | Variety | Produce | Qty. | Cost of inputs | Gross income | ks | | 1 | Green
House | 2007 | 250
sq.ft | Alphanso
Mangoes | Grafts | 500 | 4000 | 10000 | | | 2 | Green
House | 2007 | | Chilli-
Byadgidab
bi | Seedlings | 5000 | 1250 | 5000 | | 14.B. Performance of instructional farm (Crops) including seed production | Name of the | | | | Details of | of production | | Amoun | t (Rs.) | | |---|----------------|--------------------|--------------|--|--------------------|------|----------------|--------------|--| | Name of the crop | Date of sowing | Date of
harvest | Area
(ha) | Variety | Type of
Produce | Qty. | Cost of inputs | Gross income | Remarks | | Cereals | | | | | | | | | | | Rabi Jowar | 02.11.22 | 10.03.23 | 3.2 | SPV-2217 | Seeds | 12.0 | 12500 | 48000 | | | Millet Cafeteria: Pearlmillet, Foxtailmillet, Littlemillet, Browntop millet | 23.07.22 | 12.11.22 | 1.0 | VPMH-7
DHFt-109-3
DHLM.36-3
Local | Grains | 4.0 | 4500 | - | Crop
failed due
to excess
rainfall | | Pulses | | | | | | | | | | | Greengram | 06.06.22 | 18.08.22 | 5.6 | DGGV-2 | Seeds | 30.0 | 30800 | 210000 | | | Blackgram | 07.06.22 | 12.09.22 | 0.8 | DU-1 | Grains | 3.75 | 8200 | 18800 | | | Bengalgram | 03.11.22 | 16.02.23 | 2.8 | JAKI-9218,
DBGV-204 | Seeds | 21.0 | 28000 | 65000 | | | Oilseeds | | | | | | | | | | | Groundnut | 23.07.22 | 29.12.22 | 0.4 | GJG-11 | Seeds | 3.0 | 11500 | - | Crop
failed
due to
excess
rainfall | | Fibers | | | | | | | | | | | Name of the | Date of | f Doto of | Area | Details | of productio | n | Amoun | t (Rs.) | | |-------------------------------|-------------|--------------------|------|--|-----------------|------|----------------|--------------|--| | crop | sowing | Date of
harvest | (ha) | Variety | Type of Produce | Qty. | Cost of inputs | Gross income | Remarks | | Spices & Planta | ation crops | | • | | | | | | | | Cashew | | | 1.20 | Vengurla-4 | Nuts | 8.0 | 22000 | 94400 | | | Coconut | 2018 | | 4.00 | Deejay
sampoorna | Tender
Nuts | | 35000 | 18500 | | | Coconut +
Custardapple | 2021 | | 3.00 | Kalpa
surya,
Kalpa
jyothi,
COD | | | 8000 | - | Planted
2 years
back | | Floriculture | | | | | | | | | | | Fruits | | | | | | | | | | | Tamarind | | | 0.60 | PKM-1 &
DTS-1 | Fruit | 14.0 | 6500 | 55000 | | | Amla | | | 0.60 | NA-7,
Krishna | Fruit | 13.0 | - | 26000 | | | Mango | | | 0.80 | Alphonso | Fruit | - | 23000 | - | Crop
failed | | Tamarind +
Mango +
Amla | 2021 | | 8.0 | DTS-1,
Kesar,
NA-7 | | - | 11000 | - | Planted
1 years
back | | Agroforestry | 2020 | | 0.8 | | | - | 3000 | - | Planted
2 years
back | | Vegetables | | | | | | | | | | | Onion | 24.06.22 | - | 3.2 | Bhima
super | Bulb | - | 50600 | - | Crop
failed
due to
excess
rainfall | | Others
(specify) | | | | | | | | | | # 14.C. Performance of production Units (bio-agents/bio pesticides/bio-fertilizers etc.,) | | Name of the | | Amoun | it (Rs.) | | |--------|--------------|--------------|----------------|--------------|---------| | SI.No. | Product | Qty | Cost of inputs | Gross income | Remarks | | 1 | Vermicompost | 152.0
Qtl | 27500 | 60800 | | | 2 | Forthworms | 0.93 Qtl | 14200 | 22800 | | | | Earthworms | บ.ยือ นิแ | 14200 | 22000 | | | 3 | Azolla | 0.05 Qtl | 1300 | 500 | | # 14.D. Performance of instructional farm (livestock and fisheries production) | | Name of the animal / bird / aquatics | Details of production | | | Amou | | | |-----------|--------------------------------------|---------------------------|-----------------|----------|----------------|-----------------|---------| | SI.
