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SUMMARY
Generalized Row-Column (GRC) designs are defined as designs with v treatments in p rows and q columns such that the intersection of each row and 
column (cell) consists of k experimental units. In GRC designs, since there are more than one number of units in a cell, it is likely that the treatment 
applied to one experimental unit may affect the response of the neighbouring unit in the same cell if the units are placed linearly adjacent giving rise 
to spatial effects. The study in presence of spatial effects from neighbouring units requires construction of an arrangement in which the neighbouring 
units have to appear in a predetermined pattern. Here, series of GRC designs balanced for these spatial effects have been developed. The information 
matrices for estimating the contrasts pertaining to direct effect and spatial effect have been derived. The designs developed ensure that within a cell 
every treatment has every other treatment appearing as neighbour a constant number of times. A list of efficient designs has been prepared. Further, 
in order to give a readymade solution to the experimenters, a SAS macro has been developed that generates the layout of the designs with parameter 
v (prime), p = v, q = v-1, k = s (3 ≤ s ≤ v-1).
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1. INTRODUCTION
When the heterogeneity present in the experimental 

material is from two sources, then two-dimensional 
blocking or double blocking of the experimental units is 
recommended for control or reduction of experimental 
error. The two blocking systems are referred to 
generally as row blocking and column blocking and 
the resulting designs are termed as Row-Column (RC) 
designs. When the number of treatments is large with 
limited experimental resources then RC designs with 
multiple units per cell can be used. These designs are 
called as Generalized Row-Column (GRC) designs and 
are defined as designs with v treatments in p rows and 
q columns such that the intersection of each row and 

column (cell) consists of k experimental units. Some 
of the experimental situations where these designs 
are useful are described below along with designs 
appropriate for such situations.

Example 1.1: To compare a number of dietary 
treatments on mice, the different breeds and different 
age groups constitute the two sources of variability. 
The cages available with the experimenter have two 
partitions accommodating two mice of same parity, one 
in each partition. Hence, corresponding to each breed-
age combination there are two mice, each can receive a 
distinct treatment.

Example 1.2: A food sensory experiment where 
6 food items are to be compared (Bailey, 1992). The 
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experiment is conducted in 3 sessions. There are 6 
panellists and each of them will taste 2 food items at 
each session. In this case, a GRC design with 3 rows 
(sessions), 6 columns (panellists) with each row-
column intersection having cell of size 2 can be used. 
Following is the arrangement of such a design:

Sessions
Panellists

I II III IV V VI

I 1 4 2 6 2 5 3 5 6 3 4 1

II 2 3 1 5 4 6 6 1 4 5 3 2

III 6 5 4 3 3 1 2 4 1 2 6 5

Example 1.3: An experiment was conducted 
where ten treatments are to be applied to sugar beet, 
which is grown in a 5 × 10 rectangular array of plots 
(Bailey, 1992). Each plot is a single long North-South 
row of sugar beet, so the 10 plots in a single row of 
the rectangle are close to each other and these rows are 
regarded as a nuisance factor. The beet is sown from 
five seed-drills on an arm, which protrudes from the 
right of the tractor. The tractor drives Northwards up 
the left-hand side of the array, sowing seed in the first 
five columns, then turns round and drives Southwards 
down the right-hand side of the array, sowing seed in 
the last five columns. Thus, the first and last columns 
are sown by the same drill and drills form a second 
nuisance factor. The following row-column design 
for ten treatments in five rows, five columns and the 
intersection of each row and each column contains a 
cell of two units (k = 2) can be used:

Rows
(Plots of 

Sugar Beet)

Columns (Drill)

I II III IV V V IV III II I

I 1 5 3 4 2 8 6 9 7 10

II 2 1 5 3 4 10 8 6 9 7

III 6 4 8 10 9 7 5 1 2 3

IV 9 8 10 7 5 3 1 2 6 4

V 8 3 7 2 1 6 9 4 10 5

For details on these designs, one may refer to 
Harshberger and Davis (1952), Darby and Gilbert 
(1958), Preece and Freeman (1983), Williams (1986), 
Bailey (1988, 1992), Edmondson (1998), Bedford and 
Whitaker (2001), Bailey and Monod (2001) and Parsad 
(2006). Subsequently Jaggi et al. (2010) and Datta et al. 
(2014, 2015, 2016, 2017) constructed more classes 
of GRC designs and studied various characterization 
properties of these designs.

