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ARTIFICIAL INTELLIGENCE AND KNOWLEDGE 

MANAGEMENT IN AGRICULTURE 

Sudeep Marwaha 

ICAR- Indian Agricultural Statistics Research Institute, New Delhi- 110012 

sudeep@icar.gov.in 

1. Introduction 

The Artificial Intelligence is a very old field of study and has a rich history. Modern 

AI was formalized by John McCarthy, considered as father of AI. It is a branch of 

computer science, founded around early 1950’s. Primarily, the term Artificial 

Intelligence (or AI) refers to a group of technique that enables a computer or a 

machine to mimic the behavior of humans in problem solving tasks. Formally, AI is 

described as “the study of how to make the computers do things at which, at the 

moment, people are better” (Rich and Knight, 1991; Rich et al., 2009).”The main aim 

of AI is to program the computer for performing certain tasks in humanly manner 

such as knowledgebase, reasoning, learning, planning, problem solving etc. The 

Machine Learning (ML) techniques are the subset of AI which makes the 

computers/machines/programs the capable of learning and performing tasks without 

being explicitly programmed. The ML techniques are not just the way of mimicking 

human behaviour but the way of mimicking how humans learn things. The main 

characteristics of machine learning is ‘learning from experience’ for solving any kind 

of problem. The methods of learning can be categorized into three types: (a) 

supervised learning algorithm is given with labelled data and the desired output 

whereas (b) unsupervised learning algorithm is given with unlabelled data and 

identifies the patterns from the input data and (c) reinforcement learning algorithm 

allows the ML techniques to capture the learnable things on the basis of rewards or 

reinforcement. Now, the Deep Learning (DL) technique are the advanced version of 

machine learning algorithms gained much popularity in the area of image recognition 

and computer vision. The artificial neural networks (ANNs) clubbed with 

representation learning are the backbone of the deep learning concepts. These 

techniques allow a machine to learn patterns in the dataset with multiple levels of 

abstractions. The DL models are composed of a series of non-linear layers where each 

of the layer has the capability of transforming the low-level representations into 

higher-level representations i.e. into a more abstract representations (Le Cun et al., 

2015). There are several DL algorithms available now-a-days such as Deep 

mailto:sudeep@icar.gov.in
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Convolutional Neural Networks, Deep Recurrent Neural networks, Long Short-term 

Memory (LSTM)”networks that are being applied to different areas of engineering, 

bioinformatics, agriculture, medical science and many more (Fusco et al., 2021). 

2. Applications of Artificial Intelligence in Agriculture: 

In present scenario, AI techniques are being exponentially applied in the various areas 

of the agricultural domain. These areas can be categorized into the following groups: 

Soil and water management, Crop Health Management, Crop Phenotyping, 

Recommender-based systems for crops, Semantic web and Ontology driven expert 

systems for crops and Geo-AI. The application of AI, ML and DL based techniques 

on these areas are discussed in the following sections. 

2.1 Soil and Irrigation Management: 

Soil and irrigation are the most viable components of agriculture. The soil and 

irrigation are the determinant factors for the optimum crop yield. In order to obtain 

enhanced crop yield and to maintain the soil properties, there is a requirement of 

appropriate knowledge about the soil resources. The management of irrigation 

becomes crucial when there are scares of water availability. Therefore, the soil and 

irrigation related issues should be managed properly and cautiously to ensure a 

potential yield in crops. In this regards, AI and ML based techniques have shown 

potential ability to resolve soil and irrigation related issues in crops. A range of 

machine learning models such as linear regression, support vector machines (or 

regressors), Artificial neural networks, random forest algorithm and so on are being 

used. Many researchers have used remote-sensed data with the machine learning 

techniques for determining soil health parameters. In this section, few significant 

works in this field are highlighted below: 

A. Soil Management: 

Besalatpour et al., (2011), Aitkenhead et al., (2012) and Sirsat et al., (2017) used 

different machine learning techniques such as linear regression, support vector 

machine, random forests for the prediction of the physical and chemical properties of 

soil. Rivera et al. (2020) and Azizi et al., (2020) worked on estimation and 

classification of aggregate stability of the soils using conventional machine learning 

techniques as well as deep learning models. Jha et al., (2018) worked on prediction of 

microbial dynamics in soils using regression-based techniques. Patil and Dekha 

(2016) and Mehdizadeh et Al. (2017) worked on predicting the evapotranspiration rate 
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in crops using several machine learning techniques. Researchers worked on mapping 

the soil properties digitally using the remote sensing data with the help of machine 

learning and deep learning models (Taghizadeh-Mehrjardi et al. 2016; Kalambukattu 

et al., (2018; Padarian et al. 2019; Taghizadeh-Mehrjardi et al., 2020). 

B. Irrigation management: 

Zema et al. 2018 applied Data Envelopment Analysis (DEA) with Multiple 

Regression analysis to improve the irrigation performance Water Users Associations. 

Ramya et al. 2020 and Glória et al., 2021worked on IoT based smart irrigation 

systems with machine learning models. Agastya et al, 2021 and Zhang et al. 2018 

used deep learning-based CNN models for detection of irrigations using remote 

sensing data. Jimenez et al. 2021 worked on estimating the irrigation based on soil 

matric potential. 

2.2 Crop Health Management: 

Every year a significant amount of yield is damaged due to attack of disease causing 

pathogens and insect-pest infestation. In order to manage the spread of the diseases 

and insect-pests, proper management practices should be applied at the earliest. 

Therefore, there is requirement of automatic diseases, pest identification system. In 

this regard, image-based diagnosis of diseases and pests have become de facto 

standard of automatic stress identification. This kind of automated detection 

methodology use sophisticated deep learning-based AI techniques that reduces the 

intervention of the human experts. There are several attempts have been done to 

diagnose the diseases as well as insects-pests in crops using deep learning techniques. 

In this section, some of the significant works in this field have been discussed briefly.  

A. Disease identification: 

Mohanty et al. 2016 worked on disease diagnosis problem using deep CNN models. 

They used an open-source dataset named PlantVillage (Hughes and Salathe, 2016) 

containing 54,306 digital images of 26 diseases from 14 crops. Ferentinos, 2018 

worked on developing deep CNN-based models for recognising 56 diseases from 

different crops. Barbedo, 2019 applied transfer learning approach for diagnosis of 

diseases of 12 different crops. Too et al. 2019, applied pre-trained deep CNN models 

for identification of diseases of 18 crops using the PlantVillage data. Chen et al. 2020 

applied a pretrained VGGNet network for classifying the diseases of Rice and Maize 

crop. Chen et. al. 2020 and Rahman et al. 2020 worked on identifying the major 
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diseases of Rice crop. Lu et al., 2017; Johannes et al. 2017; Picon et al. 2019 and 

Nigam et al. 2021 applied deep CNN models for recognising the diseases of wheat 

crop. Priyadharshini et al. 2019; Sibiya & Sumbwanyambe, 2019; Haque et al. 2021 

used deep learning models for identifying diseases of maize crop. 

B. Pest Identification: 

Pest Identification problem is inherently different from disease detection. As 

compared to disease detection there are less number of work has found in the 

literature. Some of the research of pest identification has been discussed in the 

following section. 

Cheeti et al. (2021) developed a model for pest detection and classification of peat 

using YOLO (You look only once) and CNN. YOLO algorithm is used for detection 

of pest in an image and Alex net CNN is used for pest classification. Chen et al. 

(2021) propose an AI-based pest detection system for solving the specific issue of 

detection of scale pests based on pictures. Deep-learning-based object detection 

models, such as faster region-based convolutional networks (Faster R-CNNs), single-

shot multibox detectors (SSDs), and You Only Look Once v4 (YOLO v4), are 

employed to detect and localize scale pests in the picture. Taiwan Agricultural 

Research Institute, Council of Agriculture, has collected images of the three types of 

pests from the actual fields for decades. Fuentes et al. (2017) address disease and pest 

identification by introducing the application of deep meta-architectures and feature 

extractors. They proposed a robust deep-learning-based detector for real-time tomato 

diseases and pests recognition. The system introduces a practical and applicable 

solution for detecting the class and location of diseases in tomato plants, which in fact 

represents a main comparable difference with traditional methods for plant diseases 

classification. Karnik et al. (2021)  image pre-processing and data augmentation 

techniques has been performed to get better image.yolov3 classification for 

classifying plant leaf disease of pepper bell, potato and tomato. This proposed in 

divided into two stage part first classifier and second stage classifier where in first 

classifier it will preprocess of median filter and data augmentation is used and trained 

in yolov3 algorithm and in second stage classifier it will perform the extract plant leaf 

image output using Resnet50 based. So, it two step classification approach. Based on 

this research work we achieved 94% accuracy of detection lead diseases. Experiments 

showed [Li et al. (2020)] that our system with the custom backbone was more suitable 
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for detection of the untrained rice videos than VGG16, ResNet-50, ResNet-101 

backbone system and YOLOv3 with our experimental environment. Liu et al.2020 

used Yolo V3 model is a little inadequate in the scale when recognizing tomato 

disease spots and pests.  

2.3 Plant Phenomics: 

Non-destructive phenotypic measurement with high throughput imaging technique 

becoming extremely popular. High throughput imaging system produces a large 

number of images. Deduction of the phenotypic characteristics through image 

analysis is quick and accurate. A wide range of phenotypic study can be done using 

phenomics analysis. High throughput imaging system coupled with sophisticated AI 

technology like deep learning make this field more efficient and accurate. Phenomics 

is has been used for study of several phenotypic characters like spike detection and 

counting, yield forecasting, quantification of the senescence in the plant, leaf weight 

and count, plant volume, convex hull, water stress and many more. 

2.4 Recommender Systems:  

Recommender systems (RSs) help online users in decision making regarding products 

among a pile of alternatives. In general, these systems are software solutions which 

predict liking of a user for unseen items. RSs have been mainly designed to help users 

in decision making for areas where one is lacking enough personal experience to 

evaluate the overwhelming number of alternative items that a website has to offer 

[Resnick & Varian, 1997]. Recommender systems have proved its worth in many 

different applications like e-commerce, e-library, e-tourism, e-learning, e-business, e-

resource services etc. by suggesting suitable products to users [Lu et al., 2015]. RSs 

are used to introduce new/unseen items to users, to increase user satisfaction etc. 

Recommendations are generated by processing large amount of historical data on the 

users and the products to be suggested. Most popular way of gathering users liking on 

a particular product is in terms of rating either in numerical scale (1 to 5) or ordinal 

scale (strongly agree, agree, neutral, disagree, strongly disagree). Other techniques of 

more knowledge – based recommendation are the use of Ontologies [Middleton et al., 

2002] of user profiles or item descriptions etc. The core task of a recommendation 

system is to predict the usefulness of an item to an individual user based on the earlier 

history of that item or by evaluating the earlier choices of the user. Collaborative way 

of user modelling [Konstan et al., 1997] is where ratings are predicted for <user, 
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item> pair, R̅<u, i> based on a large number of ratings previously gathered by the 

system on individual <user, item> pairs. Another way of recommendation is to 

suggest items that are similar to the ones previously liked by the user, called Content 

based filtering [Wang et al., 2018; Smyth, 2007]. In a hybrid method of prediction, 

limitations by the earlier mentioned processes are tackled in various ways. 

Agriculture has used recommender systems since 2015 and continues to do so. RSs 

have been explored to develop crop recommendation strategies based on soil and 

weather parameters, crop rotation practices, water management, suggestion on 

suitable varieties, recommendations for management practices etc. It is absolutely 

essential for the farmers to receive recommendations on the best crop for cultivation. 

Kamatchi and parvati, 2019 proposed a hybrid RS in combination with Collaborative 

Filtering, Case-based Reasoning and Artificial Neural Networks (ANN) to predict 

future climatic conditions and recommendation of crops based on the predicted 

climate. Crop recommendations have been developed based on season and 

productivity [Vaishnavi et al., 2021], area and soil type [Pande et al., 2021] by using 

several machine learning algorithms like Support vector Machine (SVM), Random 

forest (RF), Multivariate Linear regression (MLR), K- Nearest neighbour (KNN), 

ANN etc. Ensemble techniques have been used to develop a collaborative system of 

crop rotation, crop yield prediction, forecasting and fertilizer recommendation 

[Archana et al., 2020]; to classify soil types into recommended crop types Kharif or 

Rabi based on specific physical and chemical characteristics, average rainfall and 

surface temperature [Kulkarni et al., 2018]. Naha and Marwaha, 2020 presented an 

Ontology driven context aware RS that can recommend land preparation methods, 

sowing time, seed rate, fertilizer management, irrigation scheduling and harvesting 

methods to Maize cultivators. Application of RSs has also penetrated in the e-

agriculture domain by suggesting   parts of agricultural machineries in online ordering 

[Ballesteros et al., 2021]. 

2.5 Semantic web, Knowledgebase and Natural Language processing: 

Agriculture is vast source of resources and so it is also a vast source of information. 

The problem with this information is most of the information are unstructured. That 

unstructured knowledge is merely understandable for machine. It is also has low 

accessibility for human too. The main objectives of the semantic web and knowledge 

base system are to make unstructured data into structured one. Semantic web and the 
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knowledgebase mainly facilitated by the ontology in the back end. Ontology is a 

formal, explicit specification of a shared conceptualization (Gruber, 1993). Making of 

Ontology that facilitated the semantic web and knowledge base can be made across 

the agricultural domain to make the unstructured data into structured one. Many 

ontology has already been developed in accordance with the Bedi and Marwaha, 2004 

in the agricultural domain. Saha et. al., (2011) developed an ontology on dynamic 

maize variety selection in different climatic condition, Sahiram et. al., (2012) 

developed a ontology on rapeseed and mustard for identification of the variety in 

multiple languages, Das et. al., (2011) developed a ontology for USDA soil taxonomy 

and ontology was extended by Deb et. al., (2012), Biswas et. al., (2012) developed a 

ontology on microbial taxonomy and was extended by Karn et. al. (2014).  

2.6 GIS and Remote sensing coupled with AI: 

GIS and Remote sensing is helping agricultural community since long. The land use 

planning, land cover analysis, forest distribution, water distribution, water use pattern, 

crop rotation and crop calendar analysis can be done by GIS and remote sensing. But 

when the AI and machine learning coupled with these technology it become more 

powerful. Machine learning and AI efficiently used for correct land classification and 

phonological change detection. From Digital soil mapping to yield forecasting, from 

phenology detection to leaf area index a vast range of the area in agriculture can be 

handled by GIS and Remote sensing. 
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INTRODUCTION TO R SOFTWARE 

Soumen Pal, B. N. Mandal 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

E-mail: Soumen.Pal@icar.gov.in 

 

R is a free software environment for statistical computing and graphics. It compiles 

and runs on a wide variety of UNIX platforms, Windows and MacOS.R is a vehicle 

for newly developing methods of interactive data analysis. It has developed rapidly, 

and has been extended by a large collection of packages. 

R environment 

The R environment provides an integrated suite of software facilities for data 

manipulation, calculation and graphical display. It has 

 a data handling and storage facility, 

 a suite of operators for calculations on arrays and matrices, 

 a large, integrated collection of intermediate tools for data analysis, 

 graphical facilities for data analysis and display, and 

 a well-developed, simple and effective programming language (called ‘S’) 

which includes conditionals, loops, user defined functions and input and 

output facilities. 

Origin 

R can be regarded as an implementation of the S language which was developed at 

Bell Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms 

the basis of the S-Plus systems. Robert Gentleman and Ross Ihaka of the Statistics 

Department of the University of Auckland started the project on R in 1995 and hence 

the name software has been named as ‘R’. 

R was introduced as an environment within which many classical and modern 

statistical techniques can be implemented. A few of these are built into the base R 

environment, but many are supplied as packages. There are a number of packages 

supplied with R (called “standard” and “recommended” packages) and many more are 

available through the CRAN family of Internet sites (via http://cran.r-project.org) and 

elsewhere. 

Availability 

Since R is an open source project, it can be obtained freely from the website www.r-

project.org. One can download R from any CRAN mirror out of several CRAN 

mailto:Soumen.Pal@icar.gov.in
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(Comprehensive R Archive Network) mirrors. Latest available version of R is R 

version 4.3.1 and it has been released on June 16 2023.  

Installation 

To install R in windows operating system, simply double click on the setup file. It 

will automatically install the software in the system. 

Usage 

R can work under Windows, UNIX and Mac OS. In this note, we consider usage of R 

in Windows set up only.  

Difference with other packages 

There is an important difference between R and the other statistical packages. In R, a 

statistical analysis is normally done as a series of steps, with intermediate results 

being stored in objects. Thus whereas SAS and SPSS will give large amount of output 

from a given analysis, R will give minimal output and store the results in an object for 

subsequent interrogation by further R functions. 

Invoking R 

If properly installed, usually R has a shortcut icon on the desktop screen and/or you 

can find it under Start| All Programs| R menu. 

 
 

To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask 

whether to save the objects you have created during the session so that they will 

become available next time when R will be invoked. 

 

Windows of R 

 

R has only one window and when R is started it looks like 
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R commands 

 

i. R commands are case sensitive, so X and x are different symbols and would 

refer to different variables.  

ii. Elementary commands consist of either expressions or assignments.  

iii. If an expression is given as a command, it is evaluated, printed and the value 

is lost. 

iv. An assignment also evaluates an expression and passes the value to a variable 

but the result is not automatically printed. 

v. Commands are separated either by a semi-colon (‘;’), or by a newline.  

vi. Elementary commands can be grouped together into one compound expression 

by braces ‘{‘ and ‘}’. 

vii. Comments can be put almost anywhere, starting with a hashmark (‘#’). 

Anything written after # marks to the end of the line is considered as a 

comment. 

viii. Window can be cleared of lines by pressing Ctrl + L keys. 
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Executing commands from or diverting output to a file 

 

If commands are stored in an external file, say ‘D:/commands.txt’ they may be 

executed at any time in an R session with the command 

>source("d:/commands.txt") 

 

For Windows Source is also available on the File menu.  

 

The function sink(),  

 
>sink("d:/record.txt") 

 

will divert all subsequent output from the console to an external file, ‘record.txt’ in D 

drive. The command 

>sink() 

restores it to the console once again. 

Simple manipulations of numbers and vectors 

R operates on named data structures. The simplest such structure is the numeric 

vector, which is a single entity consisting of an ordered collection of numbers. To set 

up a vector named x, say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 

21.7, use the R command 

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

The function c() assigns the five numbers to the vector x. The assignment operator (<-

) ‘points’ to the object receiving the value of the expression. Once can use the ‘=’ 

operator as an alternative. 

A single number is taken as a vector of length one.  

Assignments can also be made in the other direction, using the obvious change in the 

assignment operator. So the same assignment could be made using 

>c(10.4, 5.6, 3.1, 6.4, 21.7) -> x 

If an expression is used as a complete command, the value is printed. So now if we 

were to use the command 

> 1/x 

the reciprocals of the five values would be printed at the terminal. 

The elementary arithmetic operators  

+  addition 

– subtraction 
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*  multiplication 

/  division 

^  exponentiation 

Arithmetic functions 

log, exp, sin, cos, tan, sqrt,  

Other basic functions 

max(x) – maximum element of vector x,  

min(x)- minimum element of vector x,  

range (x) – range of the values of vector x ,   

length(x) - the number of elements in x,  

sum(x) - the total of the elements in x,  

prod(x) – product of the elements in x 

mean(x) – average of the elements of x 

var(x) – sample variance of the elements of (x) 

sort(x) – returns a vector with elements sorted in increasing order. 

Logical operators 

< - less than 

<= less than or equal to 

>greater than 

>= greater than or equal to 

 == equal to  

!= not equal to. 

Other objects in R 

Matrices or arrays - multi-dimensional generalizations of vectors. 

Lists - a general form of vector in which the various elements need not be of the same 

type, and are often themselves vectors or lists. 

Functions - objects in R which can be stored in the project’s workspace. This provides 

a simple and convenient way to extend R. 

Matrix facilities 

A matrix is just an array with two subscripts. R provides many operators and 

functions those are available only for matrices. Some of the important R functions for 

matrices are 

t(A) – transpose of the matrix A   

nrow(A) – number of rows in the matrix A 



  

 
 

16 

ncol(A) – number of columns in the matrix A 

A%*% B– Cross product of two matrices A and B 

A*B – element by element product of two matrices A and B 

diag (A) – gives a vector of diagonal elements of the square matrix A 

diag(a) – gives a matrix with diagonal elements as the elements of vector a 

eigen(A) – gives eigen values and eigen vectors of a symmetric matrix A 

rbind (A,B) – concatenates two matrix A and B by appending B matrix below A 

matrix (They should have same number of columns) 

cbind(A, B) - concatenates two matrix A and B by appending B matrix in the right of 

A matrix (They should have same number of rows) 

Data frame 

Data frame is an array consisting of columns of various mode (numeric, character, 

etc). Small to moderate size data frame can be constructed by data.frame() function. 

For example, following is an illustration how to construct a data frame from the car 

data*:  

  Make Model Cylinder Weight Mileage Type 

Honda Civic V4 2170 33 Sporty 

Chevrolet  Beretta V4 2655 26 Compact 

Ford Escort V4 2345 33 Small 

Eagle Summit V4 2560 33 Small 

Volkswagen Jetta V4 2330 26 Small 

Buick Le Sabre V6 3325 23 Large 

Mitsubishi Galant V4 2745 25 Compact 

Dodge Grand Caravan V6 3735 18 Van 

Chrysler New Yorker V6 3450 22 Medium 

Acura Legend V6 3265 20 Medium 

> Make<-

c("Honda","Chevrolet","Ford","Eagle","Volkswagen","Buick"

,"Mitsbusihi",  

+ "Dodge","Chrysler","Acura") 

> 

Model=c("Civic","Beretta","Escort","Summit","Jetta","LeSa

bre","Galant",  

+ "Grand Caravan","NewYorker","Legend")  
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Note that the plus sign (+) in the above commands are automatically inserted when 

the carriage return is pressed without completing the list. Save some typing by using 

rep() command. For example, rep("V4",5) instructs R to repeat V4 five times.  

> Cylinder<-c(rep("V4",5),"V6","V4",rep("V6",3)) 

> Cylinder 

 [1] "V4" "V4" "V4" "V4" "V4" "V6" "V4" "V6" "V6" "V6" 

> Weight<-

c(2170,2655,2345,2560,2330,3325,2745,3735,3450,3265)  

> Mileage<-c(33,26,33,33,26,23,25,18,22,20) 

> Type<-

c("Sporty","Compact",rep("Small",3),"Large","Compact","Va

n",rep("Medium",2)) 

Now data.frame() function combines the six vectors into a single data frame.  
> Car<-

data.frame(Make,Model,Cylinder,Weight,Mileage,Type)  

> Car 
         Make         Model Cylinder Weight 

Mileage    Type  

1       Honda         Civic       V4   2170   33  Sporty  

2   Chevrolet       Beretta       V4   2655   26 Compact  

3        Ford        Escort       V4   2345   33   Small  

4       Eagle        Summit       V4   2560   33   Small  

5  Volkswagen         Jetta       V4   2330   26   Small  

6       Buick      LeSabre        V6   3325   23   Large  

7  Mitsbusihi        Galant       V4   2745   25 Compact  

8  Dodge Grand    Caravan       V6   3735  18     Van 

9    Chrysler    New Yorker      V6   3450   22  Medium  

10      Acura        Legend       V6   3265   20  Medium  

> names(Car) 

[1] "Make"     "Model"    "Cylinder" 

"Weight"   "Mileage"  "Type" 

Just as in matrix objects, partial information can be easily extracted from the data 

frame:  

>Car[1,]  

   Make Model Cylinder Weight Mileage   Type 

1 Honda Civic       V4   2170      33 Sporty 

In addition, individual columns can be referenced by their labels:  

>Car$Mileage 

 [1] 33 26 33 33 26 23 25 18 22 20  

>Car[,5]        #equivalent expression 
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> mean(Car$Mileage)    #average mileage of the 10 

vehicles  

[1] 25.9  

> min(Car$Weight)  

[1] 2170  

table() command gives a frequency table:  

>table(Car$Type)  

Compact   Large  Medium   Small  Sporty     Van  

      2       1       2       3       1       1  

If the proportion is desired, type the following command instead:  

>table(Car$Type)/10  

Compact   Large  Medium   Small  Sporty     Van  

    0.2     0.1     0.2     0.3     0.1     0.1  

Note that the values were divided by 10 because there are that many vehicles in total. 

If you don't want to count them each time, the following does the trick:  

>table(Car$Type)/length(Car$Type)  

Cross tabulation is very easy, too:  

>table(Car$Make, Car$Type)  

             Compact Large Medium Small Sporty Van  

  Acura      0       0     1      0     0      0  

  Buick      0       1     0      0     0      0  

  Chevrolet  1       0     0      0     0      0  

  Chrysler   0       0     1      0     0      0  

  Dodge      0       0     0      0     0      1  

  Eagle      0       0     0      1     0      0  

  Ford       0       0     0      1     0      0  

  Honda      0       0     0      0     1      0  

  Mitsbusihi 1       0     0      0     0      0  

  Volkswagen 0       0     0      1     0      0  

What if you want to arrange the data set by vehicle weight? order() gets the job done.  

>i<-order(Car$Weight);i 

 [1]  1  5  3  4  2  7 10  6  9  8  

> Car[i,]  

         Make         Model Cylinder Weight 

Mileage    Type  

1       Honda         Civic    V4   2170      33  Sporty  

5  Volkswagen         Jetta    V4   2330      26   Small  

3        Ford        Escort    V4   2345      33   Small  

4       Eagle        Summit    V4   2560      33   Small  

2   Chevrolet       Beretta    V4   2655      26 Compact  

7  Mitsbusihi        Galant    V4   2745      25 Compact  
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10      Acura        Legend    V6   3265      20  Medium  

6       Buick        LeSabre   V6   3325      23   Large  

9    Chrysler      NewYorker   V6   3450      22  Medium  

8   Dodge Grand      Caravan   V6   3735      18     Van  

Creating/editing data objects 

>y<-c(1,2,3,4,5);y  

[1] 1 2 3 4 5  

If you want to modify the data object, use edit() function and assign it to an object. 

For example, the following command opens R Editor for editing.  

> y<-edit(y)  

If you prefer entering the data.frame in a spreadsheet style data editor, the following 

command invokes the built-in editor with an empty spreadsheet.  

> data1<-edit(data.frame())  

After entering a few data points, it looks like this:  

 

You can also change the variable name by clicking once on the cell containing it.  

Doing so opens a dialog box:  

When finished, click  in the upper right corner of the dialog box to return to the 
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Data Editor window. Close the Data Editor to return to the R command window (R 

Console). Check the result by typing:  

> data1  

Reading data from files 

When data files are large, it is better to read data from external files rather than 

entering data through the keyboard.  To read data from an external file directly, the 

external file should be arranged properly. 

The first line of the file should have a name for each variable. Each additional line of 

the file has the values for each variable.  

Input file form with names and row labels: 

Price  Floor  Area  Rooms Age  isNew 

52.00  111.0  830  5  6.2  no 

54.75  128.0  710  5  7.5  no 

57.50  101.0  1000  5  4.2  yes 

57.50  131.0  690  6  8.8  no 

59.75  93.0  900  5  1.9  yes 

... 

By default numeric items (except row labels) are read as numeric variables and non-

numeric variables, such as isNew in the example, as factors. This can be changed if 

necessary. 

The function read.table() can then be used to read the data frame directly 

>HousePrice<-read.table("d:/houses.data", header = TRUE) 

Reading comma delimited data  

The following commands can be used for reading comma delimited data into R. 

read.csv(filename) This command reads a .CSV file into R. You need to 

specify the exact filename with path.  

read.csv(file.choose()) This command reads a .CSV file but the file.choose() 

part opens up an explorer type window that allows you 

to select a file from your computer. By default, R will 

take the first row as the variable names.  

read.csv(file.choose(), header=T) 

This reads a .CSV file, allowing you to select the file, 

the header is set explicitly. If you change to header=F 

then the first row will be treated like the rest of the data 

and not as a label.  
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Storing variable names 

Through read.csv() or read.table() functions, data along with variable labels is read 

into R memory. However, to read the variables’ names directly into R, one should use 

attach(dataset) function. For example,  

>attach(HousePrice) 

causes R to directly read all the variables’ names eg. Price, Floor, Area etc. it is a 

good practice to use the attach (datafile) function immediately after reading the 

datafile into R. 

Packages 

All R functions and datasets are stored in packages. The contents of a package are 

available only when the package is loaded. This is done to run the codes efficiently 

without much memory usage. To see which packages are installed at your machine, 

use the command 

>library() 

To load a particular package, use a command like 

>library(forecast) 

Users connected to the Internet can use the install.packages() and update.packages() 

functions to install and update packages. Use search() to display the list of packages 

that are loaded.  

Standard package 

The standard (or base) packages are considered part of the R source code. They 

contain the basic functions those allow R to work with the datasets and standard 

statistical and graphical functions. They should be automatically available in any R 

installation.  

Contributed packages and CRAN 

There are a number of contributed packages for R, written by many authors. Various 

packages deal with various analyses. Most of the packages are available for download 

from CRAN (https://cran.r-project.org/web/packages/), and other repositories such as 

Bioconductor (http://www.bioconductor.org/). The collection of available packages 

changes frequently. As on June07, 2019, the CRAN package repository contains 

14346 available packages. 
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Getting Help 

Complete help files in HTML and PDF forms are available in R. To get help on a 

particular command/function etc., type help (command name). For example, to get 

help on function ‘mean’, type help(mean) as shown below 

>help(mean) 

This will open the help file with the page containing the description of the function 

mean.  

Another way to get help is to use “?” followed by function name. For example, 

>?mean 

will open the same window again. 

In this lecture note, all R commands and corresponding outputs are given in 

Courier New font to differentiate from the normal texts. Since R is case-sensitive, 

i.e. typing Help(mean), would generate an error message,  

>Help(mean) 

Error in Help(mean) : could not find function "Help" 

Further Readings 

Various documents are available in https://cran.r-project.org/manuals.html from 

beginners’ level to most advanced level. The following manuals are available in pdf 

form: 

1. An Introduction to R 

2. R Data Import/Export 

3. R Installation and Administration 

4. Writing R Extensions 

5. The R language definition 

6. R Internals 

7. The R Reference Index 

RStudio 

RStudio is an integrated development environment (IDE) that allows to interact with 

R more readily. RStudio is similar to the standard RGui, but is considerably more user 

friendly. It has more drop-down menus, windows with multiple tabs, and many 

customization options.  

Installation of RStudio 

RStudio requires R 3.0.1+ that means R software should be pre-installed before using 

RStudio.  
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RStudio requires a 64-bit operating system, and works exclusively with the 64 bit 

version of R. If you are on a 32 bit system or need the 32 bit version of R, you can use 

an older version of RStudio (https://www.rstudio.com/products/rstudio/older-

versions/).RStudio free desktop version can be downloaded from the following link: 

https://www.rstudio.com/products/rstudio/download/#download 

The first time RStudio is opened, three windows are seen. A forth window is hidden 

by default, but can be opened by clicking the File drop-down menu, then New File, 

and then R Script. 