No | | Breed | Type of Produce | Qty. | Cost of inputs | Gross
income | Remarks | | 1 | Buffaloes | Local | Milk | 2537 lit | 81919 | 86258 | | | 2 | Sheep | Rambullet local cross | Lamb | 2 lamb | 3500 | 10500 | | | 3 | Goat | Jamunapuri
local cross | Kid | 3 kid | 6600 | 21000 | | #### 14E. Utilization of hostel facilities Accommodation available (No. of beds): 30 | Months | No. of trainees stayed | Trainee days
(days stayed) | Reason for short fall (if any) | |----------------|------------------------|-------------------------------|--------------------------------| | April 22 | 0 | 0 | - | | May 22 | 76 | 17 | - | | June 22 | 50 | 13 | - | | July 22 | 16 | 9 | - | | August 22 | 0 | 0 | - | | September 22 | 32 | 9 | - | | October 22 | 0 | 0 | - | | November 22 | 131 | 17 | - | | Decemer 22 | 110 | 25 | - | | January, 2023 | 15 | 9 | - | | February, 2023 | 0 | 0 | - | | March, 2023 | 22 | 4 | - | # 14F. Database management | S. No | Database target | Database created | |-------|--|--------------------| | 1 | OFT | Already maintained | | 2 | FLD | Already maintained | | 3 | Training database | Already maintained | | 4 | Seeds & planting material | Already maintained | | 5 | All Extension activities | Already maintained | | 6 | Farmers visiting to KVK | Already maintained | | 7 | Field visits | Already maintained | | 8 | District database | Already maintained | | 9 | Soil & water test details | Already maintained | | 10 | Database on KVK (i.e regarding KVK details, host institute | Already maintained | | | details, staff information, KVK land information, KVK | | | | infrastructure, demo units, vehicle, office, lab, farm | | | | equipment & library) | | | 11 | HRD of KVK staff (i.e training/seminar/workshop attended | Already maintained | | | by KVK staff) | | | 12 | Publications of KVK activities in news papers | Already maintained | | 13 | Villages covered by KVK since inception | Already maintained | | 14 | Kisan mobile advisory services – Subscribers and | Already maintained | | | messages sent | | | 15 | Farm implements | Already maintained | | 16 | Citizen's Client Charter | Already maintained | ## 14.G. Details on Rain Water Harvesting Structure and micro-irrigation system # (a) Rain Water Harvesting Structure | Amou | Expe | Details of infras | tructure | | Activiti | es conduc | ted | | Quantity | Area | |--------|--------|------------------------------|----------|----------|----------|--------------|----------|-----|-----------|-----------| | nt | nditu | created / micro | | No. of | No. of | No. of | Visit by | | of water | irrigate | | sancti | | irrigation syster | n etc. | Training | Demonst | plant | farmers | | harvested | | | on | (Rs.) | | | program | rations | materia | (No.) | ` ' | in '000 | utilizati | | (Rs.) | | | | mes | | ls . | | | litres | on | | | | | | | | produc
ed | | | | pattern | | 850000 | 850000 | Graded bund | 5054.6 | 6 | 2 | 0 | 185 | 17 | 340 | 4.0 | | | | construction | 8 cm | | | | | | | ha | | | | Construction of | | | | | | | | | | | | waste weirs | | | | | | | | | | | | 1)1.52 feet | 5 Nos. | | | | | | | | | | | crust length | | | | | |
 | | | | | 2)1.83 feet | 7 Nos. | | | | | | | | | | | crust length | 4 NI | | | | | | | | | | | 3) 2.44 feet | 4 Nos. | | | | | | | | | | | crust length
4) 2.74 feet | 3 Nos. | | | | | | | | | | | crust length | J 1105. | | | | | | | | | | | 5) 3.00 feet | 3 Nos. | | | | | | | | | | | crust length | 01100. | | | | | | | | | | | Farm pond | 2 Nos. | Infiltration wells | | | | | | | | | | | | a)Infiltration | 9 Nos. | | | | | | | | | | | Well | 1 No. | | | | | | | | | | | b)Common
tank | | | | | | | | | | | | Bore well | 1 No. | | | | | | | | | | | recharge pit | | | | | | | | | | | | Sub surface | 2 Nos. | | | | | | | | | | | dam | | | | | | | | | | | | Soak pits | 147 | | | | | | | | | | | Check dam | 1 | | | | | | | | # (b) Micro-irrigation systems : | Amount | Expendi | Details of | | | | Quantity | Area | | | | |-------------------|---------------|--|-------|--------------------------------------|------------------------------|-----------------------------------|------------------------------|--------------------------------|---|-------| | sanctior
(Rs.) | ture
(Rs.) | infrastructure
created / mic
irrigation sys | ro | No. of
Training
program
mes | No. of
Demonst
rations | No. of plant materia Is produc ed | Visit by
farmers
(No.) | Visit by
officials
(No.) | of water
harveste
d in '000
litres | d / | | 150000 | 150000 | Drip
irrigation
system for
Dry land
Horticulture | 5 Ha. | 4 | 0 | 0 | 130 | 9 | 0 | 5 Ha. | # PART XV – SPECIAL PROGRAMMES # 15.1 Paramparagath Krishi Vikas Yojana (PKVY): NIL | SI.