There may arise experimental situations wherein 
the response from a unit may be affected by other units 
spatially belonging to the same cluster or group or cell. 
Like in agricultural experiments under block design 
setting, where the blocks are made up of plots which 
cannot be sufficiently isolated from each other, there 
could be spatial effects coming from the treatments 
applied to the neighbouring plots. Following are some 
of the situations of spatial effects:
• If the branches of a tree form plots while the tree 

serves as a block, spatial effects may arise from the 
treatments applied to the neighbouring branches.

• In fertilizer trials, plants in an unfertilized plot 
may rob a share of the plants in a nearby heavily 
fertilized plot, thereby resulting in spatial effects.

• In varietal trials, the yield of a variety may be 
depressed by more aggressive neighbouring 
varieties resulting in spatial effects.

• In fungicide experiments, an unsprayed plot 
provides a source of spores which can infect 
neighbouring treated plots resulting in spatial 
effects.

• In market studies, the sale of different brands on 
a store shelf may be affected by the brands in the 
neighbouring shelves.

• In the interpollination by natural hybridization of a 
group of genotypes, each clone has an equal chance 
of pollinating, or being pollinated by, any of the 
others. 
In case of a GRC design, there are more than 

one units in a cell and the treatment applied to one 
experimental unit in a cell may affect the response on 
neighbouring units in the same cell. Treatments such as 
fertilizer, irrigation, or pesticide may spread to adjacent 
units causing neighbour effects. Such experiments 
exhibit spatial effects, because the effect of having 
no treatment as a neighbour is different from the 
neighbour effects of any treatment. Thus, spatial effects 
resulting in competition between neighbouring units 
may contribute to variability in experimental results 
and lead to substantial losses in efficiency. In order 
to compare the effects of treatments in this situation, 
designs balanced for spatial effects are considered 
where effects from the treatments applied in adjacent 
experimental units are known to exist. Thus, neighbour-
balanced designs wherein the allocation of treatments 
is such that every treatment occurs equally often with 
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every other treatment as neighbour(s), are used for 
these situations. These designs permit the estimation of 
direct and neighbour effect(s) of treatments. 

It is seen in the literature that most of the work on 
designs with neighbour effects is concentrated under 
block design set up. There is a few work done related 
to study of neighbour balanced RC designs. Freeman 
(1979) has given some row-column designs balanced 
for neighbours with and without border plots. Federer 
and Basford (1991) have given three methods of 
constructing balanced nearest neighbour row-column or 
competition effect designs. Chan and Eccleston (2003) 
have given an algorithm which generates neighbour 
balanced row–column designs. Varghese et al. (2014) 
obtained row-column designs incorporating directional 
neighbour effects.

In this study, it is assumed that the effect of a 
treatment applied to a given unit in a cell is the sum 
of the direct effect due to the treatment applied to the 
unit, spatial effect from the treatment applied to the 
immediate left-neighbouring unit and spatial effect 
from the treatment applied to the immediate right-
neighbouring unit within the cell. It is further assumed 
that the spatial effects from both the adjacent units are 
same. The purpose of this paper is to give methods 
of constructing series of GRC designs balanced for 
spatial effects. The general expression for the joint 
information matrix for estimating contrasts pertaining 
to direct effect and spatial effect has been derived. The 
efficiency factor of the designs has also been worked 
out.