 

 
 

Importing Data in R Studio 

1. Click on the import dataset button in the top-right section under the 

environment tab. Select the file you want to import and then click open. The 

Import Dataset dialog will appear as shown below 

2. After setting up the preferences of separator, name and other parameters, click 

on the Import button. The dataset will be imported in R Studio and assigned to 

the variable name as set before. 
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Installing Packages in RStudio 

Within the Packages tab, a list of all the packages currently installed on the working 

computer and 2 buttons labeled either “Install” or “Update” are seen. To install a new 

package simply select the Install button. It is possible to install one or more than one 

packages at a time by simply separating them with a comma. 
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Loading Packages in RStudio 

 

Once a package is installed, it must be loaded into the R session to be used. 

 

 
 

Writing Scripts in RStudio 

 

RStudio’s Source Tabs serve as a built-in text editor. Prior to executing R functions at 

the Console, commands are typically written down (or scripted).To write a script, 

simply open a new R script file by clicking File>New File>R Script.  

 

 



  

 
 

26 

 

Within the text editor type out a sequence of functions. 

 

 Place each function (e.g. read.csv()) on a separate line. 

 If a function has a long list of arguments, place each argument on a separate 

line. 

 A command can be executed from the text editor by placing the cursor on a 

line and typing Crtl + Enter, or by clicking the Run button. 

 An entire R script file can be executed by clicking the Source button. 

 

Saving R files in RStudio 

 

In R, several types of files can be saved to keep track of the work performed. The file 

types include: script, workspace, history and graphics. 

R script (.R) 

 

An R script is a text file of R commands that have beentyped. To save R scripts in 

RStudio, click the save button from R script tab. Save scripts with the .R extension. 

 

 
 

To open an R script, click the file icon. 

Workspace (.Rdata) 

The R workspace consists of all the data objects created or loaded during the R 

session. It is possible to save or load the workspace at any time during the R session 

from the menu by clicking Session>Save Workspace As.., or the save button on the 

Environment Tab. 

 
 

R history (.Rhistory) 

Rhistory file is a text file that lists all of the commands that have been executed. It 

does not keep a record of the results. To load or save R history from the History Tab 

click the Open File or Save button. 
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R Graphics 

Graphic outputs can be saved in various formats like pdf, png, jpeg, bmp etc.  

To save a graphic: (1) Click the Plots Tab window, (2) click the Export button,  

(3) Choose desired format, (4) Modify the export settings as desired and (4) click 

Save. 
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DESCRIPTIVE STATISTICS AND EXPLORATORY DATA 

ANALYSIS 
Md Yeasin 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

E-mail: yeasin.iasri@gmail.com 

1. Introduction  

The word ‘Statistics’ has been derived from the Latin word ‘Status’ or the Italian 

word ‘Statista’ or the German word ‘Statistik’ each of which means ‘political state’. 

Statistics is a broad concept featuring applications in a wide range of areas. Statistics, 

in general, can be defined as the process for collecting, analyzing, interpreting, and 

making conclusions from data. In other terms, statistics is the approach established by 

scientists and mathematicians for analyzing and deriving conclusions from acquired 

data. Everything that has anything to do with the collection, processing, interpretation, 

and presentation of data falls within the scope of statistics. 

Definition of statistics: Statistics is a branch of mathematics that deals with 

collecting, organizing, summarizing, presenting, and analyzing data as well as 

providing valid results and interpreting towards reasonable decisions. 

Statisticians, in other words, give methodologies for  

 Design: Planning and conducting out research projects.  

 Description: Data summarization and exploration.  

 Inference: Making predictions and inferences about the data 

Statistics can be divided into two sections; one is descriptive statistics and another is 

inferential statistics. 

 

 

Descriptive statistics helps describe, show or summarize data in a meaningful way. 

Descriptive statistics provides us with tools, tables, graphs, averages, ranges, 

correlations for organizing and summarizing data. Examples: measures of central 

tendency, measures of dispersion, skewness, kurtosis etc.  

Inferential statistics helps to understand the properties of the population by 

observing the sample values. Inferential statistics deals with the estimation of 

parameters and test of hypothesis. 

Statistics

Descriptive Statistics Inferential  Statistics

mailto:yeasin.iasri@gmail.com
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In this section we briefly discussed the descriptive statistics such as measures of 

central tendency, measures of dispersion, skewness, and kurtosis 

2. Measures of central tendency 

Central tendency is a statistical measure that determines a single value that accurately 

describes the center of the distribution.  The objective of central tendency is to 

identify the single value that is the best representative for the entire set of data. 

Different measure of central tendency are: 

 Mean 

o Arithmetic mean 

o Geometric mean 

o Harmonic mean   

 Median 

 Mode 

 Quartiles 

 Deciles  

 Percentiles  

1.1.Mean (Arithmetic mean: A.M.): 

The mean is the most commonly used measure of central tendency. For computation 

of the mean data should be numerical values measured on an interval or ratio scale. 

To compute the mean, we add the observation of data sets and then divide by the 

number of observation. 

𝑀𝑒𝑎𝑛 =
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑎
 

1.1.1. Simple mean: Let 𝑋1, 𝑋2, … , 𝑋𝑛 are the n observation of a data set. The 

arithmetic mean is given by  

�̅� =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 

Mean for frequency distribution: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with 

correspondingfrequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛  and  ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁 . The arithmetic mean is 

given by  

�̅� =
∑ 𝑓𝑖 𝑋𝑖

𝑛
𝑖=1

𝑁
 

Properties of mean:  

 It depends on change of origin as well as the change of scale. 

𝑈 = 𝑎 + ℎ𝑋 

Where a is origin and h is scale 
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Then  �̅� = 𝑎 + ℎ�̅�. 

 If are�̅�1and �̅�2 the means of two sets of values with 𝑛1and 𝑛2 observations 

respectively, then their combined mean is given by 

�̅� =
𝑛1�̅�1 + 𝑛2�̅�2

𝑛1 + 𝑛2
 

 Algebraic sum of deviations of set of values from their mean is zero. 

∑(𝑋𝑖 −

𝑛

𝑖=1

�̅�) = 0 

 The sum of squares of deviation of set of values about its mean is minimum 

∑ (𝑋𝑖 −𝑛
𝑖=1 𝐴)2 is minimum when  𝐴 = �̅� 

Merits of mean: 

 Easy to understand  

 Easy to calculate. 

 It is rigidly defined. 

 It is based on all observations. 

 It is least affected by sampling fluctuations. 

 It is capable of further mathematical treatment. 

Demerits of mean: 

 It is affected by extreme values. 

 It cannot be calculated for open end class frequency distribution. 

 It cannot be located graphically. 

 It cannot be calculated for qualitative characteristic. 

 It cannot be calculated if any observations are missing in the data series. 

 It is not suitable for highly skewed distribution. 

1.1.2. Geometric mean (G.M.): 

For n observations, Geometric mean is the nth root of their product.  

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observation of a data set. The 

geometric mean is defined as  

𝐺 = (𝑋1 ∗ 𝑋2 ∗ … ∗ 𝑋𝑛)1/𝑛 

For frequency distribution: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with 

correspondingfrequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛  and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁 . The geometric mean is 

defined as  

𝐺 = (𝑋1
𝑓1 ∗ 𝑋2

𝑓2 ∗ … ∗ 𝑋𝑛
𝑓𝑛)1/𝑁 
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Use of geometric mean: 

 Measure average relative changes, averaging ratios and percentages 

 Best average for construction of index number 

Merits of geometric mean: 

 It is based on all observations. 

 It is not affected by sampling fluctuations. 

 It is capable of further mathematical treatment. 

Demerits of geometric mean: 

 If any of the values is zero, it cannot be calculated. 

 It is affected by extreme values. 

 It cannot be calculated for open end class frequency distribution. 

 It cannot be located graphically. 

 It cannot be calculated for qualitative characteristic. 

 It cannot be calculated if any observations are missing in the data series. 

1.1.3. Harmonic mean (H.M.): 

Harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the 

observations of the sets.  

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observation of a data set. The 

harmonic mean is defined as  

𝐻 =
𝑛

∑ 1/𝑋𝑖
𝑛
𝑖=1

 

For frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with corresponding 

frequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛 and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁. The harmonic mean is defined as  

𝐻 =
𝑁

∑ 𝑓𝑖 /𝑋𝑖
𝑛
𝑖=1

 

Use of harmonic mean:  

 Measure the change where the values of a variable are compared with a 

constant quantity of another variable like time, distance travelled within a 

given time, quantities purchased or sold over a unit. 

Merits of harmonic mean: 

 It gives more weight to the small item and less weight to large values. 

 It is based on all observations. 

 It is not affected by sampling fluctuations. 
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 It is capable of further mathematical treatment. 

Demerits of harmonic mean: 

 If any of the values is zero, it cannot be calculated. 

 It is affected by extreme values. 

 It cannot be calculated for open end class frequency distribution. 

 It cannot be located graphically. 

 It cannot be calculated for qualitative characteristics. 

 It cannot be calculated if any observations are missing in the data series. 

Relation between A.M., G.M. and H.M.: 

 For given two observations, 𝐴. 𝑀. ≥ 𝐺. 𝑀. ≥ 𝐻. 𝑀. 

 𝐺. 𝑀. = √𝐴. 𝑀.∗ 𝐻. 𝑀. 

 𝐴. 𝑀. =
𝐺.𝑀.2

𝐻.𝑀.
 

 𝐻. 𝑀. =
𝐺.𝑀.2

𝐴.𝑀.
 

1.2.  Median:  

Median is the value situated in the middle position when all the observations are 

arranged in an ascending/descending order. The median is the central value of an 

ordered data series. It divides the data sets exactly into two parts. Fifty percent of 

observations are below the median and 50% are above the median. Median is also 

known as ‘positional average’. The Median is the 50th percentiles, 10th deciles, and 2nd 

quartiles. Median is also the intersect point of less than and more than ogive curve.  

Median for non-frequency data: 

Step 1Order the data from smallest to largest.  

Step2 If the number of observations is odd, then (n + 1)/2th observation (in the 

ordered set) is the median. When the total number of observations is even, the median 

is given by the mean of n/2th and (n/2 + 1)th observation. 

Median for group frequency data: 

Step 1 Obtain the cumulative frequencies for the data. 

Step 2Markthe class corresponding to which a cumulative frequency is greater than 

N/2. That class is the median class. 

Step 3Then median is evaluated by an interpolation formula 

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑙 +
ℎ

𝑓
(
𝑁

2
− 𝐶) 

Where, 𝑙 = lower limit of the median class 
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N= Number of observations 

C = cumulative frequency of the class proceeding to the median class 

𝑓 = frequency of the median class 

ℎ= magnitude of the median class 

Note: Graphically, we can find the median by histogram. 

Use of median: 

 Qualitative data can be arranged in ascending or descending order of 

magnitude. 

 Find average intelligence, honesty, etc.  

Merits of median: 

 It is rigidly defined. 

 It is not affected by extreme values. 

 It can be located graphically. 

 It can be calculated for open end class frequency distribution. 

 It can be calculated for data based on an ordinal scale. 

Demerits of median: 

 It is not based on all observations. 

 The calculation is more complex than the mean. 

 It is not capable of further mathematical treatment. 

 As compared to the mean, it is much affected by sampling fluctuations. 

1.3 Mode: 

Mode is defined as the value that occurs most frequently in the data. If in the data sets 

each observation occurs only once, then it does not have mode. When the data set has 

two or more values equal to the highest frequency than two or more mode are present 

in the datasets. 

Mode for ungroup frequency data: The observation which has the highest 

frequency in the data sets. 

Mode for group (equal width) frequency data: 

Step 1 Identify the modal class. Modal class is the class with the largest frequency.  

Step 2 Find mode by using interpolated formula. 

𝑚𝑜𝑑𝑒 = 𝑙 +
ℎ(𝑓0 − 𝑓−1)

(𝑓0 − 𝑓−1) − (𝑓1 − 𝑓0)
 

Where,  𝑙 = lower limit of the modal class 
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𝑓0 = frequency of the modal class 

𝑓−1=frequency of the preceding modal class 

𝑓1=frequency of the succeeding modal class 

ℎ= magnitude of the modal class 

Note: Graphically, we can find mode by histogram. 

Use of mode: 

 To find ideal consumer preferences for different kinds of products. 

 The best measure for the average size of shoes or shirts. 

Merits of mode: 

 It is not affected by extreme values. 

 It can be located graphically. 

 It can be calculated for open end class frequency distribution. 

 It can be calculated for data based on a nominal scale. 

Demerits of mode: 

 It is ill-defined. 

 It is not based on all observations. 

 The calculation is more complex than the mean. 

 It is not capable of further mathematical treatment. 

 As compare to the mean, it is much affected by sampling fluctuations. 

Quartiles: Quartiles are the three points that divide the whole data into four equal 

parts. 

𝑄𝑖 = 𝑙 +
ℎ

𝑓
(
𝑖𝑁

4
− 𝐶) 

Deciles: Deciles are the nine points that divide the whole data into ten equal parts. 

𝐷𝑖 = 𝑙 +
ℎ

𝑓
(
𝑖𝑁

10
− 𝐶) 

Percentiles: Percentiles are the ninety-nine point that divides the whole data into 

hundreds of equal parts. 

𝑃𝑖 = 𝑙 +
ℎ

𝑓
(

𝑖𝑁

100
− 𝐶) 

Note: 𝑴𝒆𝒅𝒊𝒂𝒏 = 𝟐𝒏𝒅 𝑸𝒖𝒂𝒓𝒕𝒍𝒆𝒔 = 𝟓𝒕𝒉 𝑫𝒆𝒄𝒊𝒍𝒆𝒔 = 𝟓𝟎𝒕𝒉 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆𝒔 

Empirical formula between mean median and mode: If the data sets area 

symmetric in nature, then 

𝑴𝒆𝒂𝒏 −  𝑴𝒐𝒅𝒆 = 𝟑(𝑴𝒆𝒂𝒏 −  𝑴𝒆𝒅𝒊𝒂𝒏) 
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The best measure of central tendency:  

According to proof. Yule, Mean is the best measure of central tendency. But there are 

some situations where the other measures of central tendency are preferred.  

Scale Use measure Best measure 

Interval Mean, Median, Mode 
Symmetrical data: Mean 

Asymmetrical data: Median 

Ratio Mean, Median, Mode 
Symmetrical data: Mean 

Asymmetrical data: Median 

Ordinal Median, Mode Median 

Nominal Mode Mode 

2. Measure of Dispersion 

The measure of central tendency such as mean, median, and mode only locate the 

center of the data. It does not infer anything about the spread of the data. Two data 

sets can have the same mean but they can be entirely different. 

Data 1 38 42 41 44 45 

Data 2 50 53 41 35 31 

In the above example, two datasets have the same mean. So measures of central 

tendency are not adequate to describe data. Thus to describe data, one needs to know 

the measure of scatterness of observations. Dispersion is defined as deviation or 

scatterness of observations from their central values. 

Various measure of dispersion are: 

 

1.2 Range (R): 

Range is the simplest measure of dispersion. It is defined as the difference between 

the highest value and lowest value of the variable. It is a crude measure of dispersion. 

𝑹𝒂𝒏𝒈𝒆 = 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝒗𝒂𝒍𝒖𝒆 (𝑯) − 𝒍𝒐𝒘𝒆𝒔𝒕 𝒗𝒂𝒍𝒖𝒆 (𝑳) 

 

Measure of 
dispersion

Absolute

Range Quartile 
deviation

Mean  
absoluted
eviation

Variance Standard 
deviation Relative

Co-efficient of 
range

Co-efficient of 
interquartile range

Coefficient of 
mean 

deviation

Coefficient of 
variance
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Merits of range:  

 It is easy to understand and calculate. 

 It is not affected by frequency of the data. 

Demerits of range: 

 It does not depend on all observations. 

 It is very much affected by the extreme items. 

 It cannot be calculated from open-end class intervals. 

 It is not suitable for further mathematical treatment. 

 It is the most unreliable measure of dispersion.  

1.3 Quartile deviation (Q.D.): 

Interquartile range is the difference between the first and third quartile. Hence the 

interquartile range describes the middle 50% of observations. 

𝑰𝒏𝒕𝒆𝒓 𝒒𝒖𝒂𝒓𝒕𝒊𝒍𝒆 𝒓𝒂𝒏𝒈𝒆 =  𝑸𝟑 −  𝑸𝟏 

 Where,  

 Q3=first quartile of the data 

 Q1=third quartile of the data 

Quartile deviation (Q.D.) is the half of the inter quartile range.  

𝑸𝒖𝒂𝒓𝒕𝒊𝒍𝒆 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 (𝑸. 𝑫. )  =  
𝑸𝟑 −  𝑸𝟏

𝟐
 

Merits of Quartile deviation:  

 It is easy to understand and calculate. 

 It is not affected by extreme values 

 It can be calculated for open end frequency data 

Demerits of Quartile deviation: 

 It does not depend on all observations. 

 It is not suitable for further mathematical treatment. 

 It is very much affected by sampling fluctuations. 

1.4 Mean absolute deviation (MAD): 

The absolute deviation of each value from the central value (mean is preferable) is 

calculated and the arithmetic mean of these deviations is called mean absolute 

deviation.  

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observations of a data set. The 

mean absolute deviation (MAD) about A is given by  
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𝑀𝐴𝐷𝐴 =
∑ |𝑋𝑖 − 𝐴|𝑛

𝑖=1

𝑛
 

The mean absolute deviation (MAD) about mean is given by  

𝑀𝐴𝐷�̅� =
∑ |𝑋𝑖 − �̅�|𝑛

𝑖=1

𝑛
 

For frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with corresponding 

frequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛  and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁 . The mean absolute deviation (MAD) 

about A is given by  

𝑀𝐴𝐷𝐴 =
∑ 𝑓𝑖|𝑋𝑖 − 𝐴|𝑛

𝑖=1

𝑁
 

The mean absolute deviation (MAD) about mean is given by  

𝑀𝐴𝐷�̅� =
∑ 𝑓𝑖|𝑋𝑖 − �̅�|𝑛

𝑖=1

𝑁
 

Merits of mean absolute deviation about mean:  

 It is easy to understand and calculate. 

 It is based on all observations. 

Demerits of mean absolute deviation about mean: 

 It is not suitable for further mathematical treatment. 

 It does not take the sign of deviation under consideration.  

 It is affected by extreme values. 

1.5 Standard deviation (S.D.): 

It is the best measure and the most commonly used measure of dispersion. It is 

defined as the positive square-root of the arithmetic mean of the square of the 

deviations of the given observation from their arithmetic mean. It takes into 

consideration the magnitude of all the observations and gives the minimum value of 

dispersion possible.  It is also known as Root Mean Square Deviation about mean. 

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observation of a data set. The 

standard deviation A is given by  

𝑆𝐷 = √
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑛
 

For frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with corresponding 

frequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛 and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁. The standard deviation is given by  

𝑆𝐷 = √
∑ 𝑓𝑖 (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑁
 



  

 
 

38 

Properties of standard deviation: 

 It is the independent of the change of origin but dependent on the change of 

scale 

Let 𝑈 = 𝑎 + ℎ𝑋, then 𝑠𝑑(𝑈) = |ℎ| ∗ 𝑠𝑑(𝑥) 

 If all observations are equal standard deviation is zero. 

 It is never less than the quartile deviation and mean absolute deviation.  

Merits of standard deviation:  

 It is based on all observations. 

 It is less affected by extreme values. 

 It is suitable for further mathematical treatment. 

Demerits of standard deviation: 

 It is suitable for further mathematical treatment. 

 It does not take the sign of deviation under consideration.  

 It is affected by extreme values. 

 It cannot be computed for open-end class data. 

1.6 Variance 

It is defined as the square of the standard deviation. Unit of the variance is the 

square of the actual observations, whereas unit of the standard deviation is same 

as actual observations. 

Relations between R, Q.D., M.D. and S.D. 

𝟗𝐐𝐃 =
𝟏𝟓

𝟐
𝐌𝐃 = 𝟔𝐒𝐃 = 𝐑 

1.7 Coefficient of Variation (CV): 

The Coefficient of variation for a data set defined as the ratio of the standard 

deviation to the mean and expressed in percentage. 

𝑪𝑽 =
𝑺𝑫

𝒎𝒆𝒂𝒏
∗ 𝟏𝟎𝟎% 

C.V is the relative measure of dispersion. It is the best measure among all the relative 

measure of dispersion. C.V is used to compare variability or consistency between two 

or more data series. If C.V. is greater indicate that the group is more variable, less 

stable, less uniform and less consistent. If the C.V. is less, it indicates that the group is 

less variable or more stable or more uniform and more consistent. 

Example: Consider the data on score of Kohli and Smith in ODI cricket. The mean 

and standard deviation for Kohli are 55 and 5 respectively. The mean and standard 
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deviation for Smith are 50 and 10 respectively.  Find C.V. value for both the data and 

make compare them. 

Solution: 

For Kohli, 𝐶𝑉 =
5

55
∗ 100 = 9% 

For Smith, 𝐶𝑉 =
10

50
∗ 100 = 20% 

The Smith is subject to more variation in score than Kohli. So Kohli is more 

consistent than Smith. 

𝟑. 𝟔. 𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐫𝐚𝐧𝐠𝐞 =
𝑯 − 𝑳

𝑯 + 𝑳
∗ 𝟏𝟎𝟎% 

𝟑. 𝟕.  𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐢𝐧𝐭𝐞𝐫 𝐪𝐮𝐚𝐫𝐭𝐢𝐥𝐞 𝐫𝐚𝐧𝐠𝐞 =
𝑸𝟑 − 𝑸𝟏

𝑸𝟑 + 𝑸𝟏
∗ 𝟏𝟎𝟎% 

𝟑. 𝟖. 𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐦𝐞𝐚𝐧 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧

=
𝑴𝑨𝑫

𝒂𝒗𝒆𝒓𝒂𝒗𝒆 𝒇𝒓𝒐𝒎 𝒘𝒉𝒊𝒄𝒉 𝒊𝒕 𝒊𝒔 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅
∗ 𝟏𝟎𝟎% 

Numerical Examples: The marks of 10 students in statistics examination are as 

follows: 

10,12,15,12,16, 20, 13,17,15,15 

Find mean, median, mode, range and standard deviation. 

Solution: 

Xi fi fi Xi fi(Xi − X̅) (Xi − X̅)2 fi(Xi − X̅)2 

10 1 10 -4.5 20.25 20.25 

12 2 24 -5 6.25 12.5 

13 1 13 -1.5 2.25 2.25 

15 3 45 1.5 0.25 0.75 

16 1 16 1.5 2.25 2.25 

17 1 17 2.5 6.25 6.25 

20 1 20 5.5 30.25 30.25 

Total 10 145  67.75 74.5 

𝑚𝑒𝑎𝑛 =
145

10
= 14.5 

𝑚𝑒𝑑𝑖𝑎𝑛 = 15 

𝑚𝑜𝑑𝑒 = 15 

𝑟𝑎𝑛𝑔𝑒 = 20 − 10 = 10 

𝑆𝐷 =
74.5

10
= 7.45 

2 Skewness and kurtosis: 
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We have discussed measures of central tendency and measure of dispersion which 

describe the location and scale parameter of the data sets. They do not give any idea 

about the shape of the data structure. The measure of skewness and kurtosis illustrate 

the shape of the data sets. The measure of skewness gives the direction and the 

magnitude of the lack of symmetry and the measure of kurtosis gives the idea of the 

flatness of the curve. 

2.2 Skewness 

Skewness measures the degree of asymmetry of the data. Skewness refers to the lack 

of symmetry. 

Skewness is mainly three types: Positive skewness, Negative skewness, and 

Symmetric data.  

Positive Skewness: 

A data is said to be positive skew if the long tail is on the right side of the peak. The 

mean is on the right of the peak value. Here Mean > Median > Mode.  

Negative Skewness: 

A data is said to be negative skew if the long tail is on the left side of the peak. The 

mean is on the left of the peak value. Here Mean < Median < Mode.  

Symmetric 

The symmetrical distribution has zero skewness as all measures of a central tendency 

lies in the middle. When data is symmetrically distributed, the left-hand side and 

right-hand side, contain the same number of observations. Here Mean = Median = 

Mode. 

 

Figure 1. Skewness 
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The measure of Skewness: 

 
Interpretation: 

1. If Sk = 0, then the frequency distribution is normal and symmetrical. 

2. If Sk> 0, then the frequency distribution is positively skewed. 

3. If Sk<0, then the frequency distribution is negatively skewed. 

2.3 Kurtosis 

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a 

normal distribution. That is, data sets with high kurtosis tend to have heavy tails or 

outliers. Data sets with low kurtosis tend to have light tails or lack of outliers. A 

uniform distribution would be the extreme case. 

Types of kurtosis: Leptokurtic or heavy-tailed distribution, Mesokurtic, Platykurtic 

or short-tailed distribution 

Leptokurtic 

Leptokurtic indicates that distribution is peaked and possesses thick tails. 

Platykurtic 

Platykurtic having a lower tail and stretched around center tails means most of the 

data points are present in high proximity with mean. A platykurtic distribution is a 

flatter (less peaked) when compared with the normal distribution. 

Mesokurtic  

Mesokurtic is the same as the normal distribution. In Mesokurtic, distributions are 

moderate in breadth, and curves are a medium peaked height. 

 

Figure 2. Kurtosis 
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Measurement of Kurtosis (𝛽2) =  
1

𝑁−1

∑(𝑦𝑖−�̅�)4

𝑠4  

𝛾2 =  𝛽2 − 3 

Data presentation 

Non dimensional diagram      Pictograms 

Two dimensional diagram       Bar diagram, Pie diagrams, Histograms, Box Plot 

Three dimensional diagram     Cubes, Cylinders diagrams 

There are three broad ways of presenting data. These are Textual presentation, 

Tabular presentation, and Graphic or diagrammatic presentation. We discussed only a 

few important diagrammatic presentations of data.   

2.4 Bar Diagram 

2.4.1 Simple Bar Diagram 

If the classification is based on attributes and if the attributes are to be compared with 

respect to a single character we use a simple bar diagram. Simple bar diagrams consist 

of vertical bars of equal width. The heights of these bars are proportional to the 

volume or magnitude of the attribute. All bars stand on the same baseline. The bars 

are separated from each other by equal intervals. The bars may be colored or marked.   

2.4.2 Multiple bar diagram 

If the data is classified by attributes and if two or more characters or groups are to be 

compared within each attribute we use multiple bar diagrams. If only two characters 

are to be compared within each attribute, then the resultant bar diagram used is known 

as the double bar diagram. The multiple bar diagram is simply the extension of a 

simple bar diagram. For each attribute, two or more bars representing separate 

characters or groups are to be placed side by side. Each bar within an attribute will be 

marked or colored differently in order to distinguish them. The same type of marking 

or coloring should be done under each attribute. A footnote has to be given explaining 

the markings or colorings. 

2.4.3 Component bar diagram 

This is also called a subdivided bar diagram. Instead of placing the bars for each 

component side by side, we may place this one on top of the other. This will result in 

a component bar diagram. 

2.5 Histogram 

Histograms is suitable for continuous class frequency distribution. We mark off class 

intervals along the x-axis and frequencies (frequency density for unequal frequency 

data)along the y-axis.  
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 For equal class intervals, the heights of the rectangles will be proportional to 

the frequencies, while for unequal class intervals, the heights will be equal (or 

proportional) to the frequency densities. 

 A frequency polygon is a line graph obtained by connecting the midpoints of 

the tops of the rectangles in the histogram.  

Table 1.Differences between bar diagrams and histograms 

Characteristics Bar Diagrams  Histograms 

Frequency is measured by Height of the bar Area of the bar 

Gaps between the bars Yes No 

Width of the bar Equal May not be equal 

Data types  Discrete and Continuous  Continuous only 

2.6 Pie diagrams  

When we are interested in the relative importance of the different components of a 

single factor, we use pie diagrams. For the pie diagram, one circle is used and the area 

enclosed by it being taken as 100. Itis then divided into a number of sectors by 

drawing angles at the center, the area of each sector representing the corresponding 

percentage. 

2.7 Box Plot 

Minimum, maximum, and quartiles (Q1, Median, Q3) together provide information on 

the center and variation of the variable in a nice compact way. Written in increasing 

order, they comprise what is called the five-number summary of the variable. A box 

plot is based on the five-number summary and can be used to provide a graphical 

display of the center and variation of the observed values of the variable in a data set. 

It can tell you about your outliers and what their values are. It can also tell you if your 

data is symmetrical, how tightly your data is grouped, and if and how your data is 

skewed. 

N.B: Examples of graphical presentation have been given in our basic statistics 

with excel manual.  

 

3 Robust Estimate of Mean and Standard Deviation 

The mean and standard deviation provides a correct estimation only if the variable is 

normally distributed and without outliers. If the variable is skewed and/or has outliers, 

the mean and standard deviation will be excessively influenced by the extreme 

observations and provide faulty statistics of data. There are many alternatives to the 
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mean and standard deviation. Alternatives to the mean include the well-known median 

and trimmed mean, Winsorized mean, and M-estimators and for standard deviation, 

the alternatives include the Inter-Quartile Range (IQR) and the Median Absolute 

Deviation (MAD), Trimmed standard deviation, the Winsorized standard deviation, 

and M-estimators. Median, IQR, MAD are already discussed in the previous section in 

detail. Here we only discussed the trimmed, Winsorized, and M estimators for mean 

and standard deviation.  

3.2 Trimmed Mean and Standard Deviation 

A trimmed mean and standard deviation is similar to a “regular” mean but it trims 

any outliers from both the side. To obtain the 20% trimmed mean, the 20% lowest and 

20 % highest values are removed and the mean is computed on the remaining 

observations. In our example, these values will be: 4, 4, 5, 5, 6, 6, and the 20% 

trimmed mean will be equal to 5. 

3.3 Winsorized Mean and Standard Deviation 

The Winsorized technique is similar to the trimmed technique but the lowest (resp. 

highest) values are not removed but replaced by the lowest (resp. highest) untrimmed 

score. In our example, the values of the variables, also called Winsorized scores, will 

then be: 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, and the 20% Winsorized mean will be equal to 5. 

3.4 M estimators  

The trimmed mean all either take or drop observations. As for the Winsorized mean, 

it replaces values with less extreme values. In contrast, the M-estimators, weight each 

observation according to a function selected for its special properties. The weights 

depend on a constant that can be chosen by the researcher. The M-estimator solves 

this problem of assigning a zero value to many observations by down weighting the 

observations progressively. The only aspect of the M-estimator that could worry 

substantive researchers is that one must choose the degree of down weighting of the 

observations. 

 

 

 

 

 

 

 

https://www.statisticshowto.com/statistics-basics/find-outliers/
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STATISTICAL DATA ANALYSIS USING MICROSOFT EXCEL 

Sanchita Naha 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-12 

Sanchita.naha@icar.gov.in 

Statistics is the study of collection, analysis, interpretation, presentation, and 

organization of data. Broadly, two statistical methodologies are used for data analysis, 

descriptive statistics, and inferential statistics. Statistical analysis can be done using 

software like MS Excel, SPSS, R but this tutorial is restricted to major statistical 

analysis methods using Microsoft Excel. Statistical analysis mainly encompasses 

descriptive statistics and inferential statistics. 