No. | Name
of | | | tility statu
uster villa | | Facilities created | Name
of | Vari
ety | Organic inputs | Yield
q/ha) | Econo | omics | |------------|--------------------|------------|---------|-----------------------------|---------|---------------------------------------|-------------------------|-------------|---|----------------|---------------------------------------|---------------------------| | | cluster
village | Aval.
N | Aval. P | Aval. K | OC
% | for
organic
source of
manure | Crops
cultiv
ated | | applied including bio-agents and botanicals treatment | | Cost of
cultivati
on
(Rs/ha) | Net
returns
(Rs/ha) | 15.2 District Agriculture Meteorological Unit (DAMU): NIL | 10.11 | 22 District righted victors of Section (Driving) Viving | | | | | | | | | | | | | |-----------|---|---|-----------------------------|------------------------------|-----------------------------|--|--|--|--|--|--|--|--| | | Agro advisories | | | Farmers awareness programmes | | | | | | | | | | | Sl
No. | No of Agro
advisories
generated | No of farmers
registered for
agro
advisories | No of farmers
benefitted | No of programmes | No of farmers
benefitted | | | | | | | | | | 1 | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 15.3 Fertilizer awareness programmeorganised | State | Name of
KVK | Details of Activities/programmeOrganised | Number of
Chief
Guests | No. of Farmers
attended
program | Total participants | |-------|----------------|--|------------------------------|---------------------------------------|--------------------| | | | | | | | 15.4 Seed Hub: NIL | Crops | Variety | Year of | | Production | | | | | | | | | |-------|---------|---------|------------|---------------|-----------------------|---------------------|--|--|--|--|--|--| | | | release | Target (q) | Area
(ha.) | Actual Production (q) | Category
(FS/CS) | | | | | | | | | | | | | _ | #### 15.5 CFLD on Oilseeds: | | SI. | Varieties den | nonstrated & | Allo | ocated | Implemented | | | | |-----|-----------|------------------|--------------|------|--------|-------------|-------|--|--| | No. | Crop | Che | eck | Area | Demos | Area (ha) | Demos | | | | NO. | | Demo Check | | (ha) | (No.) | Alea (lia) | (No.) | | | | 1 | Groundnut | Kadari
Lepaxi | TMV-2 | 20 | 50 | 20 | 50 | | | | | Total | | | 20 | 50 | 20 | 50 | | | #### 15.6 CFLDs on Pulses: | CI | | Varieties der | monstrated & | Allo | cated | Implemented | | | | |------------|------------|---------------|--------------|------|-------|-------------|-------|--|--| | SI.
No. | Crop | Ch | Check | | Demos | Area (ha) | Demos | | | | 140. | | Demo | Check | (ha) | (No.) | Alea (lia) | (No.) | | | | 1 | Bengalgram | JAKI-9218 | JG-11 | 10 | 25 | 10 | 25 | | | | | Total | | | 20 | 50 | 20 | 50 | | | 15.7 Krishi Kalyan Abhiyan : NIL | Type of Activity | Date(s) | No | o. of farme
(General) | | No | o. of farme
SC / ST | ers | No.of extension personnel | | | |------------------|-----------|------|--------------------------|-------|------|------------------------|-------|---------------------------|--------|-------| | Type of Activity | conducted | Male | Female | Total | Male | Female | Total | Male | Female | Total | | | | | | | | | | | | | 15.8 Micro-Irrigation | Type of Activity | Date(s) | No. of farmers
(General) | | | No | o. of farme
SC / ST | ers | No. of extension personnel | | | | |---|------------|-----------------------------|--------|-------|------|------------------------|-------|----------------------------|--------|-------|--| | Type of Adminis | conducted | Male | Female | Total | Male | Female | Total | Male | Female | Total | | | Efficient use of water | 07-11-2022 | 7 | 38 | 45 | 0 | 6 | 6 | 1 | 0 | 1 | | | Efficient use of water | 19-11-2022 | 48 | 0 | 48 | 4 | 0 | 4 | 2 | 0 | 2 | | | Training programme on efficient use of fertilizer and water through drip irrigation | 11-01-2022 | 49 | 0 | 49 | 11 | 0 | 11 | 15 | 0 | 15 | | 15.9 Tribal Sub-Plan (TSP): NIL | | | Jub I Iui | . (| . , | | | | | | | | | | | | | | |--------|----|-----------|-----|----------------|----|--------|------|---------------|----------|-------|------|-------|------|------|------|------|-----| | Farm | er | Wom | en | Rura | al | Extens | sion | OFT | N | umbe | r of | Par | Pro | Pro | Pro | Pro | Te | | Traini | ng | Farm | er | Youth | าร | Persor | nel | (No farmers t | | ticip | duc | duc | duc | duc | sti | | | | | | Traini | ng | | | | | of | involved | | ant | tion | tion | tion | tion | ng | | | No. | Ν | No. | Ν | No. | Ν | No. | Ν | Tech | 0 | Fr | М | s in | of | of | of | of | of | | of | 0. | of | 0. | of | Ο. | of | Ο. | nolo | n | on | ob | ext | see | Pla | Liv | fing | So | | Traini | of | Traini | of | Traini | of | Traini | of | gies | - | tlin | ile | ens | d | ntin | est | erli | il, | | ngs/ | Fa | ngs/ | W | ngs/ | Υ | ngs/ | Ε | s) | f | е | ag | ion | (q) | g | ock | ngs | wa | | Dem | rm | Dem | 0 | Dem | 0 | Dem | xt. | | а | de | ro- | acti | | ma | str | (Nu | ter | | os | er | os | m | os | ut | os | Р | | r | m | ad | vitie | | teri | ain | mb | , | | | S | | en | | hs | | er | | m | os | vis | S | | al | S | er | pla | | | | | Fa | | | | so | | | | or | (No | | (Nu | (Nu | in | nt, | | | | | rm | | | | n | | tr | | У | .) | | mb | mb | lak | ma | | | | | er | | | | | | i | | to | | | er | er | h) | nu | | | | | S | | | | | | а | | far | | | in | in | | res | | | | | | | | | | | ı | | m | | | lak | lak | | sa | | | | | | | | | | | s | | er | | | h) | h) | | mp | | | | | | | | | | | | | S | | | | | | les | | | | | | | | | | | | | | | | | | | (N | | | | | | | | | | | | | | | | | | | um | | | | | | | | | | | | | | | | | | | be | | | | | | | | | | | | | | | | | | | r) | #### 15.10 SCSP: NIL | Farm | er | Wom | en | Rura | al | Extens | sion | OFT | N | umbe | r of | Par | Pro | Pro | Pro | Pro | Te | |--------|----|--------|----|--------|----|--------|------|------|----|----------|------|-------|------|------|------|------|-----| | Traini | ng | Farm | er | Youth | าร | Person | nel | (No | f | farmers | | ticip | duc | duc | duc | duc | sti | | | | Traini | ng | | | | | of | İI | involved | | ant | tion | tion | tion | tion | ng | | No. | Ν | No. | Ν | No. | Ν | No. | Ν | Tech | 0 | Fr | M | s in | of | of | of | of | of | | of | 0. | of | 0. | of | 0. | of | 0. | nolo | n | on | ob | ext | see | Pla | Liv | fing | So | | Traini | of | Traini | of | Traini | of | Traini | of | gies | - | tlin | ile | ens | d | ntin | est | erli | il, | | ngs/ | Fa | ngs/ | W | ngs/ | Υ | ngs/ | Е | s) | f | е | ag | ion | (q) | g | ock | ngs | wa | | Dem | rm | Dem | 0 | Dem | 0 | Dem | xt. | | а | de | ro- | acti | | ma | str | (Nu | ter | | os | er | os | m | os | ut | os | Р | | r | m | ad | vitie | | teri | ain | mb | , | | | S | | en | | hs | | er | | m | os | vis | S | | al | S | er | pla | | | | | Fa | | | | so | | | | or | (No | | (Nu | (Nu | in | nt, | | | | | rm | | | | n | | tr | | У | .) | | mb | mb | lak | ma | | | | | er | | | | | | i | | to | | | er | er | h) | nu | | | | | S | | | | | | а | | far | | | in | in | | res | | | | | | | | | | | ı | | m | | | lak | lak | | sa | | | | | | | | | | | S | | er | | | h) | h) | | mp | | | | | | | | | | | | | S | | | | | | les | | | | | | | | | | | | | | | | | | | (N | | | | | | | | | | | | | | | | | | | um | | | | | | | | | | | | | | | | | | | be | | | | | | | | | | | | | | | | | | | r) | #### 15.11 NARI: NIL
 | Achie | evement | |--|--------------------|----------------------------------| | Activity | Number of activity | No. of farmers/
beneficiaries | | OFTs - Nutritional Garden (activity in no. of Unit) | | | | OFTs - Bio-fortified Crops (activity in no. of Unit) | | | | OFTs – Value addition(activity in no. of Unit/Enterprise) | | | | OFTs - Other Enterprises (activity in no. of Unit/Enterprise) (activity in no. of Unit/Enterprise) | | | | FLDs - Nutritional Garden (activity in no. of Unit) | | | | FLDs - Bio-fortified Crops (activity in no. of Unit) | | | | FLDs – Value addition(activity in no. of Unit/Enterprise) | | | | FLD- Other Enterprises (activity in no. of Unit/Enterprise) (activity in no. of Unit/Enterprise) | | | | Trainings | | | | Extension Activities | | | #### 15.12 KVK Portal | No.
of | No.