2. MODEL AND EXPERIMENTAL SETUP
We consider a GRC design with v treatments 

arranged in p rows, q columns and in each row-column 
intersection (i.e. cells) there are k units resulting in 
total n= pqk experimental units or observations. In 
order to capture the spatial effect of treatments from 
neighbouring units, the following fixed effect model is 
considered:

( ) [ , ] ( -1)[ , ] ( 1)[ , ] ( )       m i j m i jj m i j i j mm i ijY eµ τ δ δ α β+= + + + + + + ,
 (2.1)

 i =1,2,…,p; j = 1,2,…,q; m = 2,…,k 
where Ym(ij) is the response from the mth unit 

corresponding to the intersection of ith row and jth 
column. µ is the general mean, [ , ]m i jτ  is the effect of 
the treatment appearing in the mth unit corresponding 

to the intersection of ith row and jth column, ( -1)[ , ]m i jδ  is 
the neighbour effect due to the treatment applied in the 
adjacent left unit, ( 1)[ , ]m i jδ +  is the neighbour effect due 
to the treatment applied in the adjacent right unit, αi is 
the ith row effect and βj is the jth column effect. em(ij) is 
the error term identically and independently distributed 
and following normal distribution with mean zero and 
constant variance.

The above model can be written in matrix notation 
as follows:

µ ′ ′ ′ ′1 1 2Y = 1 + + + D + D + e∆ τ ∆ δ α β  (2.2)
where Y is a n × 1 vector of observations, μ is the 

grand mean, 1 is the n × 1 vector of ones, Δʹ is n × v 
incidence matrix of observations versus treatments, τ 
is a v × 1 vector of direct treatment effects, 1

′∆  is n × v 
incidence matrix of observations versus neighbouring 
treatments 1′D  is n × p incidence matrix of observations 
versus rows, α is p × 1 vector of row effects, 2′D  is n × 
q incidence matrix of observations versus columns, β 
is q × 1 vector of column effects and e is n × 1 vector 
of random errors with E(e)=0 and D(e)=σ2In. Further, 

11 2
′ ′ ′′ =v v p q n1 = 1 D 1 = D 1 =1∆∆ . 

The design matrix Xn×(2v+p+q+1) consisting of 
treatment effects, neighbour effects, row effects, column 
effects and mean can be partitioned into parameters of 
interest X1 and nuisance parameters X2.

( ) ( )1,′ ′ ′= ′ =1 2X X 1 D D1∆ ∆

with

1
1

1 1 1

21 2
1 2

3 41 1 1 1

′′   ′ = =   ′′ ′  
′ ′   ′ = =  ′ ′   

1

1

1

R M
X X

M G

r N N1 D D
X X

r N N1 D D

∆∆ ∆∆
∆ ∆ ∆ ∆

∆ ∆ ∆
∆ ∆ ∆

and

1 2

2 2 1 1 1 1 2

2 2 1 2 2

n′ ′′ ′ ′ ′ ′   
   ′ ′ ′= =   
   ′ ′ ′   

1 1 1 D 1 D p q
X X D 1 D D D D p K W

D 1 D D D D q W H

Here, N1 is an incidence matrix of order v × p 
of direct treatments versus. rows; N2 is an incidence 
matrix of order v × q of treatments versus. columns; 
N3 is an incidence matrix of order v × p of neighbour 
treatments versus. rows; N4 is an incidence matrix of 
order v × q of neighbour treatments versus columns; M 
is an incidence matrix of order v × v of direct treatments 
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versus neighbour treatments; W is an incidence matrix 
of order p × q of rows versus columns; r = (r1,r2,…, rv)′ is 
the v × 1 replication vector of direct treatments r1= (r11, 
r12,…,r1v) is the v ×1 replication vector of the treatments 
as neighbour with r1n (n = 1,2,…,v) being the number 
of times the nth treatment appears as neighbour in the 
design; R = diag(r1, r2,…, rv) is the diagonal matrix 
of replication of treatments; G = diag(r11, r12,…, r1v) 
is the diagonal matrix of replication of treatments as 
neighbour; p = (p1, p2,…, pp) is the p × 1 vector of row 
sizes; q = (q1, q2,…, qq) is the q × 1 vector of column 
sizes; K = diag(k1, k2,…,kp) is the diagonal matrix of 
row sizes; H = diag(h1, h2,…,hq) is the diagonal matrix 
of column sizes.