1. Descriptive Statistics: Descriptive statistics is used to describe or summarize data 

in a meaningful way. Descriptive statistics provides us with tools, tables, graphs, 

averages, ranges, correlations for organizing and summarizing data. In descriptive 

statistics data is summarized with the following major numerical descriptors like 

 Arithmetic Mean: It is defined as the average of the data values. For mean 

computation, data must be in numeric form.  

𝑀𝑒𝑎𝑛 =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

n = number of observations 

Steps to compute mean in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > 

mailto:Sanchita.naha@icar.gov.in
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select Average > Enter. 

 Geometric Mean: It is the nth root of the product of individual data points. Let 

𝑋1, 𝑋2, ... , 𝑋𝑛 be the nth observation of a data set. The geometric mean is 

defined as 

𝐺𝑀 =  (𝑥1 ∗ 𝑥2 ∗ … ∗ 𝑥𝑛 )1/𝑛 

Steps to compute geometric mean in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘GEOMEAN’ > click ‘Insert Function’ > Enter. 

e.g., GEOMEAN (B2:B11) 

The geometric mean is used in finance to calculate average growth rates and is 

referred to as the compounded annual growth rate. 

 Harmonic Mean: Harmonic mean is the reciprocal of the arithmetic mean of 

the reciprocals of the observations of the datasets. 

𝐻𝑀 =  
𝑛

∑ 1
𝑥𝑖

⁄𝑛
𝑖=1

 

Steps to compute harmonic mean in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘HARMEAN’ > click ‘Insert Function’ > Enter. 

e.g., HARMEAN (B2:B11) 
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 Median: Median is the value in the middlemost position of all the observations 

when arranged in an ascending/descending order. The median is the central 

value of an ordered data series. It divides the data sets exactly into two parts. 

Fifty percent of observations are below the median value and 50% are above the 

median. Median is also known as 'positional average'.  

Steps to compute median in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MEDIAN’ > click ‘Insert Function’ > Enter. 

 Mode: Mode is defined as the value that occurs most frequently in the data. If 

in the data sets each observation occurs only once, then it does not have mode. 

When the data set has two or more values equal to the highest frequency than 

two or more mode are present in the datasets. 

    Steps to compute median in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MODE’ > click ‘Insert Function’ > Enter. 

 Range: It is defined as the difference between the highest value and lowest 

value of the variable. 

𝑅𝑎𝑛𝑔𝑒 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 

Steps to compute range in Excel: 

Compute the maximum and minimum value among the data values. Then 

compute the difference between them to get the range of observations. 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MAX’ > click ‘Insert Function’ > Enter. 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MIN’ > click ‘Insert Function’ > Enter. 

Select a cell > write “=(specify the cell where maximum value is stored - 

specify the cell where minimum value is stored)” in the formula bar > Enter. 
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 Standard Deviation: It is defined as the positive square-root of the arithmetic 

mean of the square of the deviations of the given observations from their 

arithmetic mean. It takes into consideration the magnitude of all the 

observations and gives the minimum value of dispersion possible. It is also 

known as Root Mean Square Deviation about mean.  

Let x1, x2, …, xn are the n observations in a data set. The standard deviation 

S.D. is given by, 

𝑆𝐷 =  √
∑ (𝑋𝑖 −  �̅�)2𝑛

𝑖=1

𝑛
 

 Variance: It is defined as the square of the standard deviation. Unit of the 

variance is the square of the actual observations, whereas unit of the standard 

deviation is same as the actual observations. 

Steps to calculate Standard Deviation in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘STDEV’ > click ‘Insert Function’ > Enter. 
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There are 6 versions of standard deviation formula available which are as 

following: 

STDEV.S: This formula calculates the sample standard deviation based on 

numeric information alone. It ignores text and logical (TRUE or FALSE) values 

in the spreadsheet. The denominator in this case is (n-1). 

STDEV.P: This formula calculates the standard deviation for an entire 

population based on numeric information alone. It ignores text and logical 

values in the spreadsheet. The denominator in this case is n. 

STDEVA: This formula calculates the sample standard deviation of a dataset 

but includes text and logical values in the calculation. All FALSE values are 

represented by 0, and TRUE values are represented by 1. 

STDEVPA: This formula calculates the standard deviation for an entire 

population and includes text and logical values in the calculation. Like 

STDEVA, all FALSE values are represented by 0, and TRUE values are 

represented by 1. 

STDEV: This is an older version of the STDEV.S formula that Excel used to 

calculate sample standard deviation before 2007. It still exists for compatibility 

purposes. This formula acts as the same as STDEV.S 

STDEVP: This is an older version of the STDEV.P formula that still exists for 

compatibility. 
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Steps to calculate Variance in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘STDEV’ > click ‘Insert Function’ > Enter. 

 Coefficient of Variation (CV):The Coefficient of Variation (CV) is defined as 

the ratio of the standard deviation to the mean, and expressed in percentages, 

𝐶𝑉 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
∗ 100 

CV is calculated to have an idea about the consistency/ variability of the series. 

Higher the CV means the series is more variable, less stable, less uniform, and 

less consistent. Lesser CV indicates that the series is less variable or more stable 

or more uniform and more consistent. 

 Skewness and Kurtosis: Skewness is used to detect outliers in a data set. It 

characterizes the degree of asymmetry of a distribution around its mean. 

Positive skewness indicates a distribution with an asymmetric tail extending 

toward more positive values. Negative skewness indicates a distribution with an 

asymmetric tail extending toward more negative values.A data series is said to 

be positively skewed if the Mean of the data series is greater than Median and is 

greater than Mode. On the other hand data is said to be negatively skewed if 

Mean < Median < Mode. Data series is said to be symmetric if Mean = Median 

= Mode.  

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
(𝑀𝑒𝑎𝑛 − 𝑀𝑜𝑑𝑒)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Alternate formula for computing Skewness Coefficient, 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
3 (𝑀𝑒𝑎𝑛 − 𝑀𝑒𝑑𝑖𝑎𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

If Skewness coefficient = 0, then the distribution is normal and symmetrical. 

If Skewness coefficient > 0, then the frequency distribution is positively 

skewed. 

If Skewness coefficient < 0, then the frequency distribution is negatively 

skewed. 

Steps to calculate Skewness Coefficient in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘SKEW’ > click ‘Insert Function’ > Enter. 
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 Kurtosis: Kurtosis is a measure of the “tailedness” of the probability 

distribution of a real-valued random variable. It is the tailedness of a 

distribution relative to a normal distribution. Distributions with medium kurtosis 

(medium tails) are mesokurtic, with low kurtosis are called platykurtic, and 

distributions with high kurtosis are leptokurtic. 

Measure of kurtosis, 𝛾2 =  
𝜇4

𝜎4 – 3 

Kurtosis value equals to 3.0 indicates, the data distribution is mesokurtic, for 

kurtosis value greater than 3.0, it is called leptokurtic and for a lesser value than 

3.0 the distribution is called platykurtic. 

Steps to calculate Kurtosis in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘KURT’ > click ‘Insert Function’ > Enter. 

Excel provides an “Analysis Tool Pak” add-in under the Data tab to generate a 

report of the Descriptive Statistics on the desired data.  

https://www.scribbr.com/statistics/kurtosis/#mesokurtic
https://www.scribbr.com/statistics/kurtosis/#platykurtic
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For example, we have examination scores of 10 students in a class like the 

following. To generate descriptive statistics for these scores, follow the steps 

below. 

Step 1: On the Data tab, in the Analysis group, click Data Analysis. 

Step 2: Select Descriptive Statistics and click OK. 

Step 3: Select the range B2:B11 as the Input Range. 

Step 4: Select cell C1 as the Output Range. 

Step 5: Make sure Summary statistics is checked. 

Step 6: Click ok. 

2. Correlation and Regression Analysis: Correlation is the measurement of linear 

association between two variables. It is a measure that describes the strength and 

direction of a relationship between two variables. It is a commonly used measure 

in statistics, economics and social sciences for budgets, business plans etc. The 

correlation coefficient is used to measure the correlation between bivariate data 

which basically denotes the degree of linear association between two random 

variables. 

In statistics, there are several types of correlation measures depending on the type 

of data you are working with. Here, we will focus on the most common one. 

Pearson Product Moment Correlation (PPMC), popularly called as Pearson 

Correlation is used to evaluate linear relationships between data when a change in 

one variable is associated with a proportional change in the other variable.  

Pearson Correlation Coefficient, 𝒓 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑(𝑥𝑖−�̅�)2∗∑(𝑦𝑖−�̅�)2
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The correlation coefficient value always lies between -1 and 1 and it measures both 

the strength and direction of the linear relationship between the variables. 

Correlation coefficient of +1 means a perfect positive relationship, as value of one 

variable increases, value of other variable increases proportionally. Correlation 

coefficient value of -1 means a perfect negative relationship, with increase in the 

value of one variable, the other one decreases proportionally. A coefficient of 0 

means no linear relationship between the two variables the data points are scattered 

all over the graph. 

Steps to calculate Pearson Correlation Coefficient in Excel: 

Select ‘Data’ tab > click ‘Data Analysis’ > Find Correlation from the given menus 

> Click ok > Select the input range > select output cell > Grouped by columns > 

click ok. 

 

Regression analysis is used to estimate the relationship between two or more 

variables. Dependent variable is the main factor you want to study, understand, or 

predict. Independent variables are the factors that might influence the dependent 

variable. Regression analysis helps to understand how the dependent variable 

changes when one of the independent variables vary. Regression analysis can make 

it easier to predict future variable trends by analyzing the trajectory of the 

regression line. Simple linear regression model tries to establish a linear 

association between the dependent and the independent variable so that the 

outcome of the dependent variable can be predicted using the independent 

variables. The simple linear regression model uses the following equation: 
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Y = a + bX + ϵ 

where, Y = value of the dependent variable 

X = value of the independent variable 

a = intercept 

b = slope (regression line steepness) 

ϵ = error component 

Steps to perform Regression Analysis in Excel: 

Step1: Let us consider the data values for the following two variables, COVID 

cases and masks sold and perform a simple linear regression analysis in Excel 

considering number of Masks sold as the Y variable and number of COVID cases 

as X variable on which Y is dependent.  

 

Step2: Click on the ‘Data’ tab > Data Analysis > Select ‘Regression’ >click ‘Ok’. 
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Step3: In the Regression dialog box select the Input Y Range, which is our 

dependent variable. In this case it is (C2:C13). Then select the Input X Range, 

independent variable. In this example, it is the number of COVID cases (B2:B13). 

Select the desired output range, here E2. 

Click ok. 

You get the following Output: 

 

 Interpreting the Out putof Regression Analysis:  

SUMMARY STATISTICS 

Multiple R is the value of the Correlation Coefficient that measures the strength 

of a linear relationship between two variables. The larger the absolute value, the 

stronger the relationship. 

R Square gives the Coefficient of Determination, which is used as an indicator 

of the goodness of fit. It shows how many points fall on the regression line. The 

R2 value is calculated from the total sum of squares, more precisely, it is the 

sum of the squared deviations of the original data from the mean. In this 

example, R2 is 0.96, which is very good. It means that 96% of our values fit the 

regression analysis model. In other words, 96% of the dependent variables (y-
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values) are explained by the independent variables (x-values). Generally, R 

Squared of 95% or more is considered a good fit. 

Adjusted R Square gives the R square adjusted for the number of independent 

variables in the model. For multiple regression analysis, adjusted R square value 

is used instead of R square. 

Standard Error is another goodness-of-fit measure that shows the precision of 

the fitted regression model. The smaller the number, the more certain one can 

be about the regression equation. It is an absolute measure that shows the 

average distance that the data points fall from the regression line. 

Observations simply provides the total number of observations used to fir the 

model. 

COEFFICIENTS 

 

Linear regression equation fitted was, Y = b*X + a 

Here, Y = Mask sold; X = COVID cases; b = 0.99; a = -245.63 

Therefore, 0.99 * 190 – 245.63 = -57.53 
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3. Create Charts/ Graphs in MS Excel: 

Line Diagram: Select the data for which you want to plot the graph. Click ‘Insert’ 

tab > go to insert column chart > pick any chart of your preference. Excel will 

create the graphical representation as following. 

 

Pie chart: Pie chart represents the data in slices of a circle. Each slice represents 

the percentage contribution of each data section among the sum of individual data 

values. 

Select the data for which you want to plot the pie chart. Click insert tab > go to 

insert pie or doughnut chart > pick any chart of your preference. Excel will create 

the graphical representation as following: 
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Scatter Diagram: Scatter charts are specifically used to show how one variable is 

related to another. There are seven scatter chart options: scatter, scatter with 

smooth lines and markers, scatter with smooth lines, scatter with straight lines and 

markers, scatter with straight lines, bubble, and 3-D bubble. For plotting a scatter 

chart, one needs data points for two or more variables. 

Select the data> click insert tab > go to X Y Scatter chart > pick any chart of your 

preference. Excel will create the graphical representation as following: 

 

Histogram: Select data >click on data tab > select data Analysis >click histogram 

> select  
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input range (B2:B16)> select bin (class intervals, here it is C4:C8) > check Chart 

Output > click ok. Excel will produce the frequency table against the specified bin 

value and also will create a histogram diagram like following. 

4. Inferential Statistics:  

Inferential statistics is used for estimating the population data by analysing the 

samples obtained from it. It helps in making generalizations about the population 

by using different analytical tests and tools. Various sampling techniques are 

usedto select random samples that will represent the population accurately. Some 

of the important methods are simple random sampling, stratified sampling, cluster 

sampling, and systematic sampling techniques. 

Inferential statistics can be defined as a field of statistics that uses analytical tools 

for drawing conclusions about a population by examining random samples. In 

inferential statistics, a statistic is taken from the sample data (e.g., sample mean) 

that used to make inferences about the population parameter (e.g., the population 

mean). One sample t-test is the most commonly used one and sets a basic 

understanding of all other kinds of hypothesis testing methods. 

One sample t-test: 

The one-sample t test compares a given sample mean �̅�  to a known or 

hypothesized value of the population mean 𝜇0 provided the population standard 

deviation σ is unknown. Excel does not have a built-in one-sample t test. However, 

the use of Excel functions and formulas makes the computations quite simple. The 

value of t-statistic can be calculated from the given formula: 

𝑡 =  
�̅� − 𝜇0

𝑠�̅�
 

where, �̅� is the sample mean, 𝜇0 is the known or hypothesized population mean 

and 𝑠�̅� isthe standard error of mean.To calculate the t-statistic in excel we need to 

first find the following values.  

Consider a sample of 12 young female adults, we have the measurement of their 

heights in inches. Let us assume the national average height of 18-year-old girls is 

66.5 inches. We want to perform a one-sample T-test in Excel to determine if there 

is any significant difference between the heights of the sample data compared with 

the national average height (66.5 inches).  
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The null hypothesis and alternative hypothesis for this test are: 

Null hypothesis: There is no significant difference between the heights of the 

sample, compared with the national average. 

Alternative hypothesis: There is significant difference between the heights of the 

sample, compared with the national average. 

First of all, compute mean, standard deviation, standard error, degrees of freedom 

to calculate the value of the t-statistic as shown in the above screenshot then in an 

empty cell, enter =TDIST (t, df, tails) to compute the p-value. 

t – the cell containing the t-statistic 

df – The cell containing the degrees of freedom. 

tails –1if you want to perform a one-tailed analysis, or 2 if you want to do a two-

tailed analysis.p-value for this example is 0.127. 

Let us assume alpha level is set at 0.05, then since the p-value is above the alpha 

level, we will accept the null hypothesis and reject the alternative hypothesis.In 

other words, there is no significant difference between the heights of the sample, 

compared with the national average. 
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TESTS OF SIGNIFICANCE AND NON-PARAMETRIC TEST 

Rajeev Ranjan Kumar 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

Rajeev.kumar4@icar.gov.in 

 

In the realm of statistics, the test of significance, also known as hypothesis testing, is 

a powerful tool used to make informed decisions about population parameters based 

on sample data. It enables researchers and analysts to assess the validity of 

assumptions, draw conclusions, and determine the level of confidence in their 

findings. 

The fundamental idea behind the test of significance is to evaluate whether the 

observed data is strong enough to support or reject a particular hypothesis about a 

population characteristic. This hypothesis is typically formulated in terms of a null 

hypothesis (H0), which assumes no significant difference or relationship, and an 

alternative hypothesis (H1), which posits the existence of a meaningful difference or 

relationship. 

To conduct a test of significance, a sample is collected from the population of interest, 

and relevant statistical techniques are employed to analyze the data. The results are 

then used to evaluate the likelihood of observing the sample data under the 

assumption that the null hypothesis is true. If the observed data is highly improbable 

under this assumption, it provides evidence to reject the null hypothesis in favour of 

the alternative hypothesis. 

The test of significance involves determining a test statistic, which summarizes the 

data and allows for comparison against a theoretical distribution. The choice of the 

appropriate test statistic depends on the nature of the research question and the type of 

data being analyzed. Commonly used test statistics include the z-score, t-statistic, chi-

square statistic, and F-statistic, among others. 

1.Types of Hypotheses 

In scientific research, a hypothesis is a proposed explanation or prediction about a 

phenomenon or relationship between variables. Hypotheses play a crucial role in 

guiding research and formulating testable statements that can be supported or refuted 

by empirical evidence. Depending on the nature of the research question and the 

specific objectives of the study, different types of hypotheses can be formulated. Here 

are some common types of hypotheses: 

mailto:Rajeev.kumar4@icar.gov.in
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Null Hypothesis (H0): The null hypothesis represents the absence of an effect, 

relationship, or difference between variables. It assumes that there is no statistically 

significant relationship or change in the population being studied. Researchers 

generally aim to reject the null hypothesis in favour of an alternative hypothesis. For 

example, the null hypothesis could state that there is no difference in test scores 

between two groups of students. 

Alternative Hypothesis (H1): The alternative hypothesis is the opposite of the null 

hypothesis. It suggests that there is a significant effect, relationship, or difference 

between variables in the population. Researchers seek to gather evidence to support 

the alternative hypothesis. Building upon the previous example, the alternative 

hypothesis could state that there is a difference in test scores between the two groups 

of students. 

Directional Hypothesis: A directional hypothesis predicts the specific direction of 

the relationship or difference between variables. It specifies whether the effect will be 

positive or negative. For instance, a directional hypothesis may state that Group A 

will have higher test scores than Group B or that an increase in temperature will lead 

to a decrease in plant growth. Directional hypotheses are often used when previous 

research or theoretical considerations provide a basis for predicting the direction of 

the effect. 

Non-Directional Hypothesis: Also known as a two-tailed hypothesis, a non-

directional hypothesis does not predict a specific direction of the relationship or 

difference. It simply states that there is a significant difference or relationship 

between variables without specifying the direction. Researchers use non-directional 

hypotheses when they do not have a clear theoretical basis or prior evidence to 

suggest a specific direction. For example, a non-directional hypothesis may state that 

there is a difference in test scores between two groups of students, without specifying 

which group will perform better. 

Composite Hypothesis: A composite hypothesis consists of multiple statements or 

conditions. It encompasses more than one possibility and allows for different 

outcomes. Composite hypotheses are often used when there are multiple factors or 

variables involved in the research question. For instance, a composite hypothesis 

could state that the effect of a particular treatment on patient outcomes varies 

depending on age, gender, and socioeconomic status. 
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Simple Hypothesis: In contrast to composite hypotheses, simple hypotheses involve 

a single statement or condition. They are straightforward and make specific 

predictions about a single variable or relationship. Simple hypotheses are commonly 

used when the research question focuses on a single factor or variable. For example, a 

simple hypothesis could state that there is a positive correlation between study time 

and exam scores. 

2. Types of Errors 

Errors can occur due to various sources of uncertainty and can impact the validity and 

reliability of research findings. Understanding the types of errors is essential for 

researchers and analysts to properly interpret and draw accurate conclusions from 

their data. Here are the two primary types of errors in statistics: 

(A) Type I Error 

Type I error, also known as a false positive, occurs when the null hypothesis (H0) is 

mistakenly rejected, indicating the presence of a significant effect or relationship 

when, in fact, none exists in the population. It represents the probability of observing 

a statistically significant result due to random chance alone. Type I error is typically 

denoted by the symbol α (alpha) and is related to the significance level chosen for the 

hypothesis test. 

For example, let's say a researcher conducts a study to determine if a new drug is 

effective in reducing blood pressure. The null hypothesis states that the drug has no 

effect. If the researcher rejects the null hypothesis and concludes that the drug is 

effective when it is actually not, it would be a Type I error. The researcher would 

have falsely claimed a significant effect. 

The significance level chosen for the hypothesis test determines the threshold at 

which a Type I error is considered acceptable. A lower significance level (e.g., α = 

0.05) reduces the risk of Type I error but increases the chance of Type II error. 

(B) Type II Error: 

Type II error, also known as a false negative, occurs when the null hypothesis (H0) is 

incorrectly accepted, implying no significant effect or relationship, even when there is 

one in the population. It represents the failure to detect a true effect or relationship. 

Type II error is denoted by the symbol β (beta) and is related to the statistical power 

of the test. 
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Building upon the previous example, if the researcher fails to reject the null 

hypothesis and concludes that the drug is not effective, even though it is, it would be a 

Type II error. The researcher would have missed detecting a real effect. 

Type II error is influenced by factors such as the sample size, effect size, variability in 

the data, and the chosen significance level. To minimize the risk of Type II error, 

researchers often aim to maximize the statistical power of their study by using larger 

sample sizes, employing more sensitive measurement techniques, or increasing the 

significance level. 

It's important to note that Type I and Type II errors are inversely related: reducing one 

type of error increases the likelihood of the other. Researchers need to strike a balance 

between these two types of errors based on the consequences of each in the specific 

research context. 

(3)Level of Significance in Statistics: 

In statistical hypothesis testing, the level of significance, often denoted by the symbol 

α (alpha), is a predetermined threshold that helps researchers make decisions about 

the validity of their results. It represents the maximum allowable probability of 

making a Type I error (rejecting the null hypothesis when it is actually true). The 

level of significance plays a crucial role in determining the critical region and the 

acceptance or rejection of the null hypothesis. 

The most commonly used level of significance in many fields of research is 0.05 (or 

5%). This means that if the calculated probability (p-value) of obtaining the observed 

data under the null hypothesis is equal to or less than 0.05, the null hypothesis is 

rejected in favour of the alternative hypothesis. In other words, researchers conclude 

that there is sufficient evidence to suggest that a relationship, effect, or difference 

exists in the population being studied. However, the choice of the level of significance 

is not arbitrary and should be determined based on the specific research question, the 

consequences of Type I and Type II errors, and the desired level of confidence. 

Commonly used levels of significance include 0.01 (1%) and 0.10 (10%), depending 

on the context and the stringency of the decision-making process. 

A lower level of significance (e.g., 0.01) reduces the risk of Type I error, providing a 

more conservative approach to hypothesis testing. It requires stronger evidence to 

reject the null hypothesis and provides a higher level of confidence in the conclusions 

drawn from the data. On the other hand, a higher level of significance (e.g., 0.10) 

increases the risk of Type I error, making it easier to reject the null hypothesis. This 
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approach is less conservative and may be appropriate when the consequences of Type 

II error are more severe or when exploratory analysis is conducted. It's important to 

note that the level of significance does not directly indicate the magnitude or practical 

importance of the observed effect. It solely reflects the strength of evidence against 

the null hypothesis. Therefore, researchers need to carefully interpret the results in the 

context of the specific research question and consider the practical implications of 

their findings. 

(4) P-value  

In statistical hypothesis testing, the p-value is a measure that helps researchers assess 

the strength of evidence against the null hypothesis (H0) and make informed decisions 

about its rejection or acceptance. The p-value represents the probability of obtaining 

the observed data, or more extreme data, if the null hypothesis were true. The 

calculation of the p-value involves comparing the observed test statistic (e.g., t-

statistic, z-score, chi-square statistic) with the distribution of the test statistic under 

the assumption that the null hypothesis is true. The p-value provides a quantitative 

measure of the likelihood of observing the data under the null hypothesis.  

Interpreting the p-value is based on a chosen level of significance (α) that represents 

the threshold for rejecting the null hypothesis. If the p-value is smaller than the 

chosen level of significance, typically 0.05 (or 5%), it is considered statistically 

significant, and the null hypothesis is rejected. This indicates that the observed data is 

unlikely to occur by random chance alone and provides evidence in favour of the 

alternative hypothesis (H1).On the other hand, if the p-value is larger than the chosen 

level of significance, the null hypothesis is not rejected. This suggests that the 

observed data is reasonably likely to occur by random chance, and there is insufficient 

evidence to support the alternative hypothesis. It's important to note that failing to 

reject the null hypothesis does not prove its truthfulness; it simply suggests that there 

is not enough evidence to support the alternative hypothesis. 

(5) Critical Region 

The critical region, also known as the rejection region, is a defined range of values or 

outcomes of a test statistic that leads to the rejection of the null hypothesis (H0). The 

critical region is determined based on the chosen level of significance (α) and the 

distribution of the test statistic under the assumption that the null hypothesis is true. 

The critical region represents the extreme or unlikely values of the test statistic that 

would cast doubt on the validity of the null hypothesis. If the observed test statistic 



  

 
 

66 

falls within the critical region, it provides evidence against the null hypothesis and 

leads to its rejection in favour of the alternative hypothesis (H1). 

To determine the critical region, researchers specify the desired level of significance 

(α) before conducting the hypothesis test. The level of significance represents the 

maximum allowable probability of making a Type I error (rejecting the null 

hypothesis when it is actually true). The critical region is then defined such that the 

probability of observing a test statistic within that region, assuming the null 

hypothesis is true, is equal to or less than the chosen level of significance (α).The 

critical region is determined based on the specific distribution associated with the test 

statistic being used and the nature of the research question. For example, in a t-test, 

the critical region is defined by critical values obtained from the t-distribution, while 

in a z-test, it is determined by the critical values of the standard normal distribution. 

The critical region is often represented graphically on a probability distribution, 

showing the area in the tail(s) of the distribution associated with rejection of the null 

hypothesis. The critical values divide the distribution into the critical region (rejection 

region) and the non-critical region (non-rejection region). 

When the calculated test statistic falls within the critical region, the null hypothesis is 

rejected, indicating that the observed data is unlikely to occur by random chance 

alone and supports the alternative hypothesis. Conversely, if the test statistic falls 

within the non-critical region, the null hypothesis is not rejected, suggesting that the 

observed data is reasonably likely to occur by random chance, and there is insufficient 

evidence to support the alternative hypothesis.It's important to note that the size and 

location of the critical region are influenced by the chosen level of significance. A 

smaller level of significance (e.g., α = 0.01) results in a more stringent critical region, 

making it more difficult to reject the null hypothesis. On the other hand, a larger level 

of significance (e.g., α = 0.10) widens the critical region, making it easier to reject the 

null hypothesis. 

(6)One-Tailed and Two-Tailed Tests in Statistics: 

In statistical hypothesis testing, researchers can choose between one-tailed and two-

tailed tests based on the specific research question and the directionality of the effect 

being investigated. These tests differ in the way they assess the evidence against the 

null hypothesis (H0) and the corresponding critical region. 
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One-Tailed Test 

In a one-tailed (or one-sided) test, the alternative hypothesis (H1) specifies the 

direction of the effect or difference between variables. It predicts that the observed 

data will be either significantly greater or significantly less than what would be 

expected under the null hypothesis. Therefore, the critical region is located entirely in 

one tail of the distribution of the test statistic. 

The one-tailed test is appropriate when there is a clear theoretical or practical basis for 

predicting the direction of the effect. It allows researchers to focus their analysis on 

that specific direction and increases the power to detect the effect in that direction. 

One-tailed tests are often used in situations where previous research or knowledge 

suggests a particular directionality. For example, in a study investigating whether a 

new treatment improves test scores, the one-tailed test would focus on determining if 

the treatment leads to significantly higher test scores, neglecting the possibility of 

significantly lower scores. 

Two-Tailed Test 

In a two-tailed (or two-sided) test, the alternative hypothesis does not specify a 

particular direction of the effect. It predicts that the observed data will be significantly 

different from what would be expected under the null hypothesis, without specifying 

whether it will be greater or smaller. Therefore, the critical region is divided into two 

equal tails, one in each direction of the distribution of the test statistic. 

The two-tailed test is appropriate when there is no prior expectation or theoretical 

basis to predict the direction of the effect. It provides a more conservative approach to 

hypothesis testing, as it requires stronger evidence to reject the null hypothesis 

compared to a one-tailed test. For example, in a study investigating whether a new 

teaching method affects test scores, the two-tailed test would examine if the teaching 

method leads to significantly different test scores, without specifying whether the 

scores will be higher or lower. The choice between one-tailed and two-tailed tests 

should be based on careful consideration of the research question, previous 

knowledge, and theoretical expectations. While a one-tailed test increases the power 

to detect an effect in a specific direction, it may miss effects in the opposite direction. 

A two-tailed test is more conservative but captures effects in both directions. 
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7. Non-parametric Test 

In statistics, non-parametric tests, also known as distribution-free tests, are statistical 

methods used to make inferences and draw conclusions about populations or samples 

without assuming a specific probability distribution. Unlike parametric tests, which 

rely on assumptions about the underlying data distribution, non-parametric tests make 

fewer assumptions and are more robust to violations of distributional assumptions. 

Non-parametric tests are often used when the data does not meet the assumptions 

required for parametric tests, such as when the data is skewed, have outliers, or when 

the sample size is small. These tests are also useful when dealing with ordinal or 

nominal data, as they do not require interval or ratio level measurements. Some 

common non-parametric tests include: 

1. Mann-Whitney U test: This test is used to compare the medians of two 

independent groups. It is a non-parametric alternative to the independent samples t-

test. 

2. Wilcoxon signed-rank test: This test is used to compare the medians of two 

related or paired samples. It is a non-parametric alternative to the paired samples t-

test. 

3. Kruskal-Wallis test: This test is used to compare the medians of three or more 

independent groups. It is a non-parametric alternative to the one-way analysis of 

variance (ANOVA). 

4. Friedman test: This test is used to compare the medians of three or more related 

groups. It is a non-parametric alternative to the repeated measures ANOVA. 

5. Spearman's rank correlation coefficient: This test is used to assess the strength 

and direction of the monotonic relationship between two variables. It is a non-

parametric alternative to Pearson's correlation coefficient. 

Non-parametric tests rely on ranks or other orderings of the data rather than the actual 

numerical values. They use statistical techniques that compare the distributions of the 

data or evaluate the degree of association between variables without assuming a 

specific probability distribution. Advantages of non-parametric tests include their 

robustness to outliers and their ability to handle data that does not meet the 

assumptions of parametric tests. However, they generally have less statistical power 

than parametric tests when the data does conform to the assumptions of the parametric 

tests. Non-parametric tests are widely used in various fields, including psychology, 

sociology, biology, medicine, and environmental science, where the assumptions of 

parametric tests may not be met or when dealing with categorical or ranked data. 
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Multivariate data consist of observations on several different variables for a number 

of individuals or subjects. Data of this type arise in all the branches of science, 

ranging from psychology to biology, and methods of analyzing multivariate data 

constitute an increasingly important area of statistics.  Indeed, the vast majority of 

data in forestry is multivariate and proper handling of such data is highly essential. 