of | Filled Report on Package of Practices (Y/N) | | | Filled Profile Report (Y/N) | | | | | | | | | |---|--|---|---------------|---------------|-----------------------------|---------------|-----------|-------------|---------------------------------|----------------|-----------|---------------|----------| | Eve
nts
add
ed
by
KVK
s | Facili
ties
adde
d by
KVKs | Cr
op | Livest
ock | Fishe
ries | Horticu
Iture | Emplo
yees | Po
sts | Fina
nce | Soil
Hea
Ith
Car
ds | Applia
nces | Cro
ps | Resou
rces | Fi
sh | | 2340 | 12 | Υ | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | #### 15.13 KSHAMTA: NIL | Number of | No. of Activities | 3 | No. of farmers bene | s benefited | | |------------------|-------------------|----------|---------------------|-------------|--| | Adopted Villages | Demo | Training | Demo | Training | | | | | | | | | # $15.14\ DFI: KVK$ has intervened with 110 families during the year 2020 among 133 families surveyed under DFI | SI | District | Taluks | Villages | Farmers
(No.) | Average
Benchmark
Income
(Rs./year) | Crops/
enterprises | KVK
Interventions | Addition
al Net
Income
generate
d due to
KVK
interventi
ons
(Rs/year) | Total
income
of farmer
(Rs/
year) | |----|----------|--------|--|------------------|--|--|--|---|---| | 1 | Gadag | | Chikkasavanur,
Shingatarayana
keri and Gadag | 110 | 71095 | Crops: Maize, Rabi Sorghum, Bt.Cotton, Groundnut, Greengram, White Onion, Chrysanthemu m, Vegetables (Okra, Ridgegourd, Dolichos bean, Beans and Coriender) Enterprises: Dairy Nutri Garden | Maize+ Redgram intercropping system with ICM practices Introduction of SPV-2217 variety in Rabi Sorghum Bt.Cotton+ Greengram intercropping system with ICM practices Introduction of DH-256 variety of Grounndut along with ICM practices Introduction of DGGV-2 variety with ICM practices Introduction of Arka Shweta and Arka Shubra white Onion varieties ICM in Chrysanthem um Demonstratio n of vegetable cafeteria (Introduction of improved varieties of Okra, Ridgegourd, Dolichos bean, Beans and Coriender Nutrient | 149386 | 220481 | | SI | District | Taluks | Villages | Farmers
(No.) | Average
Benchmark
Income
(Rs./year) | Crops/
enterprises | KVK
Interventions | Addition
al Net
Income
generate
d due to
KVK
interventi
ons
(Rs/year) | Total
income
of farmer
(Rs/
year) | |----|----------|--------|----------|------------------|--|-----------------------|--|---|---| | | | | | | | | management in milch animals • Demonstratio n of nutri garden | | | # PART XVI - FARMERS FEEDBACK ON ASSESSED/DEMONSTRATED TECHNOLOGIES OF CROPS / LIVESTOCK #### 16.1 Farmers feedback on performance of crop varieties/hybrids | SI.
No. | Crop varieties/hybrids assessed/
demonstrated | Farmer's feedback | |------------|--|---| | 1 | Groundnut ● GPBD-4 | Early maturityTwo seeded podsResistant to rust and late leaf spot | | 2 | • DGGV-2 | High yielding Non shattering Taller canopy Suitable for mechanical harvesting | | 3 | Vegetable crop cafeteria Ridgegourd - Arka Prasan variety Dolichos bean – Arka Amogh | An early variety Gives more yield Low incidence of powdery mildew compared to local variety Fruits are tender with good taste and cooking quality More yield, good marketability and cosumer | | | Radish – Arka Nishant Spinach – Arka Anupama | acceptability More yield, mild in pungency and attractive roots and foliage Preferred by local market More yield, thick and big leaves make large | | 4 | Onion • Bheema Super | bunch & attractive green leaf colour and Good Shelf life Bheema Super have good bulb weight with 26.80 % increase in the yield. Bulbs are attractive with light pink colour fetches Rs.200/- more per quantal compared to local variety Ballary Red. | ## 16.2 Farmers feedback on performance of agronomic practices | SI. | Agronomic practices | Farmer's feedback | |-----|--|--| | No. | | | | 1 | Seed treatment of Trichoderma in Groundnut | Helps to reduce Root rot disease | | 2 | Seed treatment with Biofertilizers like Rhizobium and PSB | Helps to reduce use of nitrogenous and phosphatic fertilizers | | 3 | Use of pulse magic in Greengram | Foliar spray of Pulse magic in Greengram at flowering stage helped in healthy growth of plant without any deficiency symptoms besides increasing number of pods per plant. This practice resulted in higher grain yield. | | 4 | Seed treatment with Rhizobium and PSB | Higher seedling vigor | | 5 | Foliar spray of Pulse magic | Increased pod setting and higher yield | | 6 | Adoption of border crop and trap crops in ByadagiChilli | Maize as border crop and Marigold as trap crop