The joint information matrix for estimating all the 
effects (direct and neighbors) can be obtained as:

1 1 1 2 2 2 2 1′ ′ ′ ′= -C X X - X X (X X ) X X

where 2 2′ -(X X ) is the generalized inverse of 2 2′(X X )  
and is obtained using the following result:

then
 + − 

= =    −   

′
′ ′

- - -
-

- -

FE F FE
E F E

A B A
X X

B D

where = -BF A  and = −− ′ BE D B A .

Here, 
-F= K W  and ,′ -E = H - W K W  thus

2 2

0
( )− −

−

′ ′ 
 ′ ′== + − 
 − ′ 

- -

-

0 0
X X 0 K FE F FE

0 E F E

The joint information matrix for treatment and 
neighbour effects is

2 
=  

 
11 1

21 22

C C
C

C C  (2.3)
where,

11 1 1 1 1 2 1

1 2 2 2

12 1 3 1 3 2 3

1 4 2 4

21 3 1 3 1 3 2

4 1 4 2

22 3 3 3 3 4 3

(
)

(

)
(

)
(

E

E

′ ′ − ′

− ′ − ′

′ ′ − ′

− ′ − ′

′ ′ − ′

− ′ − ′

′ ′ −

= − + ′ − ′ −

+  

= − + ′ − ′ −

+  

= − + ′ − ′ −

+  

= − + ′ − ′ 

- -

- -

- -

- -

C R N K N N FE F N N E F N
N FE N N E N

C M N K N N FE F N N E F N

N F N N E N
C M N K N N FE F N N E F N

N F N N E N
C G N K N N FE F N N E F N

3 4 4 4 )

′

− ′ − ′

−

+  N FE N N E N

The 2v × 2v matrix C is symmetric, non negative 
definite with zero row and column sums. From the 

above, the information matrices for estimating the direct 
effects and neighbour effects are obtained respectively 
as

22
−= −ô 11 12 21C C C C C

and ä 22
−= − 12 11 21C C C C C

Definition 2.1: A GRC design with v treatments 
in p rows and q columns is said to be balanced for 
spatial effects from neighbouring units if within a cell 
every treatment has every other treatment appearing as 
neighbour a constant number of times (say λ times). 
These designs are called here as Neighbour Balanced 
GRC (NBGRC) designs. Further, a NBGRC design, 
permitting the estimation of direct and neighbour 
effects, is called variance balanced if the variance of 
any estimated elementary contrast among the direct 
effects is constant.

3. NBGRC DESIGN CONSTRUCTION
Method 3.1: Consider v (prime) treatments. 

Develop the contents of ith (i=1,2,…,v) row (mod v) 
with cell size k = s (3 ≤ s ≤ v-1) as follows:

i  i+1 … i+(s-1), i i+2 … i+2(s-1), …, i i+(v-1) … 
i+(v-1)(s-1)

The design so obtained is a NBGRC design 
balanced for spatial effects with parameter v (prime), 
p = v, q = v-1, k = s (3 ≤ s ≤ v-1), r = s (v-1) and λ = 
2(s-1).

The structure of the various incidence matrices as 
per model (2.2) for this class of the designs obtained is 
as follows:

1

1 3

1 2 4

2

s -
v s s

s
v s s

2 s  
s 

2( - 1)[ ]
( - ) ( - 1)

( - 2 + 2) (2 - 3)
( - 1)

′ =
′ = = +
′ = =
′ = = +
′ = =
′ = =

1 1

2 2

1

1

= M J I
D N I J
D N J
D N I J
D N J

D D W J

∆∆
∆
∆
∆
∆

1 1

1

2

s v  
[ v s s ] s
s v
sv

( - 1)
2( - 1)( - 1) - 2( - 2) 2( - 2)
( - 1)

′ =
′ = = +
′ = =
′ = =

ô

1

2

= R I
G I J

D D K I
D D H I

∆∆
∆ ∆

The components of 2v × 2v joint information 
matrix for estimating the contrast pertaining to direct 
and neighbour effects as in (2.3) is obtained as below:
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2 2( -s) 2( -s)(s-1)+ (s-1)s( -1) -
s( -1) s( -1)
v v vv
v v