Principal components analysis (PCA) and Factor analysis (FA) are multivariate 

techniques applied to a single set of variables to discover which sets of variables in 

the set form coherent subsets that are relatively independent of one another.  The 

details of PCA and FA are discussed as below. 

Principal Components Analysis 

Most of the times the variables under study are highly correlated and as such they are 

effectively “saying the same thing”.  To examine the relationships among a set of p 

correlated variables, it may be useful to transform the original set of variables to a 

new set of uncorrelated variables called principal components.  These new variables 

are linear combinations of original variables and are derived in decreasing order of 

importance so that, for example, the first principal component accounts for as much as 

possible of the variation in the original data.   

Let x1, x2, x3, . . . , xp are variables under study, then first principal component may be 

defined as  

 z1 = a11 x1 + a12 x2 + ...... + a1p xp 

such that  variance of z1 is as large as possible subject to the condition that  

 a11
2 + a12

2 + ..... + a1p
2  =   1 

This constraint is introduced because if this is not done, then Var(z1) can be increased 

simply by multiplying any a1js by a constant factor 

The second principal component is defined as  

  z2  = a21 x1 + a22 x2 + ....... + a2p xp  

 

Such that Var(z2) is as large as possible next to Var( z1 )subject to the constraint that  

mailto:Prabina.Meher@icar.gov.in
http://www.pfc.forestry.ca/profiles/wulder/mvstats/orthog_e.html


  

 
 

70 

 a21
2 + a22

2 + ....... + a2p
2   =   1   and   cov(z1, z2) = 0 and so on. 

It is quite likely that first few principal components account for most of the variability 

in the original data.  If so, these few principal components can then replace the initial 

p variables in subsequent analysis, thus, reducing the effective dimensionality of the 

problem.  An analysis of principal components often reveals relationships that were 

not previously suspected and thereby allows interpretation that would not ordinarily 

result.  However, Principal Component Analysis is more of a means to an end rather 

than an end in itself because this frequently serves as intermediate steps in much 

larger investigations by reducing the dimensionality of the problem and providing 

easier interpretation. It is a mathematical technique which does not require user to 

specify the statistical model or assumption about distribution of original varieties.  It 

may also be mentioned that principal components are artificial variables and often it is 

not possible to assign physical meaning to them. Further, since Principal Component 

Analysis transforms original set of variables to new set of uncorrelated variables, it is 

worth stressing that if original variables are uncorrelated, then there is no point in 

carrying out principal component analysis. 

Computation of principal component 

Let us consider the following data on average minimum temperature (x1), 

average relative humidity at 8 hrs. (x2), average relative humidity at 14 hrs. (x3) and 

total rainfall in cm. (x4) pertaining to Raipur district from 1970 to 1986 for kharif 

season from 21st May to 7th Oct. 

X1 x2 x3 x4 

 
25.0 

 
86 

 
66 

 
186.49 

24.9 84 66 124.34 
25.4 77 55  98.79 
24.4 82 62 118.88 
22.9 79 53  71.88 

7.7 86 60 111.96 
25.1 82 58  99.74 
24.9 83 63 115.20 
24.9 82 63 100.16 
24.9 78 56   62.38 
24.3 85 67 154.40 
24.6 79 61 112.71 
24.3 81 58  79.63 
24.6 81 61 125.59 
24.1 85 64   99.87 
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24.5 84 63 143.56 
24.0 81 61 114.97 

 
Mean     23.56 

 
82.06 

 
61.00 

 
112.97 

S.D.      4.13     2.75   3.97   30.06 
with the variance co-variance matrix. 

       =  

17 02 4 12 154 514

7 56 8 50 54 82

15 75 92 95

90387

. . . .

. . .

. .

.



















 

Find the eigen values and eigen vectors of the above matrix.  Arrange the eigen values 

in decreasing order.  Let the eigen values in decreasing order and corresponding eigen 

vectors are  

1  =  916.902     a1  =  (0.006,     0.061,     0.103,     0.993) 

2  =    18.375     a2  =  (0.955,    -0.296,     0.011,     0.012) 

3  =      7.87       a3  =  (0.141,     0.485,     0.855,    -0.119) 

4  =      1.056     a4  =  (0.260,     0.820,    -0.509,     0.001) 

The principal components for this data will be 

 z1  =   0.006  x1 +  0.061 x2  +  0.103 x3 +  0.993 x4 

 z2  =   0.955 x1  -   0.296 x2 +  0.011 x3 +  0.012 x4 

 z3  =   0.141 x1 +   0.485 x2 +  0.855 x3  -  0.119 x4 

 z4  =   0.26   x1 +   0.82   x2  -  0.509 x3 +  0.001 x4 

The variance of principal components will be eigen values i.e.  

Var( z1 ) =   916.902,  Var( z2 )  =  18.375,  Var (z3 )  = 7.87, Var(z4 )  = 1.056 

The total variation explained by original variables is  

   = Var(x1) + Var(x2) + Var(x3) + Var(x4) 

   = 17.02 + 7.56 + 15.75 + 903.87  =  944.20 

The total variation explained by principal components is 

 1 + 2 + 3 + 4 = 916.902 + 18.375 + 7.87 + 1.056 = 944.20 
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As such, it can be seen that the total variation explained by principal components is 

same as that explained by original variables.  It could also be proved mathematically 

as well as empirically that the principal components are uncorrelated. 

The proportion of total variation accounted for by the first principal component is 

   1                            916.902 

 -------------------------    =     ------------   =   .97 

 1  +  2  + 3  +  4              944.203 

Continuing, the first two components account for a proportion  

         1 + 2                      935.277 

 -------------------------    =     ------------   =   .99 

 1  +  2  + 3  +  4              944.203 

of the total variance.    

Hence, in further analysis, the first or first two principal components z1 and z2 could 

replace four variables by sacrificing negligible information about the total variation in 

the system.  The scores of principal components can be obtained by substituting the 

values of xi s in equations of zi s.  For above data, the first two principal components 

for first observation i.e. for year 1970 can be worked out as  

 z1 = 0.006 x 25.0 + 0.061 x 86 + 0.103 x 66 + 0.993 x 186.49 = 197.380 

 z2 = 0.955 x 25.0  - 0.296 x 86 + 0.011 x 66 + 0.012 x 186.49 = 1.383 

Similarly for the year 1971 

 z1  = 0.006 x 24.9 + 0.061 x 84 + 0.103 x 66 + 0.993 x 124.34 = 135.54 

 z2  = 0.955 x 24.9 - 0.296 x 84 + 0.011 x 66 + 0.012 x 124.34 =     1.134 

Thus the whole data with four variables can be converted to a new data set with two 

principal components. 

Note: The principal components depend on the scale of measurement, for example, if 

in the above example X1 is measured in 0F instead of  0C and X4 in mm in place of 

cm, the data gives different principal components when transformed to original x’s.  

In very specific situations results are same.  The conventional way of getting around 

this problem is to use standardized variables with unit variances, i.e., correlation 

matrix in place of dispersion matrix. But the principal components obtained from 

original variables as such and from correlation matrix will not be same and they may 

not explain the same proportion of variance in the system.  Further more, one set of 

principal components is not simple function of the other. When the variables are 
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standardized, the resulting variables contribute almost equally to the principal 

components determined from correlation matrix. Variables should probably be 

standardized if they are measured on scales with widely differing ranges or if 

measured units are not commensurate.  Often population dispersion matrix or 

correlation matrix are not available.  In such situations sample dispersion matrix or 

correlation matrix can be used. 

Applications of principal components: 

 The most important use of principal component analysis is reduction of data.  It 

provides the effective dimensionality of the data.  If first few components account 

for most of the variation in the original data, then first few components’ scores 

can be utilized in subsequent analysis in place of original variables. 

 Plotting of data becomes difficult with more than three variables.  Through 

principal component analysis, it is often possible to account for most of the 

variability in the data by first two components, and it is possible to plot the values 

of first two components scores for each individual.  Thus, principal component 

analysis enables us to plot the data in two dimensions. Particularly detection of 

outliers or clustering of individuals will be easier through this technique.  Often, 

use of principal component analysis reveals grouping of variables which would 

not be found by other means. 

 Reduction in dimensionality can also help in analysis where no. of variables is 

more than the number of observations, for example, in discriminant analysis and 

regression analysis.  In such cases, principal component analysis is helpful by 

reducing the dimensionality of data. 

 Multiple regression can be dangerous if independent variables are highly 

correlated.  Principal component analysis is the most practical technique to solve 

the problem.  Regression analysis can be carried out using principal components 

as regressors in place of original variables.  This is known as principal component 

regression.  

Discriminant Analysis 

Discriminant analysis and classification are multivariate techniques concerned with 

separating distinct sets of objects (or observations) and with allocating new objects 

(observations) to previously defined groups. Discriminant analysis is rather 

exploratory in nature.  As a separatory procedure, it is often employed on a one - time 
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basis in order to investigate observed differences when causal relationships are not 

well understood.  Classification procedures are less explanatory in the sense that they 

lead to well- defined rules, which can be used for assigning new objects.  

Classification ordinarily requires more problem structure than discrimination. 

Thus, the immediate goals of discrimination and classification, respectively, are as 

follows. 

Goal 1. To describe either graphically (in three or lower dimensions) or algebraically, 

the differential features of objects (observations) from several known collections 

(populations).  We try to find “discriminants” whose numerical values are such that 

the collections are separated as much as possible. 

Goal 2.  To sort objects (observations) into two or more labeled classes.  The 

emphasis is on deriving a rule that can be used to optimally assign a new object to the 

labeled classes. 

We shall follow convention and use the term discrimination to refer to Goal 1.  This 

terminology was introduced by R.A. Fisher in the first modern treatment of separatory 

problems.  A more descriptive term for this goal, however, is separation; we shall 

refer to the second goal as classification, or allocation. 

A function that separates may sometimes serve as an allocation, and conversely, an 

allocatory rule may suggest a discriminatory procedure.  In practice, Goals 1 and 2 

frequently overlap and the distinction between separation and allocation becomes 

blurred.   

Here we discuss Fisher’s linear discriminant function for two multivariate populations 

having same dispersion matrix.  For more general cases readers are requested to go 

through the references cited at the end. 

Fisher’s Discriminant Function 

Here Fisher’s idea was to transform the multivariate observations x to univariate 

observations y such that the y’s derived from populations 1 and 2 were separated as 

much as possible.  Fisher’s approach assumes that the populations are normal and also 

assumes the population covariances matrices are equal because a pooled estimate of 

common covariance matrix is used. 

A fixed linear combination of the x’s takes the values y11, y12, ..., y1n1, for the 

observations from the first population and the values y21, y22, ..., y2n2, for the 

observations from the second population.  The separation of these two sets of 
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univariate y’s is assessed in terms of the differences between y1 and y2  expressed in 

standard deviation units.  That is, 

separation = 
y y

sy

1 2
, where s

y y y y

n n
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j j
j
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2 2
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is the pooled estimate of the variance.  The objective is to select the linear 

combination of the x to achieve maximum separation of the sample means y1 and 

y2 . 

Result:  The linear combination y =  ( )   
l x x x S x1 2 pooled
1  maximizes the ratio 

(Squared distance between sample means of y)

(Sample variance of y)
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overall possible coefficient vectors l  where d x x1 2 ( ) .  The maximum of the 

above ratio is D s2    ( ) ( )x x x x1 2 pooled
1

1 2 , the Mahalanobis distance. 

Fisher’s solution to the separation problem can also be used to classify new 

observations.  An allocation rule is as follows. 

Allocate x0 to 1 if 

 y0 =  ( )x x x1 2 pooled
1

0 
s   ( ) ( )m s   1

2
x x x x1 2 pooled

1
1 2  

and to 2 if  

 y0  m  

If we assume the populations 1  and 2 are multivariate normal with a common 

covariance matrix, then a test of H0: 1 = 2 versus H1: 1  2 are accomplished by 

referring  

 
( )

( )

n n p

n n p

n n

n n

1 2

1 2

1 2

1 2

1

2

  

  









D2   

to an F-distribution with 1 = p and 2 = n n p1 2 1    d.f.   If H0 is rejected, we can 

conclude the separation between the two populations is significant. 
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Example: 

To construct a procedure for detecting potential hemophilia ‘A’ carriers, blood 

samples were analyzed for two groups of women and measurements on the two 

variables, x1 = log10(AHF activity) and x2 = loh10(AHF-like antigens) recorded.  The 

first group of n1 = 30 women were selected from a population who do not carry 

hemophilia gene (normal group).  The second group of n2 = 22 women were selected 

from known hemophilia ‘A’ carriers (obligatory group).  The mean vectors and 

sample covariance matrix are given as  

 x x S1 2 pooled
1













 









 















0 0065

0 0390

0 2483

0 0262

131158 90 423

90 423 108147

.

.
,

.

.

. .

. .
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Now the linear discriminant function is 

 y0 = l x0 = ( )x x S x1 2 pooled
1

0 
  

     =  . .2418 0 0652
131158 90 423

90 423 108147

. .
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     = 37.61x1 - 28.92 x2 

Moreover  

 y1 = l x1=  37 61 28 92
0 0065

0 0390
. .

.

.














  = 0.88 

 y2 = l x2 =  37 61 28 92
0 2483

0 0262
. .

.

.














  = -10.10 

and the mid-point between these means is  

  ( ) ( )m s   1

2
x x x x1 2 pooled

1
1 2 = 

1

2
( y1 + y2 ) = -4.61 

Now to classify a women who may be a hemophilia ‘A’ carrier with x1 = -.210 and x2 = 

-0.044, we calculate 

y0 = l x0 = 37.61x1 - 28.92 x2 = -6.62 

Since y0  m  we classify the women in 2 population, i.e., to obligatory carrier 

group. 
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Factor Analysis 

Some Basics 

Factor analysis is a data reduction technique, which often requires large sample size 

to have a valid interpretation. The basic idea in factor analysis is that a large number 

of explanatory variables having similar type of responses can be captured with a 

single latent variable that cannot be measured directly. For example, the latent 

variable (or factor) socioeconomic status is associated with the observed variables 

income, education, health status, occupation, on which the peoples’ responses are of 

similar type.  

In factor analysis, the number of factors is same as the number of variables, where 

each factor captures a certain amount of variation of all the variations present in the 

observed variables. The factors are always arranged in the decreasing order of their 

variances. In factor analysis, one expects three outputs viz., common factor variances, 

factor loadings and factor scores. The common factor variance is the measure of the 

amount variation explained by a factor present in the observed variables. Factor 

loading measures the underlying relationship that an observed variable have with a 

factor. The factor scores are the transformed data, commonly the weighted sum/mean 

of the observed variables (or manifest variables). 

The factor scores are not the penultimate output rather than act as an intermediate step 

(dimensionality reduction) for carrying out further statistical analysis, a much 

important one.  In other words, factor scores enable user to use a single variable, 

instead of set of variables, as a measure of the factor in the other statistical 

investigation. For example, in case of linear model or mixed model, the factor scores 

can be used as variable (fixed factors or random factors), but here it refers to the 

categorical independent variable. Further, technically the factor scores are continuous 

and hence can be used as covariates in the model rather than as factors.  

Type of Factor Analysis 

There are two types of factor analysis, one is Exploratory Factor Analysis (EFA) and 

other is Confirmatory Factor Analysis (CFA). In CFA, one assumption is that there 

should be prior information about the number of factors likely to be encountered as 

well as which variables will be loaded onto which factors. On the other hand, CFA 

allows the researchers to test the hypothesis that whether the relationship between a 

variable and the underlying factor exits or not. Initially, the researcher postulates a 

certain a priori relationship pattern based on existing knowledge i.e., published 
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research (empirical and/or theoretical) and then test the hypothesis statistically. In 

EFA, the researcher tries to find out the number of underlying constructs (factors) 

without having any a priori information about the number of factors. In other words, 

in EFA, the number of factors is determined on the basis of the dataset supplied by the 

user, and also depends upon user interpretation. Linking these two approaches, one 

can use EFA first to explore the underlying factors and then perform CFA to validate 

the structure of factors in a new dataset that has not been used for performing EFA. 

For example, a factor “depression” can be obtained with underlying variables 

depressed mood, fatigue, exhaustion and social dysfunction through EFA for a sample 

of rural women, and then the CFA can be used to validate this factor using a sample 

of urban women. In EFA, the cut-off of loading are much relaxed than that of CFA. In 

other words, a variable having loading value <|0.7| is disqualified from its loading 

onto a certain factor (Thumb rule). Generally, the EFA is most commonly used in 

day-to-day life than that of CFA. So, in this study material we only focused on EFA. 

Exploratory Factor Analysis (EFA) 

Before carrying out factor analysis, some important points need to be considered. At 

first, the reliability of the dataset should be checked for factor analysis. In other 

words, for factor analysis, the values of the variables should be in interval scale, each 

variable should be normally distributed, pairs of variables should follow bi-variate 

normal distribution and the dataset as a whole should follow multivariate normal 

distribution. Further, the sample size should be large. Field (2000) suggested 10-15 

observations per variable. Habing (2003) state that there should be at least 50 

observations and the number of observations should be at least 5 times as many 

variables. Comrey (1973) categorized the sample size for its suitability to factor 

analysis i.e., 100 as poor, 200 as fair, 300 as good, 500 as very good, and 1000 or 

more as excellent. Also, one can conduct Kaiser-Meyer-Olkin (KMO) test to check 

the sample adequacy. The sample is said to be adequate if KMO value is more than 

0.5.  

As far as correlation matrix is concerned, the observed variables should be linearly 

related but not highly correlated that may lead to the matrix as singular and create 

difficulty in determining the unique contribution of the variables to the factors. To 

check the correlation among variables, one can use Bartlett’s test of spherity to test 

the null hypothesis that the correlation matrix is a identity matrix and the result should 

come out as significant. After rejecting the null hypothesis, one can validate the 
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presence of multi-collinearity via the determinant of the correlation matrix ie., if the 

determinant is greater than 0.00001, then there is no multi-collinearity (Field, 2000).  

After getting correlation matrix, it is essential to determine whether factor analysis 

(FA) or principal component analysis (PCA) is to be performed. The main difference 

between these two lies on the way the eigen values are used. In PCA, all the diagonal 

elements of the correlation matrix are 1 and all the variance present in the dataset are 

accounted by the components. However, in FA, the diagonal of the correlation matrix 

are squared multiple correlation coefficient, which is further used to get the eigen 

values and thereby the factor scores. Also, all the variances are not accounted by the 

factors as there is also an error variance. Further, in PCA the sum of square of the 

factor loadings of a variable provided the variance accounted for by that variable, 

which is not same in FA as it is assumed that the variables do not account for 100% of 

the variance. Theoretically, FA is more correct than PCA (Field, 2000) but practically 

there is little difference and is further decreased with decrease in the number of 

variables and increase in the value of factor loadings (Rietveld and Van Hout, 1993). 

In conducting FA, one of the most important questions is the number of factors to be 

retained in the model. In PCA, the number of components is same as the number of 

positive eigen value. However eigen values are sometime positive and close to zero, 

and in that situation deciding the number of factor is difficult. In literature certain 

thumb rules are there to take decision about the number of factors. Guttman-Kaiser 

rule state that the factor with eigen value >1 should be retained in the model. Hair et 

al, (1995) stated that in the natural sciences the number factors retained in the model 

should explain at least 95% of the total variance present in the observed variables. In 

humanities, the number factors that can explain up to 60-70% variation may be 

retained in the model (Hair et al, 1995; Pett et al, 2003). Besides, another option is 

that first draw a scree plot (Cattell, 1966) and retained all those factors appeared 

before reaching the point of inflection.   

After extracting the factors, the next task is to name the factors and interpret them. 

Since, most variable have higher value of loading on the most important factors and 

less amount of loadings on the remaining factors, it is always a difficult task to 

interpret about the factors. However, the factor rotation can help in this respect to a 

large extent. Factor rotation transforms the original loadings and thereby the 

interpretation becomes easier. Rotation maximizes the high loading items and 

minimizes the less loading items. There are two rotation techniques viz., orthogonal/ 
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varimax and oblique/promax that are commonly used in factor analysis. Varimax 

rotation (Thomson, 2004) is the most common rotational technique used in factor 

analysis that produces uncorrelated factors. On the other hand, in oblique rotation, the 

factors are correlated. Often, the oblique rotation provides more accurate results when 

the data does not meet the prior assumptions. Further, to decide the type of rotation 

technique is almost difficult and therefore first carryout the analysis with oblique 

rotaions, and if the oblique rotation demonstrates a negligible correlation between the 

extracted factors then it is reasonable to use orthogonally rotated factors (Field, 2000). 

Regardless of the rotation techniques uses, the objective is to provide easier 

interpretation of the results. 

Interpretation of EFA is nothing but to determine which variables are attributed to a 

factor and labeling of that factor. However, the labeling of a factor is a subjective 

process (Henson and Roberts, 2006), where the meaningful of the factor is dependent 

on the researchers definition. Moreover, through and systematic factor analysis is 

nothing but to find those factors that together explain the majority of the responses. 

Mathematical aspects of EFA 

Consider a dataset with n observations and p standardized variables 1 2, ,..., px x x . Then, 

in EFA the observed variables are expressed as the linear combination of the common 

factors and unique factor i.e., 1 1 2 2 3 3 ...i i i i ik k ix a F a F a F a F e      , where i=1,2,…, p, 

k<p and aik is the factor loading of ith variable on kth factor which is not same as that 

of eigen vector. The assumptions of this model are ( ) 0iE e  , ( )i iV e  , ( ) 0i jE e e  , 

( ) 0i jE e F   and ( ) 0i jE F F  . In matrix notation we can write p n p k k n p n    X L F E , 

where 
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Also, it is assumed that ( ) 0E E , ( ) 0E F , cov( , ) 0F E , 

1 2( ) ( , ,..., ) ( )pV Diag say   E ψ and var( ) F I . The correlation matrix is generally 
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used for performing the factor analysis. Here the diagonal elements are 1 (often 

described as the variance of the observed variable). In PCA, this matrix is used as 

such but factor analysis involves the replacing of diagonal element with communality 

estimate. The communality estimate is the estimated proportion of variance of the 

variable that is free of error variance and is shared with other variables in the matrix. 

These estimates reflect the variance of a variable in common with all others 

together. The initial estimate of the communality is taken as the squared multiple 

correlation coefficients and then the communalities of the variables are estimated as 

the sum of the square of the loadings onto different factors. Once the correlation 

matrix of the observed variables are obtained, the factor analysis can be written as

 Σ LL ψ , which nothing but var( ) var( )p n p k k n p n    X L F E . So, for the ith variable, 

one can write 2 2 2

1 21 ( ... )i i ip ia a a       or 21 i ih    or Total variance=Variance 

explained by the common factors + Error variance. Here 2

ih is the communality and 1-

2

ih is the variance accounted for by the ith unique factor. In this model, there is a 

need to estimate the common factor loadings (L) as well as the factor scores (F). For 

estimating L, there are two methods available one is Principal Axis Factor (PAF) 

method and other is Maximum Likelihood (ML) method. PAF makes no assumption 

about the error and minimizes the sum of squares of the residual matrix i.e., 

2 21
( ) ( )

2
ij ij

i j

tr S s       , where ijs and ij are the observed correlation matrix 

and implied correlation matrix, respectively (Jöreskog, 2007). The maximum 

likelihood (ML) estimation is derived from the theory of normal distribution. The ML 

value is obtained by minimizing 1ln ln [ ]S tr S p     , which similar to minimizing 

the discrepancy function 
2

2 2

( )ij ij

i j i j

s 

 

 
 
  

  (MacCallum et al, 2007). 

For estimation of factor scores, generally three types of methods are used viz., 

ordinary least squares, weighted least squares and regression method. Let xi be the 

ith observation vector and fi is the corresponding vector of factor scores, then we can 

write i i i x Lf e , where i=1,2,.., n, and the estimates of factor scores for this model 

by different methods are provided as follows: 
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(I) Ordinary Least Square 

The estimate of if can be obtained by minimizing the error sum of squares 

i.e., 2 2

1 1 2 2

1 1

( ... ) ( ) ( )
p p

ij ij i i ik i i i i

j j

e x a f a f a f
 

         x Lf x Lf . This is like 

a least squares regression, except in this case we already have estimates of 

the parameters (the factor loadings). In matrix notations, it can be written 

as 1ˆ ( )i i

 f L L L x . Using the principal component method with the 

unrotated factor loadings, the results can be obtained as 

1

1

2

2

1 ˆ
ˆ

1 ˆ
ˆ ˆ

...

1 ˆ
ˆ

i

i

i

k i

k







 
 
 
 
 
 
 
 
 
 
 
 

ζ x

ζ x
f

ζ x

, 

where 1ζ̂ , 2ζ̂ ,…, ˆ
kζ are the eigen vectors and 1̂ , 2̂ ,…, ˆ

k are the estimate 

of eigen values. 

(II) Weighted Least Squares 

In this method, larger weights are given to the variables having low 

specific variances. Variables with low specific variances are those for 

which the model fits the data best. In other words, the variable with the 

low specific variance provides more information regarding the true values 

for the specific factors. For the above considered model, we wish to 

minimize 

2 2

1 1 2 2 1

1 1

( ... )
( ) ( )

p p
ij ij i i ik

i i i i

j jj j

e x a f a f a f

 



 

   
     x Lf ψ x Lf , that 

resulted in the estimate as 1 1 1ˆ ( )i i

   f Lψ L Lψ x . Both OLS and WLS 

methods are used for estimating the factor scores, while PAF method is 

used to estimate the factor loadings. 

(III) Regression method 

This method is used when maximum likelihood is used for estimating the 

factor loadings. Now, for standardized variables the joint distribution of ix
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and if can be writes as
0

~ ,
0

i

i

N
      

      
      

x LL ψ L

f L I
. Then, we can 

calculate the conditional expectation of the factor score if given the 

observed data ix as 1( ) ( )i i iE   f x L LL ψ x , which is nothing but the 

estimate of if . 

Step by step procedure for performing exploratory factor analysis using R 

Step 1: Set the working directory. Let my directory is “meher” present in “D” drive. 

Then, set the directory as 

setwd(“C:/Documents and Settings/Prabin/Desktop/meher”) 

Step 2: Read the data from the specified directory. Let my data file is fact.txt present 

in the directory. Then data file can be imported to R as 

x <- read.table (file= “fact.txt”)  

Step 3: Check the normality assumption of each variable using Shapiro-Wilk’s test. 

shapiro.test (x[,i])      # This is for ith variable. If P-value is >level of 

significance, the variable is normally distributed. 

Step 4: Check the adequacy of the each variable and sample as a whole for factor 

analysis using KSA and KMO and test. The desired value of KMO is > 0.5.  

Variables with MSA being below 0.5 indicate that item does not belong to a 

group and may be removed from the factor analysis. 

kmo <- function(x) 

{ 

x <- subset(x, complete.cases(x)) # Omit missing values 

r <- cor(x)                                                 # Correlation matrix 

r2 <- r^2                          # Squared correlation coefficients 

i <- solve(r)                      # Inverse matrix of correlation matrix 

d <- diag(i)                       # Diagonal elements of inverse matrix 

p2 <- (-i/sqrt(outer(d, d)))^2     # Squared partial correlation 

coefficients 

diag(r2) <- diag(p2) <- 0          # Delete diagonal elements 

KMO <- sum(r2)/(sum(r2)+sum(p2)) 

MSA <- colSums(r2)/(colSums(r2)+colSums(p2)) 

return(list(KMO=KMO, MSA=MSA)) 

} 

kmo (x) 
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Step 5: Check that the correlation matrix is not an identity matrix using Bartlett’s 

sphericity test. The test should come out significant. 

bst <- function(x) 

{ 

method <- "Bartlett's test of sphericity" 

data.name <- deparse(substitute(x)) 

x <- subset(x, complete.cases(x)) # Omit missing values 

n <- nrow(x) 

p <- ncol(x) 

chisq <- (1-n+(2*p+5)/6)*log(det(cor(x))) 

df <- p*(p-1)/2 

p.value <- pchisq(chisq, df, lower.tail=FALSE) 

names(chisq) <- "X-squared" 

names(df) <- "df" 

return(structure(list(statistic=chisq, parameter=df, 

p.value=p.value, 

method=method, data.name=data.name), class="htest")) 

} 

bst (x) 

Step 6: Test that there is no presence of high degree of multicollinearity. The 

determinant of the matrix should come out > 0.0001 to pass the test. 

det(cor(x)) 

Step 7: Carryout factor analysis to extract the factor loadings (by ML estimate 

method), common variances and specific variances. 

factanal (x=swiss, factors=2, rotation= “varimax or 

promax”) 

or 

factanal (~., factors=2, data=swiss, rotation= “varimax 

or promax”) 

# In the result one cannot see the complete factor loadings but it is possible with the 

following commands. 

factanal (~., factors=2, rotation= “varimax or 

promax”)$loadings[,i] # for complete ith factor loading. 

 Step 8: Estimate the factor scores either by Bartlett’s WLS method or Johnson’s 

regression method. 

factanal (~., factors=2, rotation= “varimax or promax”, 

scores=”Bartlett or regression”)$scores 
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Step 9: The factor loadings, common variances, specific variances can also be 
computed by supplying the covariance matrix and number of observations. 
However, the scores can only be obtained when full data set is available. 

factanal (factors=2, covmat=cor(swiss),rotation= “varimax 

or promax”, n.obs=47) 

Step 10: Interpretation of the result and conclusion 
_____________________________________________________________________
________ 
Note: One can use the “psych” package of R-software for KMO test and Barlett’s test 
of sphericity using single line code as provided below.  
KMO(r) # r is the correlation matrix. This will provide the values of both KMO and 
KSA 
cortest.bartlett(r, n) # r is the correlation matrix and n is the number of 
observation in the dataset. 
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1. Introduction 

Correlation is a powerful statistical concept that enables us to explore the 

relationships between variables and uncover hidden patterns in complex data. By 

measuring the extent to which two variables move together, correlation helps us gain 

insights into the interconnectedness of phenomena. In statistical modelling, regression 

analysis is a set of statistical processes for estimating the relationships between a 

dependent variable (often called the ‘outcome variable’) and one or more independent 

variables (often called ‘predictors’, ‘covariates’, or ‘features’). Regression analysis is 

primarily used for two distinct purposes. First, it is widely used for prediction and 

forecasting, which overlaps with the field of machine learning. Second, it is also used 

to infer causal relationships between independent and dependent variables. This 

methodology is widely used in business, social and behavioral sciences, biological 

sciences including agriculture. For example, yield of a crop can be predicted by 

utilizing the relationship between yield and other factors like water temperature, 

rainfall, quantity of fertilizer, quantity of seeds, irrigation level and relative humidity, 

etc. 