resulted in less incidence of sucking pest and fruit
borer respectively | | 7 | Use of Arka Vegetable Special at 40, 60 and 80 days after sowing in vegetables, Red Onion and Red Chilli | Vegetables Application of Arka Vegetable Special resulted in better crop growth without much micronutrient deficiency. Ridgegourd- Elongated fruits with no malformation Dolichos bean- Complete filling of grains Spinach - Less occurence of Iron deficiency resulted in healthy and dark green leaves Radish – Less forking, bright white colour roots Onion Application of Arka Vegetable Special helped to get large and dark pink coloured bulbs Chilli Application of Arka Vegetable Special (Micornutrient mixture) resulted in better flower and fruit set and dark red coloured fruits | | 8 | Crop diversification Introduction of Ajwain and Ashwagandha crops | These crops withstand vagaries of mansoon and grows well under residual soil moisture conditions compared to field crops. Ashwagandha crop has assured buyback system and green seeds of improved Ajwain variety fetches better market price. Therefore, crop diversification through introduction of these climate resilient crops are more profitable and sustainable than traditional crops during less rainfall years | #### 16.3 Farmers feedback onperformance of pest and disease management in crops | SI. | Pest and disease management in | Farmer's feedback | |-----|---------------------------------
--| | No. | crops | | | 1 | Groundnut | Collar rot and Leaf sport diseases were identified in | | | | groundnut crop. Integrated management practices like | | | | seed treatment with fungicides, crop rotation practices, | | | | summer ploughing and green manuring along with | | | | chemical management practices helped to reduce collar | | | | rot and leaf spot incidence in groundnut crop. | | 2 | Greengram | Major pests like thrips, Aphids and Pod borer and | | | | incidence of disease like powdery mildew were noticed | | | | during cultivation. Adoption of Integrated crop | | | | management practices in demonstrated plots helped in | | | | reduction of pest and disease occurrence. | | 3 | Seed treatment with Trichoderma | Low incidence of soil borne fungal diseases | | 4 | Seed treatment with Trichoderma | Helped to reduce seedling rot and incidence of sucking | | | viride and Imidachloprid in | pests at early vegetative growth stage | | | ByadagiChilli | | | 5 | Seed treatment with Trichoderma | Helped to reduce seedling rot disease in main field | | | viride in onion | | | 6 | Pest and disease management in | Timely management of Anthracnose, Murda complex | | | Byadagichilli crop | disease lead to get 20% additional yield compared to local | | | | practices | # 16.4 Farmers feedback on performance of farm machinery technologies | SI. No. | Farm machinery technologies | Farmer's feedback | | | | | |---------|--------------------------------------|--|--|--|--|--| | 1 | i) Tractor operated Boom sprayer | Area coverage and efficacy of spray is good | | | | | | | ii) Drone sprayer | Field capacity is better compared to other technologies and it results in saving of time and labour | | | | | | | iii) Battery operated Onion detopper | Reduces drudgery of operation involved in manual detopping of Onions and also saves time of operation. | | | | | #### 16.5 Farmers feedback on performance of livestock and fisheries technologies | SI. No. | Livestock/fisheries technologies | Farmer's feedback | |---------|----------------------------------|---| | 1 | CB Cows | Feeding of green fodder enhances the milk yield | | | | and improves the health of the CB cows | #### **PART XVII - FINANCIAL PERFORMANCE** ## 17A. Details of KVK Bank accounts | Bank account | Name of the bank | Location | Branch code | Account Name | Account
Number | MICR
Number | IFSC
Number | |--------------|------------------|----------|-------------|-----------------|-------------------|----------------|----------------| | With Host | - | - | - | - | - | - | - | | Institute | | | | | | | | | With KVK | SBI | Gadag | 0838 | KHP KVK Hulkoti | 10824829153 | 582002002 | SBIN0000838 | # 17B. Utilization of KVK funds during the year 2022-2023 (Up to 31stMarch 2023) | S.No. | Particulars | Sanctioned | Released | Expenditure | |---------|--|---------------|----------|---------------------------------------| | | rring Contingencies | | | | | 1 | Pay & Allowances | 20573000 | 20573000 | 20572955 | | 2 | Traveling allowances | 195000 | 195000 | 195000 | | 3 | Contingencies | | | | | Α | Stationery, telephone, postage and other | | | | | | expenditure on office running, publication | | | | | | of Newsletter and library maintenance | | | | | | (Purchase of News Paper & Magazines) | 395000 | 395000 | 395000 | | В | POL, repair of vehicles, tractor and | | | | | | equipments | 475000 | 475000 | 475000 | | C | Meals/refreshment for trainees (ceiling upto | | | | | | Rs.40/day/trainee be maintained) | 142000 | 142000 | 142000 | | D | Training material (posters, charts, | | | | | | demonstration material including chemicals | | | | | | etc. required for conducting the training) | 30000 | 30000 | 30000 | | E | Frontline demonstration except oilseeds | | | | | | and pulses (minimum of 30 demonstration | | | | | | in a year) | 455000 | 455000 | 455000 | | F | On Farm Testing (on need based, location | .0000 | .00000 | 10000 | | - | specific and newly generated information in | | | | | | the major production systems of the area) | 145000 | 145000 | 145000 | | G | Integrated Farming System | 0 | 0 | 0 | | Н | Training of Extension Functionaries | 25000 | 25000 | 25000 | | I | Extension activities | 125000 | 125000 | 125000 | | J | Farmers' Field School | 30000 | 30000 | 30000 | | K | EDP / Innovative activities | 30000 | 30000 | 30000 | | L | Maintenance of buildings | 150000 | 150000 | 150000 | | M | Establishment of Soil, Plant & Water Testing | 5 0000 | 50000 | 50000 | | | Laboratory and issue of Soil Health Cards | 50000 | 50000 | 50000 | | N | Nutri Garden | 25000 | 25000 | 25000 | | 0 | Library Maintenance | 25000 | 25000 | 25000 | | | TOTAL (A) | 22870000 | 22870000 | 22869955 | | B. Non- | Recurring Contingencies | - | - | · · · · · · · · · · · · · · · · · · · | | 1 | Works | 0 | 0 | 0 | | 2 | Equipments including Furniture (IT) | 300000 | 300000 | 300000 | | 3 | Vehicle (Four wheeler) | 900000 | 900000 | 900000 | | 4 | SCSP Programme | 270000 | 270000 | 270000 | | TOTAL | | 1470000 | 1470000 | 1470000 | | | DLVING FUND | 0 | 0 | 0 | | GRAND | TOTAL (A+B+C) | 24340000 | 24340000 | 24339955 | # 17C. Status of revolving fund (Rs. in lakh) for the last three years | Year | Opening balance as on 1st April | Income
during the
year | Expenditure during the year | Net balance in hand as
on 31st March of each
year | |---------------|---------------------------------|------------------------------|-----------------------------|---| | April 2020 to | 5.05 | 14.35 | 14.89 | 4.51 | | March 2021 | | | | | | April 2021 to | 4.51 | 21.71 | 19.83 | 6.39 | | March 2022 | | | | | | April 2022 to | 6.39 | 30.64 | 30.02 | 7.01 | | March 2023 | | | | | # 18. Details of HRD activities attended by KVK staff | Name of the staff | Designation | Title of the training programme | Institute where attended | Dates | |-------------------------|------------------------------|---|---|----------------------------| | | Senior Scientist
and Head | Pre-Action Plan meeting | UAS, Dharwad | 11-12, April
2022 | | Dr. L.G.Hiregoudar | | Annual Review 2021-22
Cum Action Plan 2022-23
workshop | UAS, Dharwad | 21-23, April
2022 | | Dr. Sudha V.
Mankani | SMS (Home
Science) | KVK National conference at
Solan | Dr. V.S.Parmar University of Horticulture and forestry, Solan, Himachal Pradesh | 1-2, June
2022 | | | | Safflower oil processing -
Value addtion& marketing | UAS, Dharwad | 1 December
2022 | | | | National level workshop on
Natural Farming | University of
Agricultural
Sciences,
Gwalior, Madhya
Pradesh | 3 December
2022 | | Mr. N.H.Bhandi | SMS (Soil
Science) | Training on Natural Farming | Gurukul,
Kurukshetra,
Hariyana State | 5-6December
2022 | | | | International conference on
'Reimaging Rainfed
Agriculture' - Challenges &
opportunities | CRIDA,
Hyderabad | 22-24,
December
2022 | | | | South Asia Drought
Monitoring System (SADMS) | CRIDA,
Hyderabad | 9-10
March 2023 | | Mrs. Hemavati R.H. | SMS (Horticulture) | Good agricultural practices in Onion and Garlic production technology | ICAR-DOGR,
Pune | 3-7, May
2022 | | | | Herbs in Nutraceuticals | ICAR-NIVEDI,
Bengaluru | 28May 2022 | | | | Training to FPO members by
Center of Excellence,
Bengaluru | Confederation of horticulture associations of India | 28 July 2022 | | Dr. Vinayak
Niranjan | SMS
(Ag. Engineering) | Agricultural mechanisation in
India - Challenges and
perspectivies | Online | 04 April 2022 | | | (Ag. Engineening) | Drone applications in Indian Agriculture | Online | 08 April 2022 | | Name of the staff | Designation | Title of the training programme | Institute where attended | Dates | |-------------------|-------------|--|---|----------------------------| | | | Online webinar on promotion of Kisan drones, issues, challenges & way forward | Online | 02 May 2022 | | | | Natural farming for suitable agriculture | Extn. Education