 
= − 

 
11C I J

2

2

( -s)( -2s+2)2(s-1)+
s( -1)

( -s)(2s-3)+(s-1)( -2s+2)+ (s-1)(2s-3) 2(s-1)
s( -1)

( -2s+2)2( -1)(s-1)-2(s-2)-
s( -1)

2( -2s+2)(2s-3)+ (2s-3) 2(s-2)
s( -1)

v v
v

v v v
v

vv
v

v v
v

 
= = − + 

 
 

− 
 
 

= − 
 
 

− 
 

12 21

22

C C I

J

C I

J

The information matrix for estimating the contrast 
for direct treatment effects is obtained as below:

A B

−= −
= −

ô 11 12 22 21C C C C C
I J

where,
2 2

2 2

(2 )A ( - ) -
(2 - 2 - )

f abs dfsa
sa sa a bs acs d

 +
=  

 

22B -Dfb vb
sa

 +
= 

 

( )2 2

2

2 2

1D ( - 2 )
2 - 2 -

(2 - 2 )[(2 ) ( - 2 )]
(3 - 4 2 ) - - 2
- 2

ef bd vbe sab
a bs acs d
de ve sac sab df v ef bd vbe abs

e v vs s d vd
ef bd vbe sab

sa

= + + −

+ + + + +
+

+ + × 
   

a = (v-1), b = (s-1), c = (s-2), d = (v-2s+2), e = 
(2s-3) and f = (v-s).

Example 3.1.1: For v = 5 and s = 3, following is a 
NBGRC design with parameters v = 5, p = 5, q = 4, k = 
3, r = 12 and λ = 6:

Columns

Rows 1 2 3 1 3 5 1 4 2 1 5 4

2 3 4 2 4 1 2 5 3 2 1 5

3 4 5 3 5 2 3 1 4 3 2 1

4 5 1 4 1 3 4 2 5 4 3 2

5 1 2 5 2 4 5 3 1 5 4 3

For this design,
11.66 2.33= −11C I J

4.16 0.83= = − +12 21C C I J

13.92 2.25= −22C I J

The information matrix for estimating direct 
treatment contrast is 

Ck = 10.42 I - 2.08 J
Similarly, the information matrix for estimating 

neighbour treatment contrast is 
Cδ = 12.43 I – 1.95J.
Example 3.1.2: For v = 5 and s = 4, following is a 

NBGRC design with parameters v = 5, p = 5, q = 4, k = 
4, r = 16 and λ = 4:

Columns

Rows 1 2 3 4 1 3 5 2 1 4 2 5 1 5 4 3

2 3 4 5 2 4 1 3 2 5 3 1 2 1 5 4

3 4 5 1 3 5 2 4 3 1 4 2 3 2 1 5

4 5 1 2 4 1 3 5 4 2 5 3 4 3 2 1

5 1 2 3 5 2 4 1 5 3 1 4 5 4 3 2

Here,
15.93 3.18

5.94 1.19
19.94 3.19

= −
= = − +
= −

11

12 21

22

C I J
C C I J
C I J

The information matrix for estimating direct 
treatment contrast is 

Ck = 14.17 I - 2.38 J.
Similarly, the information matrix for estimating 

neighbour treatment contrast is 
Cδ = 17.73 I – 2.75J.
Thus, we see that the developed series of NBGRC 

design is variance balanced for estimating the contrast 
pertaining to direct treatments and also pertaining to 
neighbour effects.

Method 3.2: Consider a Balanced Incomplete 
Block (BIB) design with parameters (v*, b*, r*, k*, 
and λ*). Let v* = 4t+3 = xn, where x is a prime and n 
(≥1) is a positive integer. Consider the odd powers of 
the primitive number of GF(xn) as set 1 and the even 
powers of the primitive number of GF(xn) as set 2. 
The block contents of set 1 comprises the 1st column 
of resulting GRC design and set 2 comprises the 2nd 
column of resulting GRC design. The parameters of 
the developed design are v = v*, p = v*, q = 2, k = k*, 
r = r* and λi (i = 1,2,…, 1

2
v − ). Thus, a GRC design 
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with neighbour effects obtained through initial blocks 
of a BIB design is always a partially balanced design 
for estimating elementary direct treatment contrasts 
following a varying circular association scheme.