A functional relationship between two variables can be expressed by a mathematical 

formula. If 𝑥 denotes the independent variable and 𝑦 the dependent variable, then 𝑦 

can be related 𝑥  through a functional relation of the form 𝑦 =  𝑓(𝑥) . Given a 

particular value of 𝑥 , the function 𝑓  indicates the corresponding value of 𝑦 . In 

regression analysis, the variable 𝑥 is known as input variable, explanatory variable or 

predictor variable. This is an exact mathematical relationship. In statistical relation, 

may not be perfect owing to sampling. The above functional form is made a statistical 

model by adding an error term as 𝑦 = 𝑓(𝑥) + 𝜀, where 𝜀 denotes the error term. 

Depending on the nature of the relationships between 𝑥 and 𝑦, regression approach 

may be classified into two broad categories viz., linear regression models and 

nonlinear regression models. The response variable is generally related to other causal 

variables through some parameters. The models that are linear in these parameters are 

known as linear models; whereas in nonlinear models parameters appear nonlinearly. 
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2. The Concept of Correlation 

2.1 Defining Correlation: Correlation refers to the statistical association between two 

or more variables, indicating the degree to which they tend to change together. It 

measures the direction (positive or negative) and strength (weak or strong) of the 

relationship. 

2.2Significance of Correlation 

Identifying Associations: Correlation helps us identify relationships between 

variables, providing a foundation for further analysis. 

Prediction: Correlated variables can be used to make predictions about one variable 

based on the other(s). 

Variable Selection: Correlation assists in selecting relevant variables for analysis, 

weeding out redundant or irrelevant ones. 

2.3 Measuring Correlation 

2.3.1 Pearson's Correlation Coefficient 

The Pearson correlation coefficient (𝑟) quantifies the linear relationship between 

two continuous variables and can be expressed as: 

𝑟 =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

√∑ (𝑥𝑖−𝑥)
2

∑ (𝑦𝑖−𝑦)
2

                                                                                                        

Where, 𝑟 is the correlation coefficient 

𝑥𝑖 are the values of the 𝑥-variable. 

𝑦𝑖 are the values of the 𝑦-variable. 

𝑥 is the mean of the values of 𝑥-variable. 

𝑦 is the mean of the values of 𝑦-variable. 

Range and Interpretation: 𝑟 ranges from -1 to 1, where -1 denotes a perfect negative 

correlation, 1 signifies a perfect positive correlation, and 0 indicates no linear 

relationship. 

Strength of Correlation: Various criteria, such as effect size or correlation coefficient 

magnitude, determine the strength of the relationship. 

2.3.2 Spearman's Rank Correlation Coefficient 

Spearman's rho (ρ) measures the monotonic relationship (increasing or decreasing) 

between variables, especially when the relationship is not strictly linear and can be 

expressed as: 

𝜌 = 1 −
6 ∑𝑛

𝑖=1 𝑑𝑖
2

𝑛(𝑛2−1)
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where, 𝜌 is the Spearman's Rank Correlation Coefficient. 

𝑑𝑖 is the difference between the two ranks of each observation. 

𝑛 is the number of observations. 

Advantages: It is robust to outliers and can handle ordinal or non-normal data. 

Interpretation: Similar to Pearson's r, ρ ranges from -1 to 1, with the same 

interpretations. 

2.4 Types of Correlation 

2.4.1 Positive Correlation 

Definition: Positive correlation exists when an increase in one variable corresponds 

to an increase in the other, and vice versa. 

Examples: Height and weight, income and education level. 

2.4.2 Negative Correlation 

Definition: Negative correlation occurs when an increase in one variable corresponds 

to a decrease in the other, and vice versa. 

Examples: Temperature and heating costs, exercise duration and body weight. 

2.4.3 Zero Correlation 

Definition: Zero correlation indicates no discernible relationship between variables. 

Examples: Shoe size and IQ, number of siblings and favourite colour. 

2.4.4 Interpreting Correlation 

2.4.4.1 Causation vs. Correlation 

Correlation does not imply causation; a strong relationship between two variables 

does not necessarily mean one variable causes the other. 

Spurious Correlation: Be cautious of coincidental associations without a meaningful 

underlying connection. 

2.4.4.2 Scatterplots 

Visualizing Correlation: Scatter plots are graphical representations that help us assess 

the relationship between variables. 

Patterns: Scatterplots can exhibit various patterns, such as linear, nonlinear, or 

clusters, aiding in understanding the correlation visually. 

2.4.4.3 Applications of Correlation 

Finance and Economics 

Analyzing stock market trends and investment portfolios. 
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Examining relationships between economic indicators, such as GDP and 

unemployment rates. 

Social Sciences 

Investigating relationships between variables like crime rates and income levels. 

Studying the impact of education on health outcomes. 

Medicine and Health 

Exploring the correlation between risk factors and disease prevalence. 

Assessing the effectiveness of treatments or interventions. 

Agriculture 

Crop Yield and Environmental Factors 

Pest and Disease Management 

Crop Nutrient Requirements 

Crop-Livestock Interactions 

Climate Change Impact Assessment 

Water Management 

Market Analysis and Price Forecasting, etc. 

3. Simple Linear Regression (SLR) Model 

Simple linear regression is useful for finding relationship between two continuous 

variables. One is predictor or independent variable and other is response or dependent 

variable. It looks for statistical relationship but not deterministic relationship. 

Relationship between two variables is said to be deterministic if one variable can be 

accurately expressed by the other. For example, using temperature in degree Celsius it 

is possible to accurately predict Fahrenheit. Statistical relationship is not accurate in 

determining relationship between two variables. For example, relationship between 

height and weight. The core idea is to obtain a line that best fits the data. The best fit 

line is the one for which total prediction error (all data points) are as small as possible. 

Error is the distance between the point to the regression line. 

The simple linear regression model is usually written as 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖(3) 

where the 𝜀𝑖’s are normal random variables with mean 0 and variance 𝜎2. The model 

implies (i) The average 𝑦-value at a given 𝑥−value is linearly related to 𝑥. 

(ii) The variation in responses 𝑦 at a given 𝑥 value is constant. 
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(iii) The population of responses 𝑦 at a given 𝑥 is normally distributed. 

(iv) The observed data are a random sample. 

Regression model (3) is said to be simple and linear regression model. It is “simple” 

in the sense that there is only one predictor variable and “linear” in the sense that all 

parameters appeared linearly with the predictor variables. The parameters 𝛽0and 𝛽1 in 

regression model (3) are called regression coefficients, 𝛽1  is the slope of the 

regression line. It indicates the change in the mean of the probability distribution of 𝑦 

per unit increase in 𝑥. The parameter 𝛽0 is the 𝑦 intercept of the regression line. 

3.1 Estimation of Parameters in a Simple Linear Regression Model 

In the above models the variables 𝑦 and 𝑥 are known, these are observed. The only 

unknown quantities are the parameters 𝛽’s. In regression analysis, our main concern 

is how precisely we can estimate these parameters. Once these parameters are 

estimated, our model becomes known and we can use it for further analysis. The 

method of least squares is generally used to estimate these parameters. For each 

observations (𝑥𝑖, 𝑦𝑖 ),  the method of least squares considers the error of each 

observation, i.e, for a simple model 𝜀𝑖 = 𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖. The method of least squares 

requires the sum of the 𝑛 squared errors. This criterion is denoted by 𝑆: 

𝑆 = ∑𝑛
𝑖=1 (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

2                                                                                                        

According to the method of least squares, the estimators of 𝛽0 and 𝛽1 are those values 

of �̂�0  and �̂�1, respectively, that minimize the criterion 𝑆 for the given observations. 

To minimize 𝑆, we differentiate 𝑆 with respect to each parameter and equate to zero. 

We get as many equations as the number of parameters. Solving these equations 

simultaneously, we get the estimates of parameters. For example, for the regression 

model (3) the values of  �̂�0  and �̂�1that minimizes 𝑆 for any particular set of sample 

data are given by the following simultaneous equations: 

∑𝑛
𝑖=1 𝑦𝑖 = 𝑛�̂�0 + �̂�1 ∑𝑛

𝑖=1 𝑥𝑖                                                                                                         

∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 = �̂�0 ∑𝑛

𝑖=1 𝑥𝑖 + �̂�1 ∑𝑛
𝑖=1 𝑥𝑖

2                              (6) 

These two equations are called normal equations and can be solved for �̂�0  and �̂�1 as 

follows 
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�̂�1 =
∑𝑛

𝑖=1 (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

∑𝑛
𝑖=1 (𝑥𝑖−𝑥)

2                               (7) 

�̂�0 =
1

𝑛
(∑𝑛

𝑖=1 𝑦𝑖 − 𝛽1 ∑𝑛
𝑖=1 𝑥𝑖) = 𝑦 − 𝛽1𝑥 (8) 

where,𝑦 and 𝑥 are the means of the 𝑦𝑖 and 𝑥𝑖 observations, respectively. 

3. Multiple Linear Regression Model (MLR) Model 

A regression model that involves more than one regressor variable is called a multiple 

regression model i.e., the multiple linear regression model is used to study the 

relationship between a dependent variable and one or more independent variables. 

The generic form of the linear regression model is 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) + 𝜀 = 𝛽0+𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀                              (9) 

where,𝑦is the dependent or explained variable and 𝑥1, 𝑥2, … , 𝑥𝑝are the independent or 

explanatory variables. The regression model in the equation describes above is linear 

in the sense, it is a linear function of the unknown parameters 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝 . In 

general, any regression model that is linear in the parameters (𝛽 ’s) is a linear 

regression model, regardless of the shape of the surface that it generates. We have 

also assumed that the expected value of the error term 𝜀 is zero. The parameter 𝛽0 is 

the intercept of the regression model. If the range of the data includes 𝑥1 = 𝑥2 = ⋯ =

𝑥𝑝 = 0, then 𝛽0 is the mean of 𝑦 when 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑝 = 0. Otherwise 𝛽0 has no 

physical interpretation. The parameter 𝛽1 indicates the expected change in response 

(𝑦) per unit change in 𝑥1 when 𝑥2, … , 𝑥𝑝 are held constant. Similarly 𝛽2measures the 

expected change in response (𝑦) per unit change in 𝑥2  when 𝑥1, … , 𝑥𝑝  are held 

constant. For this reason the parameters 𝛽𝑖 , ∀ 𝑖 = 1,2, … , 𝑝 are often called as partial 

regression coefficients. 

A. Assumptions of the Multiple Linear Regression Model 

1. Linearity 

The model defined by the following equation 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) + 𝜀 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀 specifies a linear 

relationship between 𝑦 and 𝑥and our primary interest is in estimation and inference 

about the parameter vector 𝛽. For the regression to be linear in the sense described 
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here, it must be of the form in the original variables or after some suitable 

transformation. 

i. Full rank 

There are no exact linear relationships among the variables in the model. 𝑥 is an 𝑛 ×

𝑝 matrix with rank 𝑝. Hence 𝑥 has full column rank; the columns of 𝑥 are linearly 

independent and there are at least 𝑝 observations (𝑛 ≥ 𝑝). 

i. Exogeneity of the independent variables: 

The disturbance is assumed to have conditional expected value zero at every 

observation, which we can write as 𝐸[𝑥] = 0. 

In this equation, the left hand side states, in principle, that the mean of each 𝜀𝑖 

conditioned on all observations 𝑥is zero. This strict exogeneity assumption states, in 

words, that no observations on 𝑥 convey information about the expected value of the 

disturbance. 

i. Homoscedasticity: 

The fourth assumption concerns the variances and covariance of the disturbances: 

𝑉𝑎𝑟(𝑥) = 𝜎2, ∀ 𝑖 = 1, … , 𝑛 

𝐶𝑜𝑣(𝑥) = 0 ∀ 𝑖 ≠ 𝑗                                                               (10) 

Constant variance is labelled homoscedasticity. Consider a model that describes the 

profits of firms in an industry as a function of, say, size. Even accounting for size, 

measured in dollar terms, the profits of large firms will exhibit greater variation than 

those of smaller firms. The homoscedasticity assumption would be inappropriate here. 

Survey data on household expenditure patterns often display marked 

heteroscedasticity, even after accounting for income and household size. The two 

assumptions imply that 

𝐸[𝑥] = [𝜎2 0 ⋯  0 0 𝜎2  ⋯  0 ⋮ ⋮ ⋱ ⋮  0 0 ⋯ 𝜎2 ] = 𝜎2𝐼 (11) 

i. Data generating process for the regressors 

It is common to assume that 𝑥𝑖is nonstochastic, as it would be in an experimental 

situation. Here the analyst chooses the values of the regressors and then observes 𝑦𝑖. 

This process might apply, for example, in an agricultural experiment in which 𝑦𝑖 is 

yield and 𝑥𝑖is fertilizer concentration and water applied. 
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i. Normality 

It is convenient to assume that the disturbances are normally distributed with zero 

mean and constant variance. This is a convenience that we will dispense with after 

some analysis of its implications. The normality assumption is useful for defining the 

computations behind statistical inference about the regression, such as confidence 

intervals and hypothesis tests. For practical purposes, it will be useful then to extend 

those results and in the process develop a more flexible approach that does not rely on 

this specific assumption. 

𝜀|𝑥~𝑁(0, 𝜎2𝐼)(12) 

The validity of these assumptions is needed for the results to be meaningful. If these 

assumptions are violated, the result can be incorrect and may have serious 

consequences. If these departures are small, the final result may not be changed 

significantly. But if the deviations are large, the model obtained may become unstable 

in the sense that a different sample could lead to an entirely different model with 

opposite conclusions. So such underlying assumptions have to be verified before 

attempting to regression modeling. One crucial point to keep in mind is that these 

assumptions are for the population, and we work only with a sample. So the main 

issue is to make a decision about the population on the basis of a sample of data. 

Several diagnostic methods to check the violation of regression assumption are based 

on the study of model residuals and also with the help of various types of graphics. 

4.1Estimation of Parameters in a Multiple Linear Regression (MLR) Model 

The method of least squares can be used to estimate the regression coefficients in Eq. 

(9). Suppose that 𝑛 > 𝑝 observations are available, and let 𝑦𝑖 denote the 𝑖th observed 

response and 𝑥𝑖𝑗 denote 𝑖th observation or level of regressor 𝑥𝑗. The data will appear 

in the following table 1. We also assume that the error term 𝜀  in the model has 

𝐸(𝜀) = 0 and 𝑉𝑎𝑟(𝜀) = 𝜎2, and the errors are uncorrelated. 

Table 1: Data for Multiple Linear Regression 

   Regressors  

Observation, 𝑖 Response, 𝑦 𝑥1 𝑥2 𝑥𝑝 

1 𝑦1 𝑥11 𝑥12 𝑥1𝑝 

2 𝑦2 𝑥21 𝑥22 𝑥2𝑝 
. . . . . 

. . . . . 

. . . . . 

𝑛 𝑦𝑛 𝑥𝑛1 𝑥𝑛2 𝑥𝑛𝑝 
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We may write the sample regression model corresponding to (9) as 

𝑦 = 𝛽0+𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀 

= 𝛽0 + ∑𝑝
𝑗=1 𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖 , ∀ 𝑖 = 1,2, … , 𝑛                                                                                                        

The least - squares function is then used to estimate the model parameters, which are 

obtained by minimizing the error sum of squares with respect to the parameters 

𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝. 

It is more convenient to deal with multiple regression models if they are expressed in 

matrix notation. This allows a very compact display of the model, data, and results. In 

matrix notation, we can express the multiple regression model as 

𝑦 = 𝑋𝛽 + 𝜀(14) 

Where 

𝑦 = [𝑦1 𝑦2 .  . . 𝑦𝑛   ]𝑋 = [1 𝑥11  ⋯ 𝑥1𝑝 1 𝑥21  ⋯ 𝑥2𝑝  ⋮ ⋮ ⋱ ⋮  1 𝑥𝑛1  ⋯ 𝑥𝑛𝑝 ]𝛽

= [𝛽0 𝛽1 .  . . 𝛽𝑝  ]𝜀 = [𝜀1 𝜀2 .  . . 𝜀𝑛  ] 

𝑦is a 𝑛 × 1 vector of responses 

𝑋is a 𝑛 × 𝑝 matrix of the regressor variables 

𝛽is a 𝑛 × 1 vector of unknown constants, and 

𝜀is a 𝑛 × 1 vector of random errors with 𝜀𝑖~𝑁𝐼𝐷(0, 𝜎2) 

We wish to find the vector of least-squares estimators, �̂�that minimizes 

𝑆(𝛽) = ∑𝑛
𝑖=1 𝜀𝑖

2 = 𝜀′𝜀 = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)                                                                           

Note that 𝑆(𝛽) may be expressed as 

𝑆(𝛽) = 𝑦′𝑦 − 𝛽′𝑋′𝑦 − 𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽 

= 𝑦′𝑦 − 2𝛽′𝑋′𝑦 + 𝛽′𝑋′𝑋𝛽(16) 

Since𝛽′𝑋′𝑦is a1 × 1matrix, or a scalar, and its transpose (𝛽′𝑋′𝑦)′ = 𝑦′𝑋𝛽is the same 

scalar. The least square estimators must satisfy 

𝜕𝑆

𝜕𝛽
= −2𝑋′𝑦 + 2𝑋′𝑋�̂� = 0 

Which simplifies  

𝑋′𝑋�̂� = 𝑋′𝑦 (17) 
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To solve the normal equations, multiply both sides of (iv) by the inverse of 𝑋′𝑋. Thus 

the least squares estimator of  

�̂� = (𝑋′𝑋)−1𝑋′𝑦(18) 

So, the vector of fitted values �̂�𝑖 corresponding to the observed value 𝑦𝑖 is 

�̂� = 𝑋�̂� = 𝑋(𝑋′𝑋)−1𝑋′𝑦(19) 

The difference between the observed value 𝑦𝑖 and the corresponding fitted values �̂�𝑖 

is the residual i.e., 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖. The 𝑛residuals may be conveniently written in matrix 

notation as 

𝑒 = 𝑦 − �̂�(20) 

3. Estimation of Error Term Variance (𝜎2) 

The variance 𝜎2 of the error terms 𝜀𝑖  in regression model needs to be estimated to 

know the variability of the probability distribution of 𝑦 . In addition, a variety of 

inferences concerning the regression function and the prediction of 𝑦  require an 

estimate of 𝜎2 . Denote by 𝑆𝑆𝐸 = ∑𝑛
𝑖=1 (𝑦𝑖 − �̂�𝑖)2 = ∑𝑛

𝑖=1 𝑟𝑖
2  , is  the residual 

sum of squares. Then an estimate of 𝜎2  is given by, 

�̂�2 =
𝑆𝑆𝐸

𝑛−𝑝
   (21) 

where 𝑝  is the total number of parameters involved in the model including the 

intercept term, if the model contains it. We also denote this quantity by MSE. 

3. Inferences in Linear Regression Models 

In multiple linear regression model, all variables may not be contributing significantly 

to the model. In other word, each of the parameters may not be significant. Therefore, 

these parameters must be tested whether they are significantly different from zero or 

not. That is, we test the null hypothesis (𝐻0)  against the alternative hypothesis 

(𝐻1)for a parameter 𝛽𝑖 (say) as follows: 

     𝐻0: 𝛽𝑖 = 0                                                                                                                      

𝐻1 : ≠ 0 

when 𝐻0: 𝛽𝑖 = 0is accepted we infer that there is no linear association between 𝑦 and 

𝑥𝑖. For normal error regression model, the condition 𝛽𝑖  implies even more than no 

linear association between 𝑦 and 𝑥𝑖 .  𝛽𝑖 = 0 for the normal error regression model 

implies not only that there is no linear association between 𝑦 and 𝑥𝑖 but also that there 

is no relation of any kind between 𝑦 and 𝑥𝑖, since the probability distribution of 𝑦are 

then identical at all levels of 𝑥𝑖. The test is based on 𝑡 test   
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𝑡 =
𝛽𝑖

𝑠(𝛽𝑖)
                             (23) 

where 𝑠(𝛽𝑖)  is the standard error of 𝛽𝑖and calculated as 𝑠(𝛽𝑖) = √
𝑀𝑆𝐸

∑𝑛
𝑖=1 (𝑥𝑖−𝑥)

2 

The decision rule with this test statistic when controlling level of significance at 𝛼  is  

 if |𝑡| ≤ 𝑡 (1 −
𝛼

2
; 𝑛 − 𝑝)   conclude 𝐻0,  

 if |𝑡| > 𝑡 (1 −
𝛼

2
; 𝑛 − 𝑝)  conclude 𝐻1. 

Similarly testing for other parameters can be carried out. 

3. Measures of Fitting (𝑅2) 

The overall fitting of a regression line can be judged by the 𝐹-statistic by carrying out 

an analysis of variance. If the 𝐹-statistic is significant, we say that our model is fitted 

well. However, there are times when the degree of linear association is of interest. A 

frequently used statistic is 𝑅2. We describe this descriptive measure to describe the 

degree of linear association between 𝑦 and 𝑥.  

Denote by 𝑇𝑆𝑆 = ∑𝑛
𝑖 (𝑦𝑖 − 𝑦)

2

, total sum of squares which measures the variation 

in the observation 𝑦𝑖 , or the uncertainty in predicting 𝑦 , when no account of the 

predictor variable 𝑥 is taken. Thus 𝑇𝑆𝑆 is a measure of uncertainty in predicting 𝑦 

when 𝑥  is not considered. Similarly, 𝑆𝑆𝐸  measures the variation in the 𝑦𝑖 when a 

regression model utilizing the predictor variable 𝑥 is employed. A natural measure of 

the effect of 𝑥 in reducing the variation in 𝑦, i.e., in reducing the uncertaintity in 

predicting 𝑦 , is to express the reduction in variation ( 𝑇𝑆𝑆 − 𝑆𝑆𝐸 = 𝑆𝑆𝑅  as a 

proportion of the total variation and it is denoted by   

  𝑅2 =
𝑆𝑆𝑅

𝑇𝑆𝑆
= 1 −

𝑆𝑆𝐸

𝑇𝑆𝑆
  (24) 

The measure 𝑅2  is called coefficient of determination and 0 ≤ 𝑅2 ≤ 1 . In practice 

𝑅2 is not likely to be 0 or 1 but somewhere between these limits. The closer it is to 1, 

the greater is said to be the degree of linear association between 𝑥 and 𝑦. Remember 

that 𝑅2 statistic should be used only when in the model an intercept term is involved. 

For the model with no intercept, 𝑅2is not a good statistic. In case of “no intercept” 

model, sum of all residuals may not be equal to 0, making 𝑅2 inflated.                                                                                                                                                                                                                                                                                                                                                                                                

3. An Illustration of a MLR model 

Consider the following data: 
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Table 2: 𝑦 as a response variable and 𝑥’s as explanatory variables 

Case 

No. 
𝑥1 𝑥2 𝑥3 𝑦  Case 

No. 
𝑥1 𝑥2 𝑥3 Y 

1 12.98 0.317 9.99 57.70 14 14.23 10.40 1.04 41.89 

2 14.29 2.028 6.77 59.29 15 15.22 1.220 6.14 63.26 

3 15.53 5.305 2.94 56.16 16 15.74 10.61 -1.91 45.79 

4 15.13 4.738 4.20 55.76 17 14.95 4.815 4.11 58.69 

5 15.3 7.038 2.05 51.72 18 14.12 3.153 8.45 50.08 

6 17.14 5.982 -0.0 60.44 19 16.39 9.698 -1.7 48.89 

7 15.46 2.737 4.65 60.71 20 16.45 3.912 2.14 62.21 

8 12.80 10.66 3.04 37.44 21 13.53 7.625 3.85 45.62 

9 17.03 5.132 0.25 60.97 22 14.19 4.474 5.11 53.92 

10 13.17 2.039 8.73 55.27 23 15.83 5.753 2.08 55.79 

11 16.12 2.271 2.10 59.28 24 16.56 8.546 8.97 56.74 

12 14.34 4.077 5.54 54.02 25 13.32 8.589 4.01 43.14 

13 12.92 2.643 9.33 53.19 26 15.94 8.290 -0.2 50.70 

In the present example, we have 3 three predictor variables 𝑥1, 𝑥2 and 𝑥3 and there 

are 26 observations. The response variable denoted by 𝑦 . Applying least square 

method we obtain the parameter estimates as follows:  

Table 3: ANOVA of a MLR model 

Source Degrees of 

freedom 

Sum of 

Square 

Mean 

Square 

 F-value Prob. > F 

Model 3 1062.34  354.11  109.69 <0.0001 

Error 22 71.02  3.22      

Corrected 

Total 

25 1133.37        
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Table 4: Parameter Estimates of a MLR model 

Variable Degrees of 

freedom 

Parameter 

Estimates 

Standard 

Error 

t-value Prob. > |t| 

Intercept 1 8.19  6.29  1.30 0.2060 

𝑥1 1 3.56  0.36  9.86 <.0001 

𝑥2 1 -1.64  0.15  -10.28 <.0001 

𝑥3 1 0.33  0.17  1.88 0.0741 

The value of 𝑅2of this model is 0.93. From Table 3, we see that 𝐹-statistic is highly 

significant, indicating that overall model fitting is good. 𝑅2 is also very high. The 

fitted regression line is   �̂� = 8.19 + 3.56𝑥1 − 1.64𝑥2 + 0.33𝑥3. The corresponding 

standard errors are given in the 4th column of Table 3. However, while testing the 

significance of the parameter estimates, we find that the intercept and the parameter 

for the variable 𝑥3, i.e.,  are not significant  at 5% level of significance (probability 

values for these parameters are greater than 0.05). 

3. Practical Applications of regression analysis 

Economics and Finance 

Predicting stock market returns based on various economic indicators. 

Analyzing the impact of interest rates on housing prices. 

Marketing and Consumer Behavior 

Understanding the factors influencing consumer purchasing decisions. 

Predicting sales based on advertising expenditure and market demographics. 

Healthcare and Medicine 

Assessing the relationship between risk factors and disease outcomes. 

Predicting patient outcomes based on treatment protocols and patient characteristics. 

Agriculture 

Crop Yield Prediction 

Soil Fertility Assessment 

Pest and Disease Management 

Livestock Production 

Economic Analysis and Market Forecasting, etc. 
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3. Conclusion 

Correlation serves as a fundamental tool for analyzing relationships and unveiling 

hidden associations in data. By understanding the concept, measuring techniques, 

types, and interpretation of correlation, we can gain valuable insights and make 

informed decisions across a wide range of fields. Embracing correlation empowers us 

to unlock the intricate connections underlying the phenomena we observe, fostering a 

deeper understanding of the complex world around us. 

Regression analysis serves as a versatile tool for understanding and predicting the 

relationship between variables. By comprehending the principles, assumptions, and 

types of regression analysis, we can harness its power to uncover patterns, make 

predictions, and inform decision-making across diverse fields. Embracing regression 

analysis empowers us to unravel the dynamics of complex systems, enabling us to 

navigate the intricacies of the world we inhabit with greater clarity and confidence. 
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OVERVIEW OF SURVEY SAMPLING  

Ankur Biswas 
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Ankur.Biswas@icar.gov.in 

1. Introduction 

The need to gather information arises in almost every conceivable sphere of human 

activity. Many of the questions that are subject to common conservation and 

controversy require numerical data for their resolution. The data collected and 

analyzed in an objective manner and presented suitably serve as a basis for taking 

policy decisions in different fields of daily life. 

The important users of statistical data, among others, include government, industry, 

business, research institutions, public organizations and international agencies and 

organizations. To discharge its various responsibilities, the government needs variety 

of information regarding different sectors of economy, trade, industrial production, 

health and mortality, population, livestock, agriculture, forestry, environment and 

available resources. The inferences drawn from the data help in determining future 

needs of the nation and also in tackling social and economic problems of people. For 

instance, the information on cost of living for different categories of people, living in 

various parts of the country is of importance in shaping its policies in respect of 

wages and price levels. Data on agricultural production are of immense use to the 

state for planning to feed the nation. In case of industry and business, the information 

is to be collected on labour, cost and quality of production, stock and demand and 

supply positions for proper planning of production levels and sales campaigns. 

1.1 Complete enumeration 

One way of obtaining the required information at regional and country level is to 

collect the data for each and every unit (person, household, field, factory, shop etc. as 

the case may be) belonging to the population which is the aggregate of all units of a 

given type under consideration and this procedure of obtaining information is termed 

as complete enumeration. The effort, money and time required for the carrying out 

complete enumeration to obtain the different types of data will, generally, be 

extremely large. However, if the information is required for each and every unit in the 

domain of study, a complete enumeration is clearly necessary. Examples of such 

situations are preparation of “voter list” for election purposes and recruitment of 

mailto:Ankur.Biswas@icar.gov.in
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personnel in an establishment, etc. But there are many situations, where only 

summary figures are required for the domain of study as a whole or for group of units. 

1.2 Need for sampling  

An effective alternative to a complete enumeration can be sample survey where only 

some of the units selected in a suitable manner from the population are surveyed and 

an inference is drawn about the population on the basis of observations made on the 

selected units. It can be easily seen that compared to sample survey, a complete 

enumeration is time-consuming, expensive, has less scope in the sense of restricted 

subject coverage and is subject to greater coverage, observational and tabulation 

errors. In certain investigations, it may be essential to use specialized equipment or 

highly trained field staff for data collection making it almost impossible to carry out 

such investigations. It is of interest to note that if a sample survey is carried out 

according to certain specified statistical principles, it is possible not only to estimate 

the value of the characteristic of the population as a whole on the basis of the sample 

data, but also to get a valid estimate of the sampling error of the estimate. There are 

various steps involved in the planning and execution of the sample survey. One of the 

principal steps in a sample survey relates to methods of data collection. 

1.3. Various concepts and definitions 

i. Element: 

An element is a unit about which we require information. For example, a field 

growing a particular crop is an element for collecting information on the yield of a 

crop. 

ii. Population  

The collection of all units of a specified type in a given region at a particular point or 

period of time is termed as a population or universe. Thus, we may consider a 

population of persons, families, farms, cattle in a region or a population of trees or 

birds in a forest or a population of fish in a tank etc. depending on the nature of data 

required. 

iii. Sampling unit  

Elementary units or group of such units which besides being clearly defined, 

identifiable and observable, are convenient for the purpose of sampling are called 

sampling units. For instance, in a family budget enquiry, usually a family is 

considered as the sampling unit since it is found to be convenient for sampling and for 
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ascertaining the required information. In a crop survey, a farm or a group of farms 

owned or operated by a household may be considered as the sampling unit. 

iv. Sampling frame  

A list of all the sampling units belonging to the population to be studied with their 

identification particulars or a map showing the boundaries of the sampling units is 

known as sampling frame. Examples of a frame are a list of farms and a list of 

suitable area segments like villages in India or counties in the United States. The 

frame should be up to date and free from errors of omission and duplication of 

sampling units.  

v. Random sample  

One or more sampling units selected from a population according to some specified 

procedures are said to constitute a sample. The sample will be considered as random 

or probability sample, if its selection is governed by ascertainable laws of chance. In 

other words, a random or probability sample is a sample drawn in such a manner that 

each unit in the population has a predetermined probability of selection. For example, 

if a population consists of the N sampling unitsU1,U2,…,Ui,…,UN then, we may select 

a sample of n units by selecting them unit by unit with equal probability for every unit 

at each draw with or without replacing the sampling units selected in the previous 

draws. 

vi. Non-random sample  

A sample selected by a non-random process is termed as non-random sample. A non-

random sample, which is drawn using certain amount of judgment with a view to get 

a representative sample, is termed as judgment or purposive sample. In purposive 

sampling units are selected by considering the available auxiliary information more or 

less subjectively with a view to ensuring a reflection of the population in the sample. 