Institute,
PJTSAU,
Hyderabad | 18-24, April
2022 | | | | Workshop on creating multi-
stake holder value chain for
neglected and under utilised
crops | Sahaja
Samrudha,
Dharwad & Swiss
Aid | 09 May 2022 | | | | Workshop on Kharif crops of 2022-23 viz. Greengram and Soyabean | N.R.Deshpande,
FPO, Mulgund | 23 May 2022 | | | | Promotion of agroforestry as climate risk mitigation | CSB, Bengaluru | 25-26, May
2022 | | | | International conference on
'Reimaging Rainfed
Agriculture' - Challenges &
opportunities | CRIDA,
Hyderabad | 22-24,
December
2022 | 19) Please include any other important and relevant information which has not been reflected above (write in detail). Like details regarding FPO formation, Achievements during COVID-19 lockdown period. #### (i) EDP ON VALUE ADDITION AND MARKETING OF ETHNIC FOOD PRODUCTS Ethnic foods and traditional foods are known for its taste and quality. Because of the consumer demand, many entrepreneurs and SHG groups are preparing the traditional foods. But they lack in marketing ventures, food license and attractive packing. To increae their marketability of ethnic products with food licensing the EDP on marketing of ethnic food products mainly Gulladaki Ladu was initiated. #### **Objectives:** - To imbibe EDP skills in marketing of Ethnic products - To get
an additional employment through preparation of Ethnic products - · To enhance the marketability and income of farm families #### **Activities conducted:** - Implemented EDP by taking two farmersfrom Hulkotivillage of Gadag block - 2 trainings on packing, labeling and marketing of Chilliproducts - Prepared labels and facilitated packing materials for marketing of Ethnic food products - · Facilitated the entrepreneurs in obtaining the FSSAI licence - · Facilitated in providing dough kneading machine and other small machinaries - · Facilitated to participate in Exhibition & fairs for marketing of Ethnic products - Initiated sales of Ethnic products through ASF's Organic Sales Unit, marts and petty shops | Name of the SHG member | Brand name | Village | Taluk | Date of initiation | |------------------------------|-----------------------------------|---------|-------|--------------------| | Mrs. Shilpa Basavaraj Angadi | Shivaprasad GruhaUtpannagalu | Hulkoti | Gadag | March 2023 | | Mr. Muralidhar R. Odugoudar | Shri Sai Gayatri GruhaUtpannagalu | Hulkoti | Gadag | March 2023 | ## **Economics of Ethnic Food Products Enterprise** | Particulars | Income | | | | Expenditure | | | | |-------------------------------|---------------------|------|----------------------|------------|----------------|--|--------------------------------|---------------------| | | Name of the product | Year | Quantity
produced | Rate (Rs.) | Total
(Rs.) | Rawmaterials
and other
expenses
(Rs.) | Total cost of production (Rs.) | Net Income
(Rs.) | | Mrs. Shilpa Basavaraj | Gulladaki Ladu | 2023 | 90 Kg | 600 / Kg | 54000 | 350/Kg | 31500 | 22500 | | | Groundnut Holige | | 1500 Nos. | 10 / Piece | 15000 | 7/Piece | 10500 | 4500 | | Angadi | Sesame Holige | 1 | 900 Nos. | 14 / Piece | 12600 | 10 / Piece | 9000 | 3600 | | | | | | • | | | Total | 30600 | | Mr. MuralidharR.
Odugoudar | Gulladaki Ladu | 2023 | 90 Kg | 600 / Kg | 54000 | 350 / Kg | 31500 | 22500 | | | Wheat Sandige | | 20 Kg | 300 / Kg | 6000 | 50 / Kg | 1000 | 5000 | | | Groundnut Ladu | | 20 Kg | 350 / Kg | 7000 | 250 / Kg | 5000 | 2000 | | | | | | | | | Total | 29500 | ### (ii) FFS: FODDER CULTIVATION #### Fodder Crops: Forage crops (Super Napier, Multicut Sorghum, Grazing guinea grass, Rhodes grass, Signal grass & fodder oats) Legume crops (Lucerne seeds, Stylosanthes heamata, Stylo Scabra & Cow pea) Fodder trees (Subabul & Susbenia grandiflora-Agathi) No. of sessions: 8 Village : Shagoti Block : Gadag No. of farmers: 25 Farming situation: Irrigated Season : 2022-23 | SI. No. | Sessions Conducted | No. of
Participants | |---------|---|------------------------| | 1 | AES with respect to fodder cultivation | 25 | | 2 | Land preparation techniques for fodder cultivation | 24 | | 3 | Characteristics of fodder seeds / root slips, sowing / planting technique | 25 | | 4 | Nutrition management in fodder crops | 23 | | 5 | Weed management and scheduling of irrigation | 22 | | 6 | Fodder harvesting stages, chopping and feeding | 24 | | 7 | Silage making and fodder enrichment | 25 | | 8 | Field day | 25 | **FFS** sessions