Example 3.2.1: Consider a BIB design with 
parameters (7,7,3,3,2). Following is a GRC design with 
neighbour effects with parameters v = 7, p = 7, q = 2, r 
= 6, k = 3, λ1 =2, λ2 = 1 and λ3 = 1:

Columns

Rows 1  2  4 3  6  5

2  3  5 4  7  6

3  4  6 5  1  7

4   5  7 6  2  1

5   6  1 7  3  2

6   7  2 1  4  3

7   1  3 2  5  4

The information matrix for estimating direct 
treatment contrasts is given by 

ô

4.54 0.52 0.52
0.52 4.54 0.52

0.

0

52 4.54 0.

0.89 0.85 0.85 0.89
0.89 0.85 0.85 0.89

0.89 0.89 0.85 0.85
0.85 0.89 0.89 0.85
0.85 0.85 0.89 0.89
.89 0.85 0.85 0. .589

52
0.52 4.54 0.52

0.52 4.54 0.52
0. 2 4

− − − −
− − − −

− − − −
= − − − −

− − − −
−

−

− −
− −

− −
−

− −
−− − −

C

9
5
50.89 0.
4 0.52

0.52 0. 2 485 0.85 0.8 .54
−



 
 


−


 
 
 
 
 
 
 −− − − − 

The information matrix for estimating neighbour 
treatment contrasts is given by 

5.39 0.89 0.89
0.89 5.39 0.89

0.

0

89 5.39 0.

0.47 0.67 0.67 0.47
0.47 0.67 0.67 0.47

0.47 0.47 0.67 0.67
0.67 0.47 0.47 0.67
0.67 0.67 0.47 0.47
.47 0.67 0.67 0. .847

89
0.89 5.39 0.89

0.89 5.39 0.89
0. 9 5

δ

− − − −
− − − −

− − − −
= − − − −

− − − −
−

−

− −
− −

− −
−

− −
−− − −

C

7
3
80.47 0.
9 0.89

0.89 0. 9 567 0.67 0.4 .39
−



 
 


−


 
 
 
 
 
 
 −− − − − 

It can be seen that treatment number 1 has treatment 
2 and 7 as first associates (these treatments appear 
as neighbour twice), treatment 3 and 6 as second 
associates (these treatments appear as neighbour 
once) and remaining 4 and 5 as third associates (these 
treatments appear as neighbour once).

A SAS code (given in Annexure I) has been written 
in PROC IML to calculate the information matrix 
(C-matrix) of treatment effects and neighbour effects 
and to study the properties of the designs under the 
three-way model with spatial effects.

4. SAS MACRO
For readymade solution for the experimenters, a 

SAS macro for the generation of NBGRC designs with 
parameter v (prime), p = v, q = v-1, k = s (3 ≤ s ≤ v-1), 
r = s(v-1) and λ=2(s-1) has been developed. The SAS 
macro is given in Annexure II. In order to generate the 
design, user has to enter the number of treatments i.e. 
‘v’ and ‘k’. 

5. EFFICIENCY OF DESIGNS
The canonical efficiency of the NBGRC designs is 

obtained as follows: 

HE =
r

, 
1-1

-1
i

i=1

1H =
-1

v

v
θ

−
 
 
 

∑ , 

where θi are the eigen-values of C- matrix 
(obtained for direct treatment effects and neighbour 
treatment effects). Here, r is the number of replications 
of the treatments and is assumed to be same for the 
developed design and the orthogonal design to which 
it is compared.

The parameters of NBGRC designs obtained using 
Method 3.1.1 described above have been listed in Table 
5.1. The list contains number of treatments (v ≤ 11), 
cell sizes (k), number of rows (p), number of columns 
(q) and replications (r). The canonical efficiency of 
the developed designs for direct treatment effects and 
neighbour treatment effects are also reported in the 
Table 1. 

It is seen that the efficiency of direct treatment 
effects of NBGRC designs constructed is more as 
compared to neighbour treatment effects. The efficiency 
factor increases with increase in cell size for a given 
number of treatments.