This type of sampling is seldom used in large-scale surveys mainly because it is not 

generally possible to get strictly valid estimates of the population parameters under 

consideration and of their sampling errors due to the risk of bias in subjective 

selection and the lack of information on the probabilities of selection of the units. 

vii. Population parameters  

Suppose a finite population consists of the N units U1,U2,…,UN and let Yi be the 

value of the variable y, the characteristic under study, for the ith unit Ui, (i=1,2,…,N). 

For instance, the unit may be a farm and the characteristic under study may be the 

area under a particular crop. Any function of the values of all the population units is 
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known as a population parameter or simply a parameter. Some of the important 

parameters usually required to be estimated in surveys are population total and 

population mean.  

viii. Statistic, estimator and estimate 

Suppose, a sample of n units is selected from a population of N units, according to 

some probability scheme and let, the sample observations be denoted by y1,y2,…,yn. 

Any function of these values which is free from unknown population parameters is 

called a statistic.An estimator is a statistic obtained by a specified procedure for 

estimating a population parameter. The estimator is a random variable and its value 

differs from sample to sample and the samples are selected with specified 

probabilities. The particular value, which the estimator takes for a given sample, is 

known as an estimate. 

ix. Sampling and non-sampling error 

The error arises due to drawing inferences about the population on the basis of 

observations on a part (sample) of it, is termed sampling error. The sampling error is 

non-existent in a complete enumeration survey since the whole population is 

surveyed. On the contrary, the errors other than sampling errors such as those arising 

through non-response, in- completeness and inaccuracy of response are termed non-

sampling errors and are likely to be more wide-spread and important in a complete 

enumeration survey than in a sample survey. Non-sampling errors arise due to various 

causes right from the beginning stage when the survey is planned and designed to the 

final stage when the data are processed and analyzed. 

The sampling error usually decreases with increase in sample size (number of units 

selected in the sample) while the non-sampling error is likely to increase with increase 

in sample size. 

As regards the non-sampling error, it is likely to be more in the case of a complete 

enumeration survey than in the case of a sample survey since it is possible to reduce 

the non-sampling error to a great extent by using better organization and suitably 

trained personnel at the field and tabulation stages in the latter than in the former. 

2. Simple Random Sampling 

Simple random sampling (SRS) can be regarded as the basic form of probability 

sampling applicable to situations where there is no previous information available on 

the population structure. Simple random sampling is a method of selecting n units out 
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of the N such that every one of the 








n

N
 distinct samples has an equal chance of 

being drawn. In practice a simple random sample is drawn unit by unit. The units in 

the population are numbered from 1 to N. A series of random numbers between 1 and 

N is then drawn, either by means of a table of random numbers or by means of a 

computer program that produces such a table. At any draw the process used must give 

an equal chance of selection to any number in the population not already drawn. The 

units that bear these numbers constitute the sample. Since a number that has been 

drawn is removed from the population for all subsequent draws, this method is also 

called random sampling without replacement. In case of a random sampling with 

replacement, at any draw all N members of the population are given an equal chance 

of being drawn, no matter how often they have already been drawn. The with-

replacement assumption simplifies the estimation under complex sampling designs 

and is often adopted, although in practice sampling is usually carried out under a 

without replacement type scheme. Obviously, the difference between with 

replacement and without replacement sampling becomes less important when the 

population size is large and the sample size is noticeably smaller than it. 

2.1 Procedure of selecting a random sample 

Since probability sampling theory is based on the assumption of random sampling, the 

technique of random sampling is of basic significance. Some of the procedures used 

for selecting a random sample are as follows: 

i) Lottery method 

ii) Use of random number tables 

i) Lottery Method:  

Each unit in the population may be associated with a chit/ticket such that each 

sampling unit has its identification mark from 1 to N. All the chits are placed in a 

container, drum or metallic spherical device, in which a thorough mixing is possible 

before each draw. Chits may be drawn one by one and may be continued until a 

sample of the required size is obtained. When the size of population is large, this 

procedure of numbering units on chits and selecting one after reshuffling becomes 

cumbersome. In practice, it may be too difficult to achieve a thorough shuffling. 

Human bias and prejudice may also creep in this method. 
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ii) Use of Random Number Tables: 

A random number table is an arrangement of digits 0 to 9, in either a linear or 

rectangular pattern where each position is filled with one of these digits. A Table of 

random numbers is so constructed that all numbers 0, 1, 2,…,9 appear independent of 

each other. Some random number tables in common use are: 

 Tippett's  random number Tables 

 Fisher and Yates Tables 

 Kendall and Smith Tables 

 A million random digits Table 

A practical method of selecting a random sample is to choose units one-by-one with 

the help of a Table of random numbers. By considering two-digit numbers, we can 

obtain numbers from 00 to 99, all having the same frequency. Similarly, three or more 

digit numbers may be obtained by combining three or more rows or columns of these 

Tables. The simplest way of selecting a sample of the required size is to select a 

random number from 1 to N and then taking the unit bearing that number. This 

procedure involves a number of rejections since all numbers greater than N appearing 

in the Table are not considered for selection. The procedure of selection of sample 

through the use of random numbers is, therefore, modified and one of these modified 

procedures is: 

 Remainder Approach:  

Let N be an r-digit number and let its r-digit highest multiple be N'. A random number 

k is chosen from 1 to N' and the unit with serial number equal to the remainder 

obtained on dividing k by N is selected, i.e. the selected number is reduced mod (N). 

If the remainder is zero, the last unit is selected. As an illustration, let N = 123, then 

highest three-digit multiple of 123 is 984. For selecting a unit, one random number 

from 001 to 984 has to be selected. Let the random number selected be 287. Dividing 

287 by 123 gives the remainder as 41. Hence, the unit with serial number 41 is 

selected in the sample. Suppose that another random number selected is 245. Dividing 

245 by 123 leaves 122 as remainder. So the unit bearing the serial number 122 is 

selected. Similarly, if the random number selected is 369, then dividing 369 by 123 

leaves remainder as 0. So the unit bearing serial number 123 is selected in the sample.  
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2.2 Estimation of Population Total 

Let Y be the character of interest and 1 2 i NY ,Y , ,Y , ,Y  be the values of the 

character fromN units of the population. Further, let  be the sample 

of size n selected by simple random sampling without replacement. For the total 

 we have an estimator 

 

i.e., the sample mean  multiplied by the population size N. 

The estimator can be expressed as 

 

, where 
 

 

The constant  is the sampling weight and is the inverse of the sampling fraction 

 

The estimator has the statistical property of unbiasedness in relation to the sampling 

design. Variance of the estimator of the population total is given by 

  

where  is the population mean and  is the 

population mean square. 

An unbiased estimator of variance of the estimator  of the total, VSRS( ) is given 

by  

 

where  is the sample mean and s2 is an unbiased estimator of the 

population mean square S2. 

3. Use of Auxiliary Information 

In sampling theory if the auxiliary information, related to the character under study, is 

available on all the population units, then it may be advantageous to make use of this 
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additional information in survey sampling. One way of using this additional 

information is in the sample selection with unequal probabilities of selection of units. 

The knowledge of auxiliary information may also be exploited at the estimation stage. 

The estimator can be developed in such a way that it makes use of this additional 

information. Ratio estimator, difference estimator, regression estimator, generalized 

difference estimators are the examples of such estimators. Obviously, it is assumed 

that the auxiliary information is available on all the sampling units. In case the 

auxiliary information is not available then it can be obtained easily without much 

burden on the cost. 

Another way the auxiliary information can be used is at the stage of planning of 

survey. An example of this is the stratification of the population units by making use 

of the auxiliary information. 

4. Sampling with Varying Probability 

Under certain circumstances, selection of units with unequal probabilities provides 

more efficient estimators than equal probability sampling, and this type of sampling is 

known as unequal or varying probability sampling. In the most commonly used 

varying probability sampling scheme, the units are selected with probability 

proportional to a given measure of size (PPS) where the size measure is the value of 

an auxiliary variable x related to the characteristic y under study and this sampling 

scheme is termed as probability proportional to size sampling. For instance, the 

number of persons in some previous period may be taken as a measure of the size in 

sampling area units for a survey of socio-economic characters, which are likely to be 

related to population. Similarly, in estimating crop characteristics the geographical 

area or cultivated area for a previous period, if available, may be considered as a 

measure of size, or in an industrial survey, the number of workers may be taken as the 

size of an industrial establishment. 

Since a large unit, that is, a unit with a large value for the study variable y, contributes 

more to the population total than smaller units, it is natural to expect that a scheme of 

selection which gives more chance of inclusion in a sample to larger units than to 

smaller units would provide estimators more efficient than equal probability 

sampling. Such a scheme is provided by pps sampling, size being the value of an 

auxiliary variable x directly related to y. It may appear that such a selection procedure 

would give biased estimators as the larger units are over-represented and the smaller 

units are under-represented in the sample. This would be so, if the sample means is 
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used as an estimator of population mean. Instead, if the sample observations are 

suitably weighted at the estimation stage taking into consideration their probabilities 

of selection, it is possible to obtain unbiased estimators. Mahalanobis (1938) has 

referred to this procedure in the context of sampling plots for a crop survey and this 

procedure has been discussed in detail by Hansen and Hurwitz (1943). 

5. Stratified Random Sampling 

The basic idea in stratified random sampling is to divide a heterogeneous population 

into sub-populations, usually known as strata, each of which is internally 

homogeneous in which case a precise estimate of any stratum mean can be obtained 

based on a small sample from that stratum and by combining such estimates, a precise 

estimate for the whole population can be obtained. Stratified sampling provides a 

better cross section of the population than the procedure of simple random sampling. 

It may also simplify the organization of the field work. Geographical proximity is 

sometimes taken as the basis of stratification. The assumption here is that 

geographically contiguous areas are often more alike than areas that are far apart. 

Administrative convenience may also dictate the basis on which the stratification is 

made. For example, the staff already available in each range of a forest division may 

have to supervise the survey in the area under their jurisdiction. Thus, compact 

geographical regions may form the strata. If the characteristic under study is known to 

be correlated with a supplementary variable for which actual data or at least good 

estimates are available for the units in the population, the stratification may be done 

using the information on the supplementary variable. For instance, the volume 

estimates obtained at a previous inventory of the forest area may be used for 

stratification of the population. 

In stratified sampling, the variance of the estimator consists of only the ‘within strata’ 

variation. Thus the larger the number of strata into which a population is divided, the 

higher, in general, the precision, since it is likely that, in this case, the units within a 

stratum will be more homogeneous. For estimating the variance within stratum, there 

should be a minimum of 2 units in each stratum. The larger the number of strata the 

higher will, in general, be the cost of enumeration. So, depending on administrative 

convenience, cost of the survey and variability of the characteristic under study in the 

area, a decision on the number of strata will have to be arrived at.  



  

 
 

109 

6. Cluster Sampling 

A sampling procedure presupposes division of the population into a finite number of 

distinct and identifiable units called the sampling units. The smallest units into which 

the population can be divided are called the elements of the population, and group of 

elements the clusters. A cluster may be a class of students or cultivators’ fields in a 

village. When the sampling unit is a cluster, the procedure of sampling is called 

cluster sampling.  

For many types of population a list of elements is not available and the use of an 

element as the sampling unit is, therefore, not feasible. The method of cluster or area 

sampling is available in such cases. Thus, in a city a list of all the houses may be 

available, but that of persons is rarely so. Again, list of farms are not available, but 

those of villages or enumeration districts prepared for the census are. Cluster 

sampling is, therefore, widely practiced in sample surveys. 

For a given number of sampling units cluster sampling is more convenient and less 

costly than simple random sampling due to the saving time in journeys, identification 

and contacts etc., but cluster sampling is generally less efficient than simple random 

sampling due to the tendency of the units in a cluster to be similar. In most practical 

situations, the loss in efficiency may be balanced by the reduction in the cost and the 

efficiency per unit cost may be more in cluster sampling as compares to simple 

random sampling. 

7. Multistage Sampling 

Cluster sampling is a sampling procedure in which clusters are considered as 

sampling units and all the elements of the selected clusters are enumerated. One of the 

main considerations of adopting cluster sampling is the reduction of travel cost 

because of the nearness of elements in the clusters. However, this method restricts the 

spread of the sample over population which results generally in increasing the 

variance of the estimator. In order to increase the efficiency of the estimator with the 

given cost it is natural to think of further sampling the clusters and selecting more 

number of clusters so as to increase the spread of the sample over population. This 

type of sampling which consists of first selecting clusters and then selecting a 

specified number of elements from each selected cluster is known as sub-sampling or 

two stage sampling, since the units are selected in two stages. In such sampling 

designs, clusters are generally termed as first stage units (fsu’s) or primary stage units 

(psu’s) and the elements within clusters or ultimate observational units are termed as 
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second stage units (ssu’s) or ultimate stage units (usu’s). It may be noted that this 

procedure can be easily generalized to give rise to multistage sampling, where the 

sampling units at each stage are clusters of units of the next stage and the ultimate 

observational units are selected in stages, sampling at each stage being done from 

each of the sampling units or clusters selected in the previous stage. This procedure, 

being a compromise between uni-stage or direct sampling of units and cluster 

sampling, can be expected to be (i) more efficient than uni-stage sampling and less 

efficient than cluster sampling from considerations of operational convenience and 

cost, and (ii) less efficient than uni-stage sampling and more efficient than cluster 

sampling from the view point of sampling variability, when the sample size in terms 

of number of ultimate units is fixed. 

It may be mentioned that multistage sampling may be the only feasible procedure in a 

number of practical situations, where a satisfactory sampling frame of ultimate 

observational units is not readily available and the cost of obtaining such a frame is 

prohibitive or where the cost of locating and physically identifying the usu’s is 

considerable. For instance, for conducting a socio-economic survey in a region, where 

generally household is taken as the usu, a complete and up-to-date list of all the 

households in the region may not be available, whereas a list of villages and urban 

blocks which are group of households may be readily available. In such a case, a 

sample of villages or urban blocks may be selected first and then a sample of 

households may be drawn from each selected village and urban block after making a 

complete list of households. It may happen that even a list of villages is not available, 

but only a list of all tehsils (group of villages) is available. In this case a sample of 

households may be selected in three stages by selecting first a sample of tehsils, then 

a sample of villages from each selected tehsil after making a list of all the villages in 

the tehsil and finally a sample of households from each selected village after listing 

all the households in it. Since the selection is done in three stages, this procedure is 

termed as three stage sampling. Here, tehsils are taken as first stage units (fsu’s), 

villages as second stage units (ssu’s) and households as third or ultimate stage units 

(tsu’s).  

8. Systematic Sampling 

In all other sampling methods, the successive units (whether elements or clusters) are 

selected with the help of random numbers. But a method of sampling in which only 

the first unit is selected with the help of random number while the rest of the units are 
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selected according to a pre-determined pattern, is known as systematic sampling. The 

systematic sampling has been found very useful in forest surveys for estimating the 

volume of timber, in fisheries surveys for estimating the total catch of fish, in milk 

yield surveys for estimating the lactation yield etc.   

9. Conclusion 

Simple random sampling and probability proportional size designs are most important 

uni-stage design. In most of the practical situations, complex sampling designs are 

utilized on the basis of these uni-stage sampling designs. Stratified random sampling, 

multistage sampling, multiphase sampling, etc. are efficient complex designs widely used 

in agricultural and socio-economic surveys. 
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1. Introduction 

Growth is defined as "an irreversible increase in size and volume that occurs as a 

result of differentiation and distribution in the plant/animal." A model is a schematic 

representation of a system's conception, an act of mimicry, or a set of equations that 

represents a system's behaviour. A model is also defined as "a representation of an 

object, system, or idea in a form other than that of the entity itself." Its purpose is 

typically to aid in the explanation, comprehension, or improvement of a system's 

performance. 

TYPES OF MODELS 

Models are classified into different groups or types based on the purpose for which 

they are designed. Among them are a few: 

a. Statistical models: These models describe the relationship between. Relationships 

are measured in a system using statistical techniques in these models. Example: 

regression model, Time series model, etc. 

b. Mechanistic models: These models explain not only the relationship between 

variables, but also how these models work (explains the relationship of influencing 

dependent variables). Physical selection is the basis for these models. 

c. Deterministic models: The exact value of the dependent variable is estimated using 

these models. These models have defined coefficients as well. 

d. Stochastic models: Each output has a probability element attached to it. Different 

outputs, along with probabilities, are provided for each set of inputs. At a given rate, 

these models define the state of the dependent variable. 

e. Dynamic models: Time is accounted for as a variable. Both dependent and 

independent variables have values that remain constant over a given time period. 

f. Static: Time is not considered a variable. Dependent and independent variables with 

values that remain constant over time. 

g. Simulation models: In general, computer models are mathematical representations 

of real-world systems. Crop simulation models' primary goal is to estimate 
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113 

agricultural production as a function of weather and soil conditions, as well as crop 

management. These models employ one or more sets of differential equations to 

compute rate and state variables over time, typically from planting to harvest maturity 

or final harvest. 

Statistical Modelling 

A fundamental problem in statistics is developing models based on a sample of 

observations and making inferences based on the model. Huge amounts of data 

pertaining to crop production/productivity, import-export of various agricultural 

commodities, and so on are being collected sequentially over time in almost all 

branches of agriculture, including animal sciences and fisheries. One feature of such 

data is that successive observations are dependent on one another. Each observation 

of the observed data series, Yt,may be considered as a realization of a stochastic 

process {Yt}, which is a family of random variables {Yt, t  T}, where T = { 0, 1, 2, 

…}, and apply standard time-series approach to develop an ideal model which will 

adequately represent the set of realizations and also their statistical relationships in a 

satisfactory manner. Forecasting of time-series data is critical for planners and 

policymakers. Over the last few decades, a new field known as "Nonlinear time-series 

modelling" has emerged. There are essentially two approaches available here: 

parametric or nonparametric. Obviously, we should use the former if we are certain 

about the functional form in a given situation; otherwise, the latter may be used. 

Parametric and Nonparametric Approaches 

Regression analysis has grown in popularity as a tool for statistical modelling and 

data analysis over the last several decades. This information describes the relationship 

between a response variable and one or more predictor variables. The primary goal is 

to express the mean of the response as a function of the predictor variables. The 

general regression model takes the following form: 

                                    Y    =   m (X) +   

Where Y is the response variable, m(X) = E (Y| X) is the mean response or regression 

function and   is the error. The regression function m(X) is usually unknown and the 

objective is to obtain a suitable estimator of m(X) using a sample of observations. 

 In the linear regression, it is assumed that the mean of the response variable Y is a 

linear function of predictor variable(s) X of the form  

                                    E (Y| X)   =  X 
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i.e. m (X) is linear in parameters. The parameter vector  is usually estimated by the 

Method of least squares. In nonlinear regression, it is assumed that the mean of the 

response variable is a nonlinear function of the predictor variable (s) X of the form 

E(Y|X)=m(X,) 

i.e.m(X) is nonlinear in parameters. Generally, there will be no closed form expression 

for the estimates of  and iterative procedures are required for estimation of 

parameters.  

A parametric regression model (linear or nonlinear) assumes that the form of m is 

known with the exception of some unknown parameters, and that the shape of the 

regression function is entirely dependent on the parameters. It is frequently difficult to 

guess the most appropriate functional form simply by looking at the data. There may 

be times when no suitable parametric form exists to express the regression function. 

In such cases, the nonparametric regression approach is very useful because it does 

not require strong assumptions about the shape of the regression function. A 

nonparametric regression model only assumes that m is part of an infinitely large 

collection of functions. One limitation of the preceding approach is that it generally 

relies on certain assumptions about the smoothness of the function being estimated, 

which may or may not be true in practice. As a result, the data under consideration 

may be over smoothed. 

LINEAR MODEL 

A mathematical model is an equation or set of equations that represents a system's 

behaviour. It can be 'linear' or 'nonlinear.' A linear model is one in which all of the 

parameters appear linearly.  

NONLINEAR MODELS  

Any type of statistical investigation in which principles from a body of knowledge are 

seriously considered in the analysis is likely to result in a 'Nonlinear model.' Such 

models are critical in understanding the complex interrelationships between variables. 

A ‘nonlinear model’ is one in which at least one of the parameters appears 

nonlinearly. More formally, in a ‘nonlinear model’, at least one derivative with 

respect to a parameter should involve that parameter.  

• Examples of a nonlinear model are: 

  Y(t) = exp (at+bt2)                                               (1a)          

  Y(t) = at + exp (bt)                                           (1b) 



  

 
 

115 

 

Note. Some authors use the term ‘intrinsically nonlinear’ to   indicate a nonlinear 

model which can be transformed to a linear model by means of some transformation.  

For example, the model given by Eq. (1a) is ‘intrinsically nonlinear’ in view of the 

transformation X(t) = loge Y(t). 

a. MALTHUS MODEL:  

Thomas R. Malthus, an Englishman, proposed a mathematical model of population 

growth in 1798. Despite its simplicity, the model has become the foundation for most 

future modelling of biological populations. His essay, "An Essay on the Principle of 

Population," contains an excellent discussion of the limitations of mathematical 

modelling and should be required reading for all serious students of the subject. 

Malthus observed that, if not restrained by environmental or social constraints, human 

populations appeared to double every twenty-five years, regardless of initial 

population size. In other words, he proposed that populations increased by a fixed 

proportion over a given period of time and that, in the absence of constraints, this 

proportion was unaffected by population size. According to Malthus, if a population 

of 100 people increased to a population of 135 people over the course of, say, five 

years, then a population of 1000 people would increase to 1350 people over the same 

period of time. Malthus' model is an example of a one-variable, one-parameter model. 

The quantity we are interested in observing is referred to as a variable. They typically 

evolve over time. Parameters are quantities known to the modeller before the model is 

built. They are frequently constants, though a parameter can change over time. The 

variable in the Malthusian model is population, and the parameter is population 

growth rate. 

If N(t) denotes the population size or biomass at time t and r is the intrinsic growth 

rate, then the rate of growth of population size is given by 

dN/dt = rN  

Therefore,  N(t) = Noexp (rt) 

Note : Malthus model can be used for describing growth of simplistic organisms, 

which begin to grow by binary splitting of cells. 

 Drawback:N(t) as t, which cannot happen in reality. 

Malthus predicted that unchecked population growth would quickly outstrip carrying 

capacity, resulting in overpopulation and social problems. 
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a. MONOMOLECULAR MODEL:  

Because the monomolecular model assumes a carrying capacity of one, which means 

that the maximum level of disease is one, disease severity or incidence is measured as 

a proportion. Plant tissue that is diseased may only have a value between zero 

(healthy) and one (complete disease).It also assumes the absolute rate of change is 

proportional to the healthy tissue i.e., (1-y).  

It describes growth progress in which it is assumed that the rate of growth at any point 

in time is proportional to the resources yet to be obtained, i.e. 

 dN/dt = r(KN),                     

 where K is the carrying capacity. 

or   N(t) = K (KNo) exp (rt) 

Drawback: No point of inflexion.  

a. LOGISTIC MODEL:  

Logistic model was developed by Belgian mathematician Pierre Verhulst (1838) who 

suggested that the rate of population increase may be limited, i.e., it may depend on 

population density. Population growth rate declines with population numbers, N, and 

reaches 0 when N = K. Parameter K is the upper limit of population growth and it is 

called carrying capacity. It is commonly interpreted as the amount of resources 

expressed in the number of organisms that these resources can support. If the 

population exceeds K, the population growth rate becomes negative and the 

population decreases. 

The differential equation represents this model: 

dN/dt = rN (1N/K)    (1) 

Therefore, N(t) = K/[1+(K/No1) exp(rt)]. The graph of N(t) versus t is elongated S-

shaped and the curve is symmetrical about its point of inflexion. 

a. GOMPERTZ MODEL 

This is another model with sigmoid behaviour that has been found to be quite useful 

in biological work. Benjamin Gompertz developed the Gompertz curve to estimate 

human mortality (Gompertz, B. "On the Nature of the Function Expressive of the Law 

of Human Mortality, and on a New Mode of Determining the Value of Life 

Contingencies." Phil. Trans. Roy. Soc. London 123, 513-585, 1832). An early 

description of the use of this equation to describe growth processes is given by 
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CharlesWinsor (1932). However, unlike the logistic model, this does not have a 

symmetric point of inflexion. 

This model's differential equation is 

dN/dt = rN loge (K/N)                                               (2) 

or   N(t) = K exp[loge (No / K) exp(rt)] 

a. RICHARDS MODEL:  

The Richards curve, also known as generalised logistic, is a popular growth model 

that can fit a wide range of S-shaped growth curves. Both 4 and 5 parameter versions 

are commonly used. The logistic curve is symmetrical about its point of inflection. 

Richards (1959) introduced an additional parameter to deal with asymmetrical growth 

curves. 

This model is given by  

                    .                               (4)                        

However, unlike the earlier models, this model has four parameters. 

Drawback. Number of parameters is more.  

a. MIXED-INFLUENCE MODEL:  

This is a mixture of      ‘Monomolecular’ and ‘Logistic’ Models. It  is  given  by  

 dN/dt = r (K-N) +s N (1-N/K),                       

FITTING OF NONLINEAR MODELS 

The models presented above have been posed deterministically. This is obviously 

unrealistic, so we replace these deterministic models with statistical models by 

including an error term on the right hand side and making appropriate assumptions 

about them. This produces a 'Nonlinear statistical model.' The 'Method of least 

squares' can be used to estimate parameters in non-linear regression, just as it can in 

linear regression. However, minimising the residual sum of squares produces normal 

equations with nonlinear parameters. Because exact solutions to nonlinear equations 

are not possible, iterative procedures are used to obtain approximate analytic 

solutions. 

• Four main methods of this kind are:  

            i) Linearization (or Taylor Series) method 

           ii) Steepest Descent method 

          iii) Levenberg-Marquardt’s method 

iv) Do not use Derivatives method 

   t m m 1/m
o o oN  = K N /[N +( K -N ) exp -rt ]
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Draper and Smith discuss the specifics of these methods, as well as their benefits and 

drawbacks (1998). Neither the Linearization nor the Steepest descent methods are 

perfect. The Levenberg-Marquardt method is the most widely used method for 

computing nonlinear least squares estimates. This method is a compromise between 

the other two methods, successfully combining the best features of both while 

avoiding their significant disadvantages. It's good because it almost always converges 

and doesn't' slow down' at the end of the iterative process. 

CHOICE OF INITIAL VALUES   

All nonlinear estimation procedures require initial parameter values, and selecting 

good initial values is critical. There is, however, no standard procedure for obtaining 

preliminary estimates. The use of prior information is the most obvious method for 

making initial guesses. Estimates based on previous experiments, known values for 

similar systems, and values derived from theoretical considerations all combine to 

form ideal first guesses. 

 Some other methods are:  

(i) Linearization:  

After ignoring the error term, check the form of the model to see if it could be 

transformed into a linear form by means of some transformation. In such cases, linear 

regression can be used to obtain initial values.  

(ii) Solving a system of equations: 

If there are p parameters, substitute for p sets of observations into the model ignoring 

the error. Solve these equations for the parameters, if possible. Widely separated xi 

often work best. 

R code 

Monomolecular growth model 

z=read.csv(file.choose(), header=TRUE) 

head(z) 

kk=data.frame(z) 

grz1=nls(y~k-(k-y0)*exp(-r*t),data=kk,  start=list(k=1 ,y0=0.03,r=0.1)) 

summary(grz1) 

 fitted=kk$y-resid(grz1) 

kkk=data.frame(fitted) 

MSE.nn<- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors<- c("blue","red") 
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plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,1),axes=FALSE, ann=FALSE) 

axis(1, at=1:20, lab=c(0:19)) 

axis(2, las=1, at=0.2*0:5) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, 

lty=1:2); 

zz=resid(grz1) 

predicted= 0.99651-(0.99651-0.08844)*exp(-0.26727*20) 

Gompertz model 

z=read.csv(file.choose(), header=TRUE) 

 head(z) 

 kk=data.frame(z) 

gr1=nls(y~k*exp(log(y0/k)* exp(-r*t)),data=kk,  start=list(k=50,y0=11.72,r=0.1)) 

summary(gr1) 

fitted=kk$y-resid(gr1) 

kkk=data.frame(fitted) 

MSE.nn<- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors<- c("blue","red") 

plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,35),axes=FALSE, ann=FALSE) 

axis(1, at=1:38, lab=c(0:37)) 

axis(2, las=1, at=5*0:8) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, 

lty=1:2); 

logistic model 

z=read.csv(file.choose(), header=TRUE) 
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 head(z) 

 kk=data.frame(z) 

gr2=nls(y~k/(1+(k/y0-1)* exp(-r*t)), data=kk,  start=list(k=50,y0=11.72,r=0.1)) 

summary(gr2) 

fitted=kk$y-resid(gr2) 

kkk=data.frame(fitted) 

MSE.nn<- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors<- c("blue","red") 

plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,35),axes=FALSE, ann=FALSE) 

axis(1, at=1:38, lab=c(0:37)) 

axis(2, las=1, at=5*0:8) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, 

lty=1:2); 
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LOGIT AND PROBIT ANALYSIS 

Himadri Shekhar Roy 
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himadri.roy@icar.gov.in   

 

1. Introduction 

Regression analysis is a technique used to examine the relationships between 

variables. These relationships are expressed through equations or models that connect 

a response or dependent variable with one or more explanatory or predictor variables. 

Typically, the variables involved in regression analysis are quantitative in nature. The 

estimation of parameters in this type of analysis relies on four key assumptions. The 

first assumption is that the response variable is linearly related to the explanatory 

variables. In other words, there is a linear relationship between the dependent variable 

and the predictors. The second assumption is that the errors in the model are 

independently and identically distributed, following a normal distribution with a mean 

of zero and a common variance. This assumption ensures that the errors are random 

and have a consistent distribution. The third assumption assumes that the explanatory 

variables are measured without any errors. This means that the predictor variables are 

accurate and reliable. The last assumption relates to the equal reliability of 

observations. It assumes that each observation used in the analysis is equally reliable 

and contributes equally to the analysis. In cases where the response variable in the 

model is qualitative, instead of directly modeling the response variable itself, 

probabilities of belonging to different categories can be modelled using the same 

regression framework. However, this approach comes with additional constraints and 

assumptions for multiple regression models. The first constraint is that probabilities 

range between 0 and 1, while the right-hand side function in multiple regression 

models is unbounded. This means that adjustments need to be made to ensure that the 

predicted probabilities remain within the valid range. The second constraint is related 

to the error term of the model. In this case, the error term can only take limited values, 

and the variance of the errors is not constant but depends on the probability of the 

response variable falling into a particular category. There are several notable 

references available that provide a comprehensive overview of logistic regression, 

such as the works of Fox (1984) and Klienbaum (1994). For Probit analysis, a useful 

resource is Finney (1971). 

mailto:himadri.roy@icar.gov.in
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2. Assumptions of Linear Regression Model if Response is Qualitative                                                                                                                               

To illustrate the limitations of using linear regression when the response variable is 

qualitative, let's examine a simple linear regression model that involves a single 

predictor variable and a binary response variable. 