6. CONCLUSIONS
Two series of GRC designs balanced for spatial 

effects have been developed. One series is variance 
balanced for estimating the contrasts pertaining to 
direct treatment effects and also for estimating the 
contrasts pertaining to neighbour treatment effects. 
The second series is partially balanced for estimating 
elementary treatment contrasts for direct and neighbour 
treatment effects following circular association 
scheme. Further, the efficiency of the NBGRC designs 
have been worked out and are found to be quite high 
for estimating the direct treatment effects. For future 
line of work an attempt will be made to obtain a series 
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of GRC designs balanced for spatial effects for new 
parametric combinations and to study the spatial effects 
between cell of GRC designs.
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ANNEXURE I
SAS CODE FOR OBTAINING THE C-MATRIX 
AND THE CANONICAL EFFICIENCY FACTOR 
FOR NBGRC DESIGNS

/* NBGRC Design */
proc iml;
/*design [put non-zero values]*/
a={
1 2 3 4 1 3 5 2 1 4 2 5 1 5 4 3,
 2 3 4 5 2 4 1 3 2 5 3 1 2 1 5 4,
 3 4 5 1 3 5 2 4 3 1 4 2 3 2 1 5,
 4 5 1 2 4 1 3 5 4 2 5 3 4 3 2 1,
 5 1 2 3 5 2 4 1 5 3 1 4 5 4 3 2
};
/*define cell sizes [b is defined here as cell size 

(k)]*/
b={ 4 4 4 4 ,
4 4 4 4 ,
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4 4 4 4 ,
4 4 4 4 ,
4 4 4 4 
};
cc=b[+, ];
dd=b[ ,+];
bb=j(nrow(b)*ncol(b),1,0);
k=1;
do i=1 to nrow(b);
do j=1 to ncol(b);
bb[k, ]= b[i,j];
k=k+1;
end;
end;
b1=bb[loc(bb>0),];
*print b1;
aa=j(nrow(a)*ncol(a),1,0);
k=1;
do i=1 to nrow(a);
do j=1 to ncol(a);
aa[k, ]= a[i,j];
k=k+1;
end;
end;
*print aa;
m1=j(nrow(a)*ncol(a),1,1);/*mean vector*/
/*print m1;*/
dir=j(nrow(a)*ncol(a),max(a),0);/*design matrix 

-obs VS direct treatment*/
k=1;
do i=1 to nrow(a);
do j=1 to ncol(a);
if a[i,j]>0 then 
  do;
  dir[k,a[i,j]]=1;
  k=k+1;
  end;

end;
end;
*print dir;
r=j(nrow(a)*ncol(a),nrow(dd),0);/*design matrix 

-obs VS row*/
k=1;
do i=1 to nrow(a);
do j=1 to ncol(a);
r[k,i]=1;
k=k+1;
end;
end;
*print r;
c=j(nrow(a)*ncol(a),ncol(b),0);/*design matrix - 

obs VS column*/
k=1;
do i=1 to nrow(b);
do j=1 to ncol(b);
do l=1 to b[i,j];
c[k,j]=1;
k=k+1;
end;
end;
end;
*print c;
cell=j((nrow(a)*ncol(a)),nrow(b1),0);/*design 

matrix - obs VS cell*/
kk=1;
z=0;
do k=1 to nrow(b1);
do j=1 to b1[k];
if aa[z+j, ]>0 then 
 do;
 cell[kk,k]=1;
 kk=kk+1;
 end;
end;
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z=z+b1[k];
end;
*print cell;
l_neig = j(nrow(a)*ncol(a),max(a),0);
k=2;
z=0;
do i = 1 to nrow(b1);
do j = 1 to b1[i]-1;
 if aa[z+j, ]>0 then l_neig[k,aa[z+j, ]]=l_

neig[k,aa[z+j, ]]+1;
 k=k+1;
end;
z=z+b1[i];
k=k+1;
end;
*print l_neig;
r_neig = j(nrow(a)*ncol(a),max(a),0);
k=1;
z=0;
do i = 1 to nrow(b1);
do j = 2 to b1[i];
 if aa[z+j, ]>0 then r_neig[k,aa[z+j, ]]=r_

neig[k,aa[z+j, ]]+1;
 k=k+1;
end;
z=z+b1[i];
k=k+1;
end;
*print r_neig;
neigh=l_neig+r_neig;
x1=dir||neigh;
x2=m1||r||c;
c _ m a t = ( x 1 ` * x 1 ) -

(x1`*x2*(ginv(x2`*x2))*x2`*x1)/*C matrix*/;
print c_mat;
c11=j(max(a),max(a),0);
do i=1 to max(a);

do j=1 to max(a);
c11[i,j]=c_mat[i,j];
end;
end;
*print c11;
c12=j(max(a),ncol(c_mat)-max(a),0);
do i=1 to max(a);
k=1;
do j=max(a)+1 to ncol(c_mat);
c12[i,k]=c_mat[i,j];
k=k+1;
end;
end;
*print c12;
c22=j(nrow(c_mat)-max(a) ,nrow(c_mat)-

max(a),0);
k=1;
do i=max(a)+1 to nrow(c_mat);
kk=1;
do j=max(a)+1 to nrow(c_mat);
c22[k,kk]=c_mat[i,j];
kk=kk+1;
end;
k=k+1;
end;
*print c22;
c_dir=c11- c12*ginv(c22)*c12`;
print c_dir;
c_neigh= c22- c12*ginv(c11)*c12`;
print c_neigh;
eig=eigval(c_dir);
*print eig;
eig1=eig[loc(eig>0.0000001),];/*positive eigen 

values*/
rep=dir`*dir;
eig2=eig1/(rep[1,1]);
eig3=1/eig2;
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CanEffFactor=nrow(eig3)/sum(eig3);
print CanEffFactor;
eig=eigval(c_neigh);
*print eig;
eig4=eig[loc(eig>0.0000001),];/*positive eigen 

values*/
rep=neigh`*neigh;
eig5=eig4/(rep[1,1]);
eig6=1/eig5;
CanEffFactor=nrow(eig6)/sum(eig6);
print CanEffFactor;
quit;
quit;

ANNEXURE II
SAS macro for the generation of NBGRC designs 
with parameter v (prime), p = v, q = v-1, k = s (3 ≤ s 
≤ v-1), r = s(v-1) and λ=2(s-1)

%let v=5;/* Enter the number of treatments 
(Treament number should be prime number)*/

%let s=3;/*Enter the cell sizes(it varies from 3 to 
(v-1)*/

ods rtf file= ‘output.rtf’ startpage=no;
proc iml;
TRT1=j(&v,&s*(&v-1),0);
k=1;
do i=1 to &s;
do j=1 to &v;
TRT1[j,i]=(j+(i-1));
if TRT1[j,i]>&v then TRT1[j,i]=TRT1[j,i]-&v;
end;
end;
kk=&s+1;
do k=1 to &v-1;
do i=1 to &s;
do j=1 to &v;
TRT1[j,kk]=TRT1[j,kk-(&s)]+(i-1);

if TRT1[j,kk]>&v then do;
TRT1[j,kk]=TRT1[j,kk]-&v;
end;
end;
kk=kk+1;
end;
end;
v a r N a m e s 2 = 

“Column1”:”Column”+strip(char(&v-1));
varNames3= “Row1”:”Row”+strip(char(&v));
do i=1 to (&v-1);
do j=1 to &s;
columns=varNames2[ ,i];
columns1=columns1||columns;
end;
end;
GRC_Design=char(TRT1,5,0);
print ‘Generalized Row Column (GRC) Design 

Balanced for Spatial Indirect Effects’;
print GRC_Design[rowname=varNames3 

colname=columns1];
print ‘Number of Rows =’ &v;
print ‘Number of Columns =’(&v-1);
print ‘Number of treatments in each Row-Column 

Intersection is =’ &s;
ods rtf close;
quit;
The output of the SAS macro for v = 5 and k = 3 is 

shown in the following figure.