              , i = 1, 2, …, n     

where, the outcome Yi is binary (taking values 0,1),  ,   and   are 

independent and n is the number of observations.  

Let   denote the probability that Yi =1 when Xi = x, i.e. 

                                                                                 

thus          .                     

Under the assumption , the expected value of the response variable is  

 

If the response is binary, then the error terms   can take on two values, namely, 

                            when Yi =1 

                            when Yi =0 

Because the error is dichotomous (discrete), normality assumption is violated. 

Moreover, the error variance is given by: 

                                   

It can be seen that variance is a function of   and it is not constant. Therefore, the 

assumption of homoscedasticity (equal variance) does not hold. 

3. Logistic regression 

3.1 Binary Logistic regression 

Logistic regression is often recommended when the multivariate normality 

assumption is not met by the independent variables and the response variable is 

qualitative. This situation, where the response variable is qualitative and the 

independent variables include a mix of categorical and continuous variables, is 

commonly encountered in statistical applications such as agriculture and medical 

science. The binary logistic regression model, developed by researcher Cox in the late 

1950s, is the preferred statistical model for analysing binary (dichotomous) responses. 

Agricultural data often exhibit sigmoidal or elongated S-shaped curves, making 

i 0 1 i iY =β +β X +ε

2
i εε ~ N (0,σ )

iπ

i i i iπ = P(Y =1|X = x) = P(Y =1)
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logistic regression models more appropriate. These models can capture non-linear 

relationships between the response variable and the qualitative and quantitative factors 

that influence it. Logistic regression addresses similar questions as discriminant 

function analysis and multiple regression, but it does not rely on distributional 

assumptions for the predictors. In other words, the predictors do not need to follow a 

normal distribution, the relationship between the response and predictors can be non-

linear, and the observations do not need to have equal variance in each group. For a 

comprehensive understanding of logistic regression, informative resources can be 

found in the works of Fox (1984) and Kleinbaum (1994). 

The issue of non-normality and heteroscedasticity, as discussed in section 2, renders 

least square estimation unsuitable for the linear probability model. When attempting 

to use weighted least square estimation as an alternative, the resulting fitted values 

may not be constrained within the interval (0, 1), making them inappropriate for 

interpretation as probabilities. Furthermore, there is a possibility of negative error 

variances arising. To address this problem, one solution is to constrain the values of π 

(the response variable) to the unit interval while still maintaining the linear 

relationship between π and the regressor X within that interval. By doing so, we can 

ensure that the predicted values of π remain within the valid range of probabilities.  

                

 

However, this constrained linear probability model has certain unattractive features 

such as abrupt changes in slope at the extremes 0 and 1 making it hard for fitting the 

same on data. A smoother relation between π and X is generally more sensible. To 

correct this problem, a positive monotone (i.e. non-decreasing) function is required to 

transform (β0 + β1xi) to unit interval. Any cumulative probability distribution function 

(CDF) P, meets this requirement. That is, respecify the model as  πi = P (β0 + β1xi). 

Moreover, it is advantageous if P is strictly increasing, for then, the transformation is 

one-to-one, so that model can be rewritten as P-1(πi) = (β0 + β1xi), where  P-1 is the 

inverse of the CDF P. Thus the non-linear model for itself will become both smooth 

and symmetric, approaching π = 0 and   π = 1 as asymptotes. Thereafter maximum 

likelihood method of estimation can be employed for model fitting. 

  

0 1

0 1 0 1

0 1

0 ,β +β X 0

π = β +β X ,0 β +β X 1

1 ,β +β X 1
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3.2 Properties of Logistic Regression Model 

The logistic response function exhibits a characteristic S-shaped curve, which can be 

visualized in the accompanying figure. As X increases, the probability π initially 

experiences a gradual increase, followed by a rapid acceleration. Eventually, the 

increase in probability tapers off and stabilizes, but it never exceeds the value of 1.      

                                          

The shape of the S-curve can be reproduced if the probabilities can be modeled  with 

only one predictor variable as follows: 

 

where z = β0 + β1x, and e is the base of the natural logarithm. Thus for more than one 

(say r) explanatory variables, the probability π is modeled as  

 

where     . 

This equation is called the logistic regression equation. It is nonlinear in the 

parameters β0, β1… βr.  Modeling the response probabilities by the logistic 

distribution and estimating the parameters of the model constitutes fitting a logistic 

regression. The method of estimation generally used is the maximum likelihood 

estimation method.  

To explain the popularity of logistic regression, let us consider the mathematical form 

on which the logistic model is based. This function, called f (z), is given by   

                 f (z) = 1/ (1+e-z) , -∞ < z < ∞                                                                   

Now when z = -∞, f (z) =0 and when z = ∞, f (z) =1. Thus the range of f (z) is 0 to1. 

So the logistic model is popular because the logistic function, on which the model is 

based, provides. Estimates that lie in the range between zero and one.  
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An appealing S-shaped description of the combined effect of several explanatory 

variables on the probability of an event. 

3.6 Multinomial logistic regression modeling 

Let X is a vector of explanatory variables and  denotes the probability of binary 

response variable then logistic model is given by  

 

 

where, ‘alpha’ is the intercept parameter and  ‘beta’  is a vector of slope parameters.  

In case response variable has ordinal categories say 1,2,3,--------, I, I+1  then generally 

logistic model is fitted with common slope based  on cumulative probabilities of 

response categories instead of individual probabilities.  This provides parallel lines of 

regression model with following form  

g [Prob (                    )] =   

where, are k intercept parameters and    is the vector of slope 

parameters.   

Multinomial logistic regression (taking qualitative response variable with three 

categories, for simplicity) is given by 

logit[Pr(Y  j – 1 / X)] = j + T X ,      j = 1,2 

where j are two intercept parameters (1 < 2 ), 
T = (1, 2, …….,k) is the slope 

parameter vector not including the intercept terms, XT = (X1, X2, ….,Xk) is vector of 

explanatory variables.  This model fits a common slope cumulative model i.e. 

‘parallel lines’ regression model based on the cumulative probabilities of the response 

categories. 

logit(1) =          

logit(1 + 2) =       

j (X) denotes classification probabilities Pr(Y=j-1 / X) of response variable Y, j = 

1,2,3, at XT. 

These models can be fitted through maximum likelihood procedure. 
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4. Probit analysis 

4.1 Introduction 

Probit analysis is widely utilized in various fields when the response variable is 

qualitative. One of its main applications is observed in toxicological studies, where it 

transforms the sigmoid dose-response curve into a linear relationship that can be 

analyzed using regression techniques like least squares or maximum likelihood. In 

essence, probit analysis is a methodology that converts the complex relationship 

between the percentage affected and the dose response into a linear relationship 

between probit and the dose response. The probit values can then be translated back 

into percentages. This approach is appropriate because of the typical shape exhibited 

by dose-response curves. While the method is approximate, it enables the 

quantification of consequences resulting from exposure. The term "probit" originates 

from the phrase "probability unit" and was coined by Bliss. It was the first model 

developed and studied for analyzing data such as the percentage of pests killed by a 

pesticide.  

4.2 Probit Model  

In the realm of probability theory and statistics, the probit function represents the 

inverse of the cumulative distribution function (CDF) linked to the standard normal 

distribution. Alternatively, one can consider the logistic distribution, which results in 

the logit or logistic model. Both the logistic and probit curves are highly similar, 

producing almost indistinguishable outcomes. In practice, they provide estimated 

probabilities that exhibit very little variation (Aldrich and Nelson, 1984). The 

selection between the logistic and probit approaches is primarily based on practical 

preferences and prior experience. 

For the standard normal distribution N (0, 1), the CDF is commonly denoted by Φ (z) 

(continuous, monotone increasing sigmoid function) given by, 

                                                                    

As an example, considering the familiar fact that the N (0, 1) distribution places 95% 

of probability between -1.96 and 1.96, and is symmetric about zero, it follows that 

                                                                                              

2uz z -
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The probit function gives the 'inverse' computation, generating a value of an N (0, 1) 

random variable, associated with specified cumulative probability. Formally, the 

probit function is the inverse of Φ (z), denoted by Φ − 1(p). Continuing the example, 

                                                                                    

In general, 

                and                                                                    

In statistics, a probit model is a popular specification of a generalized linear model. If 

Y be a binary response variable, and let X be the single predictor variable, then the 

probit model assumes that, 

                                                                                     

where Φ is the CDF of the standard normal distribution. The parameters β are 

estimated by maximum likelihood. 

In any dose-response scenario, there are two key components: the stimulus (such as a 

vitamin, drug, mental test, or physical force) and the subject (which could be an 

animal, plant, human volunteer, etc.). The stimulus is administered to the subject at a 

specific dose or intensity, measured in units such as concentration, weight, time, or 

other appropriate metrics, within a controlled environmental setting. Consequently, 

the subject exhibits a response. The response in this context is quantal, meaning it can 

either occur or not occur depending on the intensity of the stimulus. Under controlled 

conditions, a response is observed when the stimulus intensity surpasses a certain 

threshold or limen. However, the term "tolerance" is now more commonly used to 

refer to this value. The tolerance value varies among individuals within the population 

being studied.  For quantal response data it is therefore necessary to consider 

distribution of tolerance over the population studied. If the dose or intensity of 

stimulus is measured by z, the distribution of tolerance may be expressed by 

 .                                                                                                            

5. Classificatory ability of the models 

There are several different classification accuracy measures that are commonly used to 

assess the performance of a classification model. Here are a few examples: 
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Accuracy: This is the most basic measure and represents the proportion of correctly 

classified instances (both true positives and true negatives) out of the total number of 

instances. 

Precision: Precision focuses on the proportion of correctly classified positive instances 

(true positives) out of all instances predicted as positive (true positives plus false 

positives). It measures the model's ability to avoid false positives. 

Recall (Sensitivity or True Positive Rate): Recall calculates the proportion of correctly 

classified positive instances (true positives) out of all actual positive instances (true 

positives plus false negatives). It quantifies the model's ability to capture true positives 

and avoid false negatives. 

Specificity (True Negative Rate): Specificity evaluates the proportion of correctly 

classified negative instances (true negatives) out of all actual negative instances (true 

negatives plus false positives). It measures the model's ability to identify true negatives 

and avoid false positives. 

F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a 

balanced measure that combines both precision and recall into a single value, useful 

when there is an imbalance between positive and negative instances. 

Area Under the Receiver Operating Characteristic curve (AUC-ROC): The AUC-ROC 

measure quantifies the overall performance of a binary classifier by considering the 

trade-off between true positive rate (sensitivity) and false positive rate across different 

classification thresholds. It provides a single value that represents the model's ability to 

distinguish between positive and negative instances. 

References: 

Finney, D.J. (1971). Probit Analysis (3rd edition). Cambridge University Press, 

Cambridge, England. 

Fox, J. (1984). Linear statistical models and related methods with application to social 

research, Wiley, New York. 

Kleinbaum, D.G. (1994). Logistic regression: A self learning text, New York: Springer. 
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Introduction:  

A data set containing sequence of observations on a single phenomenon observed 

over time is called time-series data. In time series, past observations of the same 

variable are collected and analyzed to develop a model describing the underlying 

relationship. 

Time Series Components: 

Trend: A trend exists when there is a long-term increase or decrease in the data. It 

does not have to be linear. Sometimes we will refer to a trend “changing direction” 

when it might go from an increasing trend to a decreasing trend. 

Seasonal: A seasonal pattern exists when a series is influenced by seasonal factors 

(e.g., the quarter of the year, the month, or day of the week). Seasonality is always of 

a fixed and known period. 

Cyclic: A cyclic pattern exists when data exhibit rises and falls that are not of fixed 

period. The duration of these fluctuations is usually of at least 2 years. 

Irregular component: Unobserved component exhibit in a time series 

Exponential Smoothing Methods: 

This method is suitable for forecasting data with no trend or seasonal pattern. For 

example, the data in figure do not display any clear trending behaviour or any 

seasonality, although the mean of the data may be changing slowly over time. 

Simple moving average method assigns equal weights (1/k) to all k data points. 

Arguably, recent observations provide more information than do observations in the 

past. Exponential smoothing methods give larger weights to more recent observations, 

and the weights decrease exponentially as the observations become more distant. 

These methods are most effective when the parameters describing the time series are 

changing slowly over time 

Types 

 Simple exponential smoothing 

 Holt’s trend corrected exponential smoothing 

 Holt-Winters method 

mailto:mrinmoy.ray@icar.gov.in
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Simple Exponential Smoothing (SES): 

The SES method is used forecasting a time series when there is no trend or seasonal 

pattern, but the mean (or level) of the time series 𝑦𝑡 is slowly changing over time 

No trend model: 𝑦𝑡 = 𝛽0 + 𝜀𝑡 

Steps for SES method: 

1. Compute the initial estimate of the mean (or level) of the series at time period t = 0 

𝑙0 = 𝑦 =
∑ 𝑦𝑡

𝑛
𝑡=1

𝑛⁄  

2. Compute the updated estimate by using the smoothing equation 

1(1 )T T Ty    
 

where  is a smoothing constant between 0 and 1 

Note that,  

1(1 )T T Ty    
 

1 2(1 )[ (1 ) ]T T Ty y        
 

2

1 2(1 ) (1 )T T Ty y        
 

2 1

1 2 1 0(1 ) (1 ) ... (1 ) (1 )T T

T T Ty y y y       

          

Holt’s Trend Corrected Exponential Smoothing 

 A smoothing approach for forecasting such a time series that employs two 

smoothing constants, denoted by and. 

 There are two estimates ℓT-1 and bT-1 

 ℓT-1 is the estimate of the level of the time series constructed in time period T–1 

(This is usually called the permanent component). 

 bT-1 is the estimate of the growth rate of the time series constructed in time period 

T–1 (This is usually called the trend component). 

 Level estimate 

1 1(1 )( )T T T Ty b      
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 Trend estimate 

1 1( ) (1 )T T T Tb b     
 

 where  = smoothing constant for the level (0 ≤  ≤ 1) 

   = smoothing constant for the trend (0 ≤  ≤ 1) 

Holt-Winters Method 

 Estimate of the level 

1 1( / ) (1 )( )T T T L T Ty sn b      
 

 Estimate of the growth rate or trend 

1 1( ) (1 )T T T Tb b     
 

 Estimate of the seasonal factors 

( / ) (1 )T T T T Lsn y sn    
 

 where , , and δ are smoothing constants between 0 and 1, L = number of seasons in 

a year (L = 12 for monthly data, and L = 4 for quarterly data) 

ARIMA Model: 

Auto Regressive Integrated Moving Average (ARIMA) is a prediction model for time 

series analysis and forecasting 

 Here the terms indicate: 

Auto Regressive: lags of variables itself 

Integrated: Differencing steps required to make time series stationary 

Moving Average: lags of previous information shocks  

 ARIMA model is denoted as ARIMA(p,d,q) 

where 

p=number of autoregressive terms 

d=number of non-seasonal differences needed to make time series stationary 

q=number of lagged forecast errors in the prediction equation 

For ARIMA model building process there is a minimum of 30 data points required 

In an autoregressive integrated moving average model, the future value of a variable 

is assumed to be a linear function of several past observations and random errors. The 

underlying process that generate the time series has the form 
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1 1 2 2 1 1 2 2... ...t t t t p t t t q t qy c y y y                      
 

where,  and  are the actual and random error at time period t, respectively;  (i= 1, 2, 

…, p)   and  (j= 1, 2, …, q) are model parameters p and q are integers and often 

referred to as orders of the model 

Random errors are assumed to be independently and identically distributed with a 

mean zero and a constant variance of 𝜎2 

If q= 0, then the above equation becomes an AR model of order p. When p= 0, the 

model reduces to an MA model of order q.One central task of the ARIMA (p, d, q) 

model building is to determine the appropriate model order (p, q) where d is the order 

of differencing. 

ANN approach to time series forecasting:  

In the domain of time series analysis, the inputs are typically the past observations 

series and the output is the future value. The ANN performs the following nonlinear 

function mapping between the input and output 

1 2( ,..., , )t t t t p ty f y y y w     
 

where, w is a vector of all parameters and f  is a function of network structure and 

connection weights. Therefore, the neural network resembles a nonlinear 

autoregressive model. 

Single hidden layer multilayer feed forward network is the most popular for time 

series modeling and forecasting. This model is characterized by a network of three 

layers of simple processing units. The first layer is input layer, the middle layer is the 

hidden layer and the last layer is output layer. 

 

Fig 2: Architecture of ANN for time series forecasting 

The relationship between the output (𝑦𝑡 ) and the inputs (yt-1, yt-2,…,yt-p) can be 

mathematically represented as follows: 

0 0
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where, 𝜔𝑗(𝑗 = 0,1,2, … . . , 𝑞)  and 𝜔𝑖𝑗(𝑖 = 0,1,2, … … , 𝑝, 𝑗 = 0,1,2, … . . , 𝑞) are the 

model parameters often called the connection weights, p is the number of input nodes 

and q is the number of hidden nodes, g and f denote the activation function at hidden 

and output layer respectively. Activation function defines the relationship between 

inputs and outputs of a network in terms of degree of the non-linearity. Most 

commonly used activation functions are as follows- 

Activation  function Equation 

Identity x  

Sigmoid 1

1 xe
 

TanH 
2

2
tanh( ) 1

1 x
x

e
 


 

ArcTan 1tan ( )x
 

Sinusoid sin( )x  

Gaussian 2xe
 

For time series forecasting sigmoid activation function is employed in hidden layer 

and identity activation function is employed in the output layer. 

The selection of appropriate number of hidden nodes as well as optimum number of 

lagged observation p for input vector is important in ANN modeling for determination 

of the autocorrelation structure present in a time series. Though there are no 

established theories available for the selection of p and q, hence experiments are often 

conducted for the determination of the optimal values of p and q. The connection 

weights of ANNs are determined by learning method. There are three common 

learning algorithms for ANN – 

1) Supervised Learning 

The supervised learning strategy consists of having available the desired outputs for a 

given set of input signals; in other words, each training sample is composed of the 

input signals and their corresponding outputs. Henceforth, it requires a table with 

input/output data, also called attribute/value table, which represents the process and 

its behavior. 

2) Unsupervised Learning 
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Different from supervised learning, the application of algorithm based on 

unsupervised learning does not require any knowledge of the respective desired 

outputs. Thus, the network needs to organize itself when there are existing 

particularities between the elements that compose the entire sample set, identifying 

subsets (or clusters) presenting similarities. The learning algorithm adjusts the 

synaptic weights and thresholds of the network in order to reflect these clusters within 

the network .itself. 

3) Reinforcement Learning 

It is the hybrid of supervised and unsupervised learning.  

For time series forecasting supervised learning approach is utilized. Gradient decent 

back propagation algorithm is one of the popular approach of supervised learning. 

Gradient decent back propagation algorithm 

The objective of training is to minimize the error function that measures the misfit 

between the predicted value and the actual value. The error function which is widely 

used is mean squared error which can be written as: 

2
2

1 1 0 0

1 1
( )

q pN N

i t j i j t i

n n j i

E e y f g y
N N

  

   

    
     

    
     

Where N is the total number of error terms. The parameters of the neural network are 

j  and i j  estimated by iteration. Initial connection weights are taken randomly 

from uniform distribution. In each iteration the connection weights changed by an 

amount j  

( ) ( 1)j j

j

E
t t   




     


 

where,   is the learning rate and 
j

E






 is the partial derivative of the function E with 

respect to the weight j .  is the momentum rate. The 
j

E






 can be represented as 

follows- 

( ) ( ) ( )j j

j

E
e n f x y n

w


   


 

where ( )je n is the residual at nth  iteration 
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( )f x = derivative of the activation function in the output layer. As in time series 

forecasting the activation function in the output layer is identity function hence ( )f x

=1. ( )jy n is the desired output. Now connection weights in from input to hidden nodes 

changed by an amount 
ij

 

( ) ( 1)ij i j

ij

E
t t   




     


 

where 

0

( ) ( )* ( )
q

j j

jij

E
g x e n w n

w 


 


  

where ( )g x is the activation function in the hidden layer. For sigmoid activation 

function 

( )g x = 
2

exp( )

(1 exp( ))

x

x



   

Learning rate is user defined parameter known as tuning parameter of neural network 

which determine how slow or fast the optimal weight is obtained. The learning rate 

must be set small enough to avoid divergence. The momentum term prevents the 

learning process from setting in a local minimum. Though there are no established 

theories available for the selection of learning rate and momentum, hence experiments 

are often conducted for the determination of the learning rate and momentum. 

Step by Step Modeling Procedure: 

1. Testing of Nonlinearity: 

As ANNs is suitable for nonlinear time series forecasting. Hence, prior to application 

of ANN the nonlinearity should be check. There are several tests for checking 

nonlinearity. BDS (Brock-Dechert-Scheinkman) test is of the popular approach for 

checking nonlinearity. This test utilizes the concept of spatial correlation from chaos 

theory. The computational procedure is given as follows 

i) Let the considered time series is 

  1 2 3[ , , ,..., ]i Nx x x x x  

ii) The next step is to specify a value of m (embedding dimension), embed the time 

series into m dimensional vectors, by taking each m successive points in the series. 

This transforms the series of scalars into a series of vectors with overlapping 

entries 
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1 1 2

2 2 3 1

1
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iii) In the third step correlation integral is computed, which measures the spatial 

correlation among the points, by adding the number of pairs of points ( i, j), where 

1≤ i ≤ N and 1≤ j≤N , in the m-dimensional space which are “close”  in the sense 

that the points are within a radius or tolerance  of each other. 

, , ;

1

( 1)
m i j

i jm m

C I
N N

 




  

where Ii,j;= 1 if m m

i jx x    

                    = 0 otherwise 

iv) If the time series is i.i.d. then C ,m [C ,1]
m

 

v) The BDS test statistics is as follows 
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The choice of m and  depends on number of data. The null hypothesis is data are 

independently and identically distributed (i.i.d) against the alternative hypothesis the 

data are not i.i.d.; this implies that the time series is non-linearly dependent. BDS test 

is a two-tailed test; the null hypothesis should be rejected if the BDS test statistic is 

greater than or less than the critical values.  

 

 

2. Division of the data: 
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Data is divided into training and test sets. The training sample is used for ANN for 

model development and the test sample is utilized to evaluate the forecasting 

performance. Sometimes a third one called the validation sample is also utilized to 

avoid the over fitting problem or to determine the stopping point of the training 

process. It is common to use one test set for both validation and testing purposes 

particularly for small data sets. The literature suggests little guidance in selecting the 

training and testing sets. Most commonly used rule are 90% vs. 10%, 80% vs. 20% or 

70% vs. 30%, etc. 

3. Data Normalization: 

Nonlinear activation functions such as the sigmoid function typically have the 

squashing role in restricting the possible output from a node to, typically, (0, 1).  

Hence, data normalization is done prior to training process begins.  

Normalization procedure 

Linear transformation to [0,1]: Xn=(X0-Xmin)/ ( Xmax-Xmin) 

Statistical normalization: Xn=(X0-mean(X))/var(X) 

simple normalization: Xn=X0/ Xmax 

4. Selection of appropriate number of hidden nodes as well as optimum number 

of lagged: 

 

There are no established theories available for the selection of p and q, hence 

experiments are often conducted for the determination of the optimal values of p and 

q. 

5. Estimation of connection weights: 

Estimation of connection weights are determined by learning algorithm. For time 

series forecasting most commonly used learning approach is gradient decent back 

propagation algorithm. 

6. Evaluating forecasting Performance 

Forecasting performance can be computed by several approaches. Some of the 

approaches are given below- 

1

1
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2

1

1
ˆ

n

t t

t

RMSE y y
n 

   

where n is the total number of forecast values. ty is the actual value at period  t and ˆ
ty  

is the corresponding forecast value. The model with less MAPE/MSE/RMSE is 

preferred for forecasting purposes. 

Limitations of ANN for time series forecasting: 

i) ANNs are nonlinear time series model hence, for linear time series data the 

approach may not be better than linear statistical model. 

ii)  ANNs are black-box methods. There is no exact form to describe and analyze 

the relationship between inputs and outputs. This causes troublesome for 

interpretation of results. In addition, no formal statistical test is available. 

iii) ANNs are subjected to have over fitting problems owing to its large number of 

parameters. 

iv) There are no established theories available for the selection of p and q, hence 

experiments are often conducted for the determination of the optimal values of p 

and q which is tedious. 

v) ANNs usually require more data for time series forecasting. 

Support Vector Machine (SVM) in time series: 

Application of SVM in time series is generally utilized when the series shows non 

stationarity and non-linearity process. A tremendous advantage of SVM is that it is 

not model dependent as well as independent of stationarity and linearity. However, it 

may be computationally expensive  during the training. The training of the data driven 

prediction process SVM is done by a function which is estimated utilizing the 

observed data. Let, a time series 𝑦(𝑡)  which takes the data at time 𝑡{𝑡 =

0,1,2,3, … , 𝑁}. 

Now, the prediction function for linear regression is defined as: 

   𝑓(𝑦) = (𝑤. 𝑦) + 𝑐           

Whereas, for non linear regression, it will be: 

 𝑓(𝑦) = (𝑤. ∅(𝑦)) + 𝑐      

Where, 𝑤  dentoes the weights, 𝑐  represents threshold value and ∅(𝑦)  is known as 

kernel function.If the observed data is linear, then equation (1) will be used. But, for 

non-lineadata,the mapping of  𝑦(𝑡) is done to the higher dimension feature space 

through some function which is denoted as ∅(𝑦) and eventually it is transformed into 
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the linear process. Afer that, a linear regression will carry out in that feature space. 

The first and foremost objective is to find out the value of 𝑤 and 𝑐 which will be 

optimal. In SVM, there are two things viz., flatness of weights and error after the 

estimation which are to be minimized. The flatness of the weights is denoted by ‖𝑤‖2 

which is the eucledian norm. Firstly, one has to concentrate on minimization the 

‖𝑤‖2. Second important thing is the minimization of the error. This is also called as 

empirical risk. However, the overall aim is to minimize the regularized risk which is 

sum of empirical risk and the half of the product of the flatness of weight and a 

constant term which is known as regularized constant. The regularized risk can be 

written as- 

   𝑅𝑟𝑒𝑔(𝑓) = 𝑅𝑒𝑚𝑝(𝑓) +
𝜏

2
‖𝑤‖2    

Where, 𝑅𝑟𝑒𝑔(𝑓)is the regularized risk, 𝑅𝑒𝑚𝑝(𝑓) denotes the empirical risk, 𝜏  is as 

constant which is called as regularized constant/capacity control term and ‖𝑤‖2 is the 

flatness of weights. 

The regularization constant has a significant impact on a better fitting of the data and 

it can also be useful for the minimization of bad generalization effects. In the other 

words, this constant deals with the problem of over-fitting. The overfitting of the data 

can be redued by the proper selection of this constant value. The empirical risk can be 

defined as:- 

   𝑅𝑒𝑚𝑝(𝑓) =
1

𝑁
∑ 𝐿(𝑦(𝑖), 𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑁−1

𝑖=0  

Where, 𝛼(𝑖) denotes the truth data of predicted value, 𝐿(. ) is known as loss function 

and 𝑖 represents the index to the time series.There are various types of loss function in 

literature. But, two functions viz., vapnik loss function and quadratic loss function are 

most popular and they are generally used. The quadratic programming problem has 

been made to minimize the regularised risk which is- 

   Minimize,  
1

2
‖𝑤‖2 + 𝐷 ∑ 𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑛

𝑖=1   

 Where, 

𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))=|𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)|−∈ if |𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)| ≥∈ 

 = 0; otherwise. 

Where, 𝐷 is a constant which equals to the summation normalization factor and ∈ 

represents the size of the tube. 
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The computation of ∈ and 𝐷 is done empirically because they are user defined. On 

has to choose proper value of 𝐷 and ∈. Now, dual optimization problem is formed 

using the lagrange multiplier which can be written as: 

Maximize, −
1

2
∑ (𝛽𝑖 − 𝛽𝑖

∗)𝑁
𝑖,𝑗=1 (𝛽𝑗 − 𝛽𝑗

∗)〈𝑦(𝑖), 𝑦(𝑗)〉−∈ ∑ (𝛽𝑖 − 𝛽𝑖
∗) +𝑁

𝑖=1

∑ 𝛼(𝑖)(𝛽𝑖 − 𝛽𝑖
∗)𝑁

𝑖=1         

Subject to,  ∑ (𝛽𝑖 − 𝛽𝑖
∗) = 0𝑁

𝑖−1  ; 𝛽𝑖 , 𝛽𝑖
∗ ∈ [0, 𝐷] 

The function 𝑓(𝑥) is defined as; 

   𝑓(𝑥) = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝑁

𝑖=1 〈𝑦, 𝑦(𝑖)〉 + 𝐶    

KKT conditions are used to get the solution of the weights. 

The significance of kernel function in non-linear support vector machine (NLSVR) is 

very much imporatnt for mapping the data 𝑦(𝑖)into higher dimension feature space  

∅( 𝑦(𝑖))in which the data becomes linear. Generally notation for kernel function is 

given as; 

   𝑘(𝑦, 𝑦′) = 〈∅(𝑦), ∅(𝑦′)〉;              

There are many methods in literature to solve the quadartic programming. However, 

the most used method is sequential minimization optimization (SMO) algorithm.  
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An experiment is usually associated with a scientific method for testing certain 

phenomena. An experiment facilitates the study of such phenomena under controlled 

conditions and thus creating controlled condition is an essential component. Scientists 

in the biological fields who are involved in research constantly face problems 

associated with planning, designing and conducting experiments. Basic familiarity 

and understanding of statistical methods that deal with issues of concern would be 

helpful in many ways. Researchers who collect data and then look for a statistical 

technique that would provide valid results will find that there may not be solutions to 

the problem and that the problem could have been avoided first by a properly 

designed experiment. Obviously it is important to keep in mind that we cannot draw 

valid conclusions from poorly planned experiments. Second, the time and cost 

involved in many experiments are enormous and a poorly designed experiment 

increases such costs in time and resources. For example, an agronomist who carries 

out fertilizer experiment knows the time limitation of the experiment. He knows that 

when seeds are to be planted and harvested. The experimenter plot must include all 

components of a complete design. Otherwise what is omitted from the experiment 

will have to be carried out in subsequent trials in the next cropping season or next 

year. The additional time and expenditure could be minimized by a properly planned 

experiment that will produce valid results as efficiently as possible. Good 

experimental designs are products of the technical knowledge of one's field, an 

understanding of statistical techniques and skill in designing experiments. 

Any research endeavor may entail the phases of Conception, Design, Data collection, 

Analysis and Dissemination. Statistical methodologies can be used to conduct better 

scientific experiments if they are incorporated into entire scientific process, i.e., From 

inception of the problem to experimental design, data analysis and interpretation. 

When planning experiments we must keep in mind that large uncontrolled variations 

are common occurrences. Experiments are generally undertaken by researchers to 

compare effects of several conditions on some phenomena or in discovering an 

unknown effect of particular process. An experiment facilitates the study of such 

mailto:anindita.datta@icar.gov.in


  

 
 

143 

phenomena under controlled conditions. Therefore the creation of controlled 

condition is the most essential characteristic of experimentation. How we formulate 

our questions and hypotheses are critical to the experimental procedure that will 

follow. For example, a crop scientist who plants the same variety of a crop in a field 

may find variations in yield that are due to periodic variations across a field or to 

some other factors that the experimenter has no control over. The methodologies used 

in designing experiments will separate with confidence and accuracy a varietal 

difference of crops from the uncontrolled variations. 

The different concepts in planning of experiment can be well explained through 

chapati tasting experiment.  

Consider an experiment to detect the taste difference in chapati made of wheat flour 

of c306 and pv 18 varieties. The null hypothesis we can assume here is that there is 

no taste difference in chapatis made of c306 or pv18 wheat flours. After the null 

hypothesis is set, we have to fix the level of significance at which we can operate. 

The pv18 is a much higher yielding variety than c306. Hence a false rejection may 

not help the country to grow more pv18 and the wheat production may decrease 

while a false acceptance may give more production of pv18 wheat and the 

consumption may be less or practically nil. Thus the false acceptance or false 

rejection are of practically equal consequence and we agree to choose the level of 

significance at α = 0.05. Now to execute the experiment, a subject is to be found with 

extrasensory powers who can detect the taste differences. The colours of c306 and 

pv18 are different and anyone, even without tasting the chapatis, can distinguish the 

chapatis of either kind by a mere glance. Thus the taster of the chapatis has to be 

blindfolded before the chapatis are given for tasting. Afterwards, the method is to be 

decided in which the experiment will be conducted. The experiment can be 

conducted in many ways and of them three methods are discussed here: 

 Give the taster equal number of chapatis of either kind informing the taster about 

it. 

 Give the taster pairs of chapatis of each kind informing the taster about it. 

 Give the taster chapatis of either kind without providing him with any 

information. Let us use 6 chapatis in each of these methods. 

Under first method of experimentation, if the null hypothesis is true, then the 

experimenter cannot distinguish the two kinds of chapaties and he will randomly 
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select 3 chapatiS out of 6 chapaties given to him, as made of pvl8 wheat. In that case, 

all correct guesses are made if selection exactly coincides with the exactly used wheat 

variety and the probability for such an occurrence is:  

  05.0
20

11
6
3


 

Under second method,the pv18 wheat variety chapaties are selected from each pair 

given if the null hypothesis is true. Furthermore, independent choices are made of 

pv18 variety chapaties from each pair. Thus the probability of making all correct 

guesses is 

1/(2)3 = 1/8 = 0.125. 

In third method the experimenter has to make the choice for each chapati and the 

situation is analogous at calling heads or tails in a coin tossing experiment. The 

probability of making all correct guesses would then be: 

1/26 = 1/64 = .016. 

If the experimenter makes all correct guesses in third method as its probability is 

smaller than the selected  = 0.05, we can reject the null hypothesis and conclude that 

the two wheat varieties give different tastes at chapaties. In other methods the 

probability of making all correct guesses does not exceed  = 0.05 and hence with 

either method, we cannot   reject    the   null    hypothesis    even   if   all   correct    

guesses     are        made. 

However, if 8 chapaties are used by first method and if the taster guesses all of them, 

we can reject the null hypothesis, at 0.05 level of significance, as the probability of 

making all correct guesses would then be 
  56

11
8

3


 which is smaller than 0.05. 8 

chapaties will not enable us to reject the null hypothesis even if all correct guesses are 

made by second method as the probability of making all correct guesses is 

06.0
16

1

4

1
4









 it is easy to see that if 10 chapaties are given by second method 

and if all correct guesses are made, then we can reject the null hypothesis at 0.05 level 

of significance. Not to unduly influence the taster in making guesses, we should also 

present the chapaties in a random order rather than systematically presenting them for 

tasting. 

The above discussed chapati tasting experiment brings home the following salient 

features of experimentation: 
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 All the extraneous variations in the data should be eliminated or controlled 

excepting the variations due to the treatments under study. One should not 

artificially provide circumstances for one treatment to show better results than 

others. 

 Far a given size of the experiment, though the experiment can be done in many 

ways, even the best results may not turn out to be significant with some designs, 

while some other design can detect the treatment differences. Thus there is an 

imperative need the choose the right type of design, before the commencement 

of the experiment, lest the results may be useless. 

 If for some specific reasons related to the nature .of the experiment, a particular 

method has to be used in experimentation, then adequate number of replications 

of each treatment have to be provided in order to get valid inferences.  

 The treatments have to be randomly allocated to the experimental units. 

The terminologies often used in planning and designing of experiments are listed 

below. 

Treatment 

Treatment refers to controllable quantitative or qualitative factors imposed at a certain 

level by the experimenter. For an agronomist several fertilizer concentrations applied 

to a particular crop or a variety of crop is a treatment. Similarly, an animal scientist 

looks upon several concentrations of a drug given to animal species as a treatment. In 

agribusiness we may look upon impact of advertising strategy on sales a treatment. To 

an agricultural engineer, different levels of irrigation may constitute a treatment. 

Experimental Unit 

An experimental unit is an entity that receives a treatment e.g., for an agronomist or 

horticulturist it may be a plot of a land or batch of seed, for an animal scientist it may 

be a group of pigs or sheep, for a scientist engaged in forestry research it may be 

different tree species occurring in an area, and for an agricultural engineer it may be 

manufactured item. Thus, an experimental unit maybe looked upon as a small 

subdivision of the experimental material, which receives the treatment. 

Experimental Error 

Differences in yields arising out of experimental units treated alike are called 

Experimental Error. 

Controllable conditions in an experiment or experimental variable are terms as a 
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factor. For example, a fertilizer, a new feed ration, and a fungicide are all considered 

as factors. Factors may be qualitative or quantitative and may take a finite number of 

values or type. Quantitative factors are those described by numerical values on some 

scale. The rates of application of fertilizer, the quantity of seed sown are examples of 

quantitative factors. Qualitative factors are those factors that can be distinguished 

from each other, but not on numerical scale e.g., type of protein in a diet, sex of an 

animal, genetic make up of plant etc. While choosing factors for any experiment 

researcher should ask the following questions, like What treatments in the experiment 

should be related directly to the objectives of the study? Does the experimental 

technique adopted require the use of additional factors? Can the experimental unit be 

divided naturally into groups such that the main treatment effects are different for the 

different groups? What additional factors should one include in the experiment to 

interact with the main factors and shed light on the factors of direct interest? How 

desirable is it to deliberately choose experimental units of different types? 

Basic Principles of Design of Experiments 

Given a set of treatments which can provide information regarding the objective of an 

experiment, a design for the experiment, defines the size and number of experimental 

units, the manner in which the treatments are allotted to the units and also appropriate 

type and grouping of the experimental units. These requirements of a design ensure 

validity, interpretability and accuracy of the results obtainable from an analysis of the 

observations. 

These purposes are served by the principles of:  

 Randomization 

 Replication 

 Local (Error) control 

Randomization 

After the treatments and the experimental units are decided the treatments are allotted 

to the experimental units at random to avoid any type of personal or subjective bias, 

which may be conscious or unconscious. This ensures validity of the results. It helps 

to have an objective comparison among the treatments. It also ensures independence 

of the observations, which is necessary for drawing valid inference from the 

observations by applying appropriate statistical techniques. 

Depending on the nature of the experiment and the experimental units, there are 
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various experimental designs and each design has its own way of randomization. 

Various speakers while discussing specific designs in the lectures to follow shall 

discuss the procedure of random allocation separately. 

Replication 

If a treatment is allotted to r experimental units in an experiment, it is said to be 

replicated r times. If in a design each of the treatments is replicated r times, the design 

is said to have r replications. Replication is necessary to 

 Provide an estimate of the error variance which is a function of the differences 

among observations from experimental units under identical treatments. 

 Increase the accuracy of estimates of the treatment effects. 

Though, more the number of replications the better it is, so far as precision of 

estimates is concerned, it cannot be increased infinitely as it increases the cost of 

experimentation. Moreover, due to limited availability of experimental resources too 

many replications cannot be taken. 

The number of replications is, therefore, decided keeping in view the permissible 

expenditure and the required degree of precision. Sensitivity of statistical methods for 

drawing inference also depends on the number of replications. Sometimes this 

criterion is used to decide the number of replications in specific experiments. 

Error variance provides a measure of precision of an experiment, the less the error 

variance the more precision. Once a measure of error variance is available for a set of 

experimental units, the number of replications needed for a desired level of sensitivity 

can be obtained as below. 

Given a set of treatments an experimenter may not be interested to know if two 

treatment differ in their effects by less than a certain quantity, say, d. In other words, 

he wants an experiment that should be able to differentiate two treatments when they 

differ by d or more. 

The significance of the difference between two treatments is tested by t-test where   

 ,
r/s2

yy
t

2

ji 
  

Here, ,y i  and jy  are the arithmetic means of two treatment effects each based on r 

replications, s2 is measure of error variation. 

Given a difference d, between two treatment effects such that any difference greater 

than d should be brought out as significant by using a design with r replications, the 
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following equation provides a solution of r. 

,
r/s2

d
t

2
   

  2

2

2

0 s2x
d

t
r                          

where 0t is the critical value of the t-distribution at the desired level of significance, 

that is, the value of t at 5 or 1 per cent level of significance read from the t-table. If s2 

is known or based on a very large number of observations, made available from some 

pilot pre-experiment investigation, then t is taken as the normal variate. If s2 is 

estimated with n degree of freedom (d.f.) then t0 corresponds to n d.f. 

When the number of replication is r or more as obtained above, then all differences 

greater than d are expected to be brought out as significant by an experiment when it 

is conducted on a set of experimental units which has variability of the order of s2. For 

example, in an experiment on wheat crop conducted in a seed farm in Bhopal, to 

study the effect of application of nitrogen and phosphorous on yield a randomized 

block design with three replications was adopted. There were 11 treatments two of 

which were (i) 60 Kg/ha of nitrogen (ii) 120 Kg/ha of nitrogen. The average yield 

figures for these two application of the fertilizer were 1438 and 1592 Kg/ha 

respectively and it is required that differences of the order of 150 Kg/ha should be 

brought out significant. The error mean square (s2) was 12134.88. Assuming that the 

experimental error will be of the same order in future experiments and t0 is of the 

order of 2.00, which is likely as the error d.f. is likely to be more than 30 as there are 

11 treatments; Substituting in (1), we get: 

  .)approx( 4
150

88.2134x2x2

d

st2
r

2

2

2

22

0   

Thus, an experiment with 4 replications is likely to bring out differences of the order 

of 150 Kg/ha as significant. 

Another criterion for determining r is to take a number of replications which ensures 

at least 10 d.f. for the estimate of error variance in the analysis of variance of the 

design concerned since the sensitivity of the experiment will be very much low as the 

F test (which is used to draw inference in such experiments) is very much unstable 

below 10 d.f. 
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Local Control 

The consideration in regard to the choice of number of replications ensure reduction 

of standard error of the estimates of the treatment effect because the standard error of 

the estimate of a treatment effect is rs /2 , but it cannot reduce the error variance 

itself. It is, however, possible to devise methods for reducing the error variance. Such 

measures are called error control or local control. One such measure is to make the 

experimental units homogenous. Another method is to form the units into several 

homogenous groups, usually called blocks, allowing variation between the groups. 

A considerable amount of research work has been done to divide the treatments into 

suitable groups of experimental units so that the treatment effect can be estimated 

more precisely Extensive use of combinatorial mathematics has been made for 

formation of such group treatments. This grouping of experiment units into different 

groups has led to the development of various designs useful to the experimenter. We 

now briefly describe the various term used in designing of an experiment 

Blocking 

It refers to methodologies that form the units into homogeneous or pre-experimental 

subject-similarity groups. It is a method to reduce the effect of variation in the 

experimental material on the Error of Treatment of Comparisons. For example, 

animal scientist may decide to group animals on age, sex, breed or some other factors 

that he may believe has an influence on characteristic being measured. Effective 

blocking removes considerable measure of variation nom the experimental error. The 

selection of source of variability to be used as basis of blocking, block size, block 

shape and orientation are crucial for blocking. The blocking factor is introduced in the 

experiment to increase the power of design to detect treatment effects. 

The importance of good designing is inseparable from good research (results). The 

following examples point out the necessity for a good design that will yield good 

research. First, a nutrition specialist in developing country is interested in determining 

whether mother's milk is better than powdered milk for children under age one. The 

nutritionist has compared the growth of children in village A, who are all on mother's 

milk against the children in village B, who use powdered milk. Obviously, such a 

comparison ignores the health of the mothers, the sanitary-conditions of the villages, 

and other factors that may have contributed to the differences observed without any 

connection to the advantages of mother's milk or the powdered milk on the children. 
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A proper design would require that both mother's milk and the powdered milk be 

alternatively used in both villages, or some other methodology to make certain that 

the differences observed are attributable to the type of milk consumed and not to 

some uncontrollable factor. Second, a crop scientist who is comparing 2 varieties of 

maize, for instance, would not assign one variety to a location where such factors as 

sun, shade, unidirectional fertility gradient, and uneven distribution of water would 

either favor or handicap it over the other. If such a design were to be adopted, the 

researcher would have difficulty in determining whether the apparent difference in 

yield was due to variety differences or resulted from such factors as sun, shade, soil 

fertility of the field, or the distribution of water. These two examples illustrate the 

type of poorly designed experiments that are to be avoided. 

Analysis of Variance 

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in 

the responses into different assignable sources of variation, some of which are 

specifiable and others unknown. Total variance in the sample data is partitioned and is 

expressed as the sum of its non-negative components is a measure of the variation due 

to some specific independent source or factor or cause. ANOVA consists in 

estimation of the amount of variation due to each of the independent factors (causes) 

separately and then comparing these estimates due to ascribable factors (causes) with 

the estimate due to chance factor  the latter being known as experimental error or 

simply the error. 

Total variation present in a set of observable quantities may, under certain 

circumstances, be partitioned into a number of components associated with the nature 

of classification of the data. The systematic procedure for achieving this is called 

Analysis of Variance. The initial techniques of the analysis of variance were 

developed by the statistician and geneticist R. A. Fisher in the 1920s and 1930s, and 

is sometimes known as Fisher's analysis of variance, due to the use of Fisher's F-

distribution as part of the test of statistical significance. 

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are 

differences between the average value, or mean, across several population groups. 

With this model, the response variable is continuous in nature, whereas the predictor 

variables are categorical. For example, in a clinical trial of hypertensive patients, 

ANOVA methods could be used to compare the effectiveness of three different drugs 

in lowering blood pressure. Alternatively, ANOVA could be used to determine 

http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Geneticist
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/Statistical_significance
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whether infant birth weight is significantly different among mothers who smoked 

during pregnancy relative to those who did not. In a particular case, where two 

population means are being compared, ANOVA is equivalent to the independent two-

sample t-test. 

The fixed-effects model of ANOVA applies to situations in which the experimenter 

applies several treatments to the subjects of the experiment to see if the response 

variable values change. This allows the experimenter to estimate the ranges of 

response variable values that the treatment would generate in the population as a 

whole. In it factors are fixed and are attributable to a finite set of levels of factor eg. 

Sex, year, variety, fertilizer etc.  

Consider for example a clinical trial where three drugs are administered on a group of 

men and women some of whom are married and some are unmarried.  The three 

classifications of sex, drug and marital status that identify the source of each datum 

are known as factors.  The individual classification of each factor is known as levels 

of the factors.  Thus, in this example there are 3 levels of factor drug, 2 levels of 

factor sex and 2 levels of marital status. Here all the effects are fixed.  Random effects 

models are used when the treatments are not fixed. This occurs when the various 

treatments (also known as factor levels) are sampled from a larger population. When 

factors are random, these are generally attributable to infinite set of levels of a factor 

of which a random sample are deemed to occur   eg. research stations, clinics in 

Delhi, sire, etc. Suppose new inject-able insulin is to be tested using 15 different 

clinics of Delhi state. It is reasonable to assume that these clinics are random sample 

from a population of clinics from Delhi. It describe the situations where both fixed 

and random effects are present. 

In any ANOVA model, general mean is always taken as fixed effect and error is 

always taken as random effect. Thus class of model can be classified on the basis of 

factors, other than these two factors. ANOVA can be viewed as a generalization of t-

tests: a comparison of differences of means across more than two groups.  

The ANOVA is valid under certain assumptions. These assumptions are: 

 Samples have been drawn from the populations that are normally distributed. 

 Observations are independent and are distributed normally with mean zero and 

variance σ2. 

 Effects are additive in nature. 

http://en.wikipedia.org/wiki/Response_variable
http://en.wikipedia.org/wiki/Response_variable
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The ANOVA is performed as one-way, two-way, three-way, etc. ANOVA when the 

number of factors is one, two or three respectively. In general if the number of factors 

is more, it is termed as multi-way ANOVA.   

Completely Randomized Design 

Designs are usually characterized by the nature of grouping of experimental units and 

the procedure of random allocation of treatments to the experimental units.  In a 

completely randomized design the units are taken in a single group.  As far as 

possible the units forming the group are homogeneous.  This is a design in which only 

randomization and replication are used.  There is no use of local control here.  

Let there be v treatments in an experiment and n homogeneous experimental units.  

Let the ith  treatment be replicated ir times (i = 1,2,…, v) such that nr
v

1i

i 


. The 

treatments are allotted at random to the units. 

Normally the number of replications for different treatments should be equal as it 

ensures equal precision of estimates of the treatment effects.  The actual number of 

replications is, however, determined by the availability of experimental resources and 

the requirement of precision and sensitivity of comparisons.  If the experimental 

material for some treatments is available in limited quantities, the numbers of their 

replication are reduced.  If the estimates of certain treatment effects are required with 

more precision, the numbers of their replication are increased.   

Randomization 

There are several methods of random allocation of treatments to the experimental 

units.  The v treatments are first numbered in any order from 1 to v.  The n 

experimental units are also numbered suitably.  One of the methods uses the random 

number tables.  Any page of a random number table is taken.  If v is a one-digit 

number, then the table is consulted digit by digit.  If v is a two-digit number, then 

two-digit random numbers are consulted.  All numbers greater than v including zero 

are ignored. 

Let the first number chosen be 1n ; then the treatment numbered 1n is allotted to the 

first unit.  If the second number is 2n  which may or may not be equal to n1 then the 

treatment numbered 2n  is allotted to the second unit.  This procedure is continued.  

When the ith treatment number has occurred ir  times,  vi ,...,2,1  this treatment is 

ignored subsequently.  This process terminates when all the units are exhausted. 
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One drawback of the above procedure is that sometimes a very large number of 

random numbers may have to be ignored because they are greater than v.  It may even 

happen that the random number table is exhausted before the allocation is complete.  

To avoid this difficulty the following procedure is adopted.  We have described the 

procedure by taking v to be a two-digit number. 

Let P be the highest two-digit number divisible by v. Then all numbers greater than P 

and zero are ignored.  If a selected random number is less than v, then it is used as 

such.  If it is greater than or equal to v, then it is divided by v and the remainder is 

taken to the random number.  When a number is completely divisible by v, then the 

random number is v.  If v is an n-digit number, then P is taken to be the highest n-digit 

number divisible by v.  The rest of the procedure is the same as above. 

Analysis   

This design provides a one-way classified data according to levels of a single factor.  

For its analysis the following model is taken: 

                       ,iijiij r1,jv;,1,i           ,ety     

where ijy is the random variable corresponding to the observation ijy obtained from 

the jth replicate of the ith treatment,  is the general mean, it is the fixed effect of the ith 

treatment and ije  is the error component which is a random variable assumed to be 

normally and independently distributed with zero means and a constant variance  2.   

Let  vi    Ty i

j

ij ,...,2,1  be the total of observations from ith treatment.  Let 

further .GT

i

i   Correction factor (C.F.)   = G2/n.  

Sum of squares due to treatments .F.C
r

Tv

1i i

2
i 



  

Total sum of squares  =    .F.Cy
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MST/MSE 

Error n – v SSE = by 
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MSE = 

SSE / (n - v) 
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The hypothesis that the treatments have equal effects is tested by F-test where F is the 

ratio MST / MSE with (v - 1) and (n - v) degrees of freedom.   

3. Randomized Complete Block Design 

It has been seen that when the experimental units are homogeneous then a CRD 

should be adopted.  In any experiment, however, besides treatments the experimental 

material is a major source of variability in the data.  When experiments require a large 

number of experimental units, the experimental units may not be homogeneous, and 

in such situations CRD can not be recommended.   When the experimental units are 

heterogeneous, a part of the variability can be accounted for by grouping the 

experimental units in such a way that experimental units within each group are as 

homogeneous as possible.  The treatments are then allotted randomly to the 

experimental units within each group (or blocks). The principle of first forming 

homogeneous groups of the experimental units and then allotting at random each 

treatment once in each group is known as local control.  This results in an increase in 

precision of estimates of the treatment contrasts, due to the fact that error variance 

that is a function of comparisons within blocks, is smaller because of homogeneous 

blocks.  This type of allocation makes it possible to eliminate from error variance a 

portion of variation attributable to block differences.  If, however, variation between 

the blocks is not significantly large, this type of grouping of the units does not lead to 

any advantage; rather some degrees of freedom of the error variance is lost without 

any consequent decrease in the error variance.  In such situations it is not desirable to 

adopt randomized complete block designs in preference to completely randomized 

designs. 

If the number of experimental units within each group is same as the number of 

treatments and if every treatment appears precisely once in each group then such an 

arrangement is called a randomized complete block design. 

Suppose the experimenter wants to study v treatments.  Each of the treatments is 

replicated r times (the number of blocks) in the design.  The total number of 

experimental units is, therefore, vr.  These units are arranged into r groups of size v 

each.  The error control measure in this design consists of making the units in each of 

these groups homogeneous.  

The number of blocks in the design is the same as the number of replications.  The v 

treatments are allotted at random to the v plots in each block.  This type of 

homogeneous grouping of the experimental units and the random allocation of the 
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treatments separately in each block are the two main characteristic features of 

randomized block designs.  The availability of resources and considerations of cost 

and precision determine actual number of replications in the design.  

Analysis 

The data collected from experiments with randomized block designs form a two-way 

classification, that is, classified according to the levels of two factors, viz., blocks and 

treatments.  There are vr cells in the two-way table with one observation in each cell.  

The data are orthogonal and therefore the design is called an orthogonal design. We 

take the following model:  

 ,
r,...,2,1j

;v,...,2,1i
            ,ebty ijjiij 












   

where ijy  denotes the observation from ith treatment in jth block.  The fixed effects

ji b,t,  denote respectively the general mean, effect of the ith treatment and effect of 

the jth block. The random variable ije  is the error component associated with ijy .  

These are assumed to be normally and independently distributed with zero means and 

a constant variance  2.   

Following the method of analysis of variance for finding sums of squares due to 

blocks, treatments and error for the two-way classification, the different sums of 

squares are obtained as follows: Let  v,...,2,1i  Ty i

j
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from ith treatment and    By

j
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ANALYSIS OF VARIANCE  

Sources of 

variation 

Degrees of 

freedom (D.F.) 

Sum of squares 

(S.S.) 

Mean squares 
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MST = SST / (v - 1) 

 

MST/MSE 

Error (r - 1)(v - 1) SSE = by subtraction MSE = 

SSE / (v - 1)(r - 1) 

 

Total vr – 1 .F.Cy

ij

2
ij     

 

The hypothesis that the treatments have equal effects is tested by F-test, where F is 

the ratio MST / MSE with (v - 1) and (v - 1)(r - 1) degrees of freedom.  We may then 

be interested to either compare the treatments in pairs or evaluate special contrasts 

depending upon the objectives of the experiment.  This is done as follows:   

The critical difference for testing the significance of the difference of two treatment 

effects, say ji tt   is r/MSE2t.D.C 2/),1r)(1v(  , where 2/),1r)(1v(t   is 

the value of Student's t at the level of significance  and degree of freedom (v - 1)(r - 

1).  If the difference of any two-treatment means is greater than the C.D. value, the 

corresponding treatment effects are significantly different.  

4. Latin Square Design 

Latin square designs are normally used in experiments where it is required to remove 

the heterogeneity of experimental material in two directions.  These designs require 

that the number of replications equal the number of treatments or varieties.   

Definition 1.  A Latin square arrangement is an arrangement of v symbols in v2
 cells 

arranged in v rows and v columns, such that every symbol occurs precisely once in 

each row and precisely once in each column.  The term v is known as the order of the 

Latin square. 

If the symbols are taken as A, B, C, D, a Latin square arrangement of order 4 is as 

follows: 

    A B C D 

    B C D A 

    C D A B 

    D A B C 
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A Latin square is said to be in the standard form if the symbols in the first row and 

first column are in natural order, and it is said to be in the semi-standard form if the 

symbols of the first row are in natural order.  Some authors denote both of these 

concepts by the term standard form.  However, there is a need to distinguish between 

these two concepts.  The standard form is used for randomizing the Latin-square 

designs, and the semi-standard form is needed for studying the properties of the 

orthogonal Latin squares. 

Definition 2.  If in two Latin squares of the same order, when superimposed on one 

another, every ordered pair of symbols occurs exactly once, the two Latin squares are 

said to be orthogonal.  If the symbols of one Latin square are denoted by Latin letters 

and the symbols of the other are denoted by Greek letters, the pair of orthogonal Latin 

squares is also called a graeco-latin square. 

Definition 3.  If in a set of Latin squares every pair is orthogonal, the set is called a 

set of mutually orthogonal latin squares (MOLS).  It is also called a hypergraeco 

latin square. 

The following is an example of graeco latin square:  

         

ABCD

BADC

CDAB

DCBA

                       









                         









ABCD

BADC

CDAB

DCBA

                                           

We can verify that in the above arrangement every pair of ordered Latin and Greek 

symbols occurs exactly once, and hence the two latin squares under consideration 

constitute a graecolatin square. 

It is well known that the maximum number of MOLS possible of order v is v - 1.  A 

set of v - 1 MOLS is known as a complete set of MOLS.  Complete sets of MOLS of 

order v exist when v is a prime or prime power.  

Randomization 

According to the definition of a Latin square design, treatments can be allocated to the 

v2 experimental units (may be animal or plots) in a number of ways.  There are, 

therefore, a number of Latin squares of a given order.  The purpose of randomization 
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is to select one of these squares at random.  The following is one of the methods of 

random selection of Latin squares. 

Let a v  v Latin square arrangement be first written by denoting treatments by Latin 

letters A, B, C, etc. or by numbers 1, 2, 3, etc.  Such arrangements are readily 

available in the Tables for Statisticians and Biometricians  (Fisher and Yates, 1974).  

One of these squares of any order can be written systematically as shown below for a 

55 Latin square: 

                                         

DCBAE

CBAED

BAEDC

AEDCB

EDCBA

 

For the purpose of randomization rows and columns of the Latin square are 

rearranged randomly.  There is no randomization possible within the rows and/or 

columns.  For example, the following is a row randomized square of the above 55 

Latin square; 

                                          

BAEDC

CBAED

DCBAE

AEDCB

EDCBA

 

Next, the columns of the above row randomized square have been rearranged 

randomly to give the following random square: 

                                           

ACEDB

BDAEC

CEBAD

EBDCA

DACBE

 

As a result of row and column randomization, but not the randomization of the 

individual units, the whole arrangement remains a Latin square. 

Analysis of Latin Square Designs 

In Latin square designs there are three factors.  These are the factors P, Q, and 

treatments.  The data collected from this design are, therefore, analyzed as a three-

way classified data.  Actually, there should have been 3v  observations as there are 

three factors each at v levels.  But because of the particular allocation of treatments to 
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the cells, there is only one observation per cell instead of v in the usual three way 

classified orthogonal data.  As a result we can obtain only the sums of squares due to 

each of the three factors and error sum of squares.  None of the interaction sums of 

squares of the factors can be obtained.  Accordingly, we take the model 

 ijssjiijs etcrY     

where ijsy  denotes the observation in the ith row, jth column and under the sth 

treatment;   v,...,2,1s,j,it,c,r, sji   are fixed effects denoting in order the general 

mean, the row, the column and the treatment effects.  The ijse is the error component, 

assumed to be independently and normally distributed with zero mean and a constant 

variance, 2 . 

The analysis is conducted by following a similar procedure as described for the 

analysis of two-way classified data.  The different sums of squares are obtained as 

below:  Let the data be arranged first in a row  column table such that ijy denotes the 

observation of (i,  j)th cell of table. 
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The hypothesis of equal treatment effects is tested by F-test, where F is the ratio of 

treatment mean squares to error mean squares.  If F is not significant, treatment 

effects do not differ significantly among themselves.  If F is significant, further 

studies to test the significance of any treatment contrast can be made in exactly the 

same way as discussed for randomized block designs. 
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ANCOVA 

Anindita Datta 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

anindita.datta@icar.gov.in 

Introduction 

The meaning of ANVOVA is Analysis of Covariance. It is a general linear model with 

one continuous outcome variable (quantitative) and one or more factor variables 

(qualitative). ANCOVA is a merger of ANOVA and regression for continuous variables. 

ANCOVA tests whether certain factors have an effect on the outcome variable after 

removing the variance for which quantitative predictors (covariates) account. The 

inclusion of covariates can increase statistical power because it accounts for some of 

the variability. 

It is well known that in designed experiments the ability to detect existing 

differences among treatments increases as the size of the experimental error 

decreases, a good experiment attempts to incorporate all possible means of 

minimizing the experimental error. Besides proper experimentation, a proper data 

analysis also helps in controlling experimental error. In situations where blocking 

alone may not be able to achieve adequate control of experimental error, proper 

choice of data analysis may help a great deal. By measuring one or more covariates - 

the characters whose functional relationships to the character of primary interest 

are known - the Analysis of Covariance (ANCOVA) can reduce the variability among 

experimental units by adjusting their values to a common value of the covariates. 

For example, in an animal feeding trial, the initial body weight of the animals usually 

differs. Using this initial body weight as a covariate, the final weights recorded after 

the animals have been subjected to various physiological feeds (treatments) can be 

adjusted to the values that would have been obtained had there been no variation in 

the initial body weights of the animals at the start of the experiment. An another 

example, in a field experiment where rodents have (partially) damaged some of the 

plots, covariance analysis with rodent damage as a covariate could be useful in 

adjusting plot yields to the levels that they should have been had there been no 

rodent damage in any plot. 

 

http://www.answers.com/topic/general-linear-model
http://www.answers.com/topic/analysis-of-variance
http://www.answers.com/topic/regression-analysis
http://www.answers.com/topic/covariate
http://www.answers.com/topic/statistical-power
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ANCOVA requires measurement of the character of primary interest plus the 

measurement of one or more variables known as covariates. It also requires that the 

functional relationship of the covariates with the character of primary interest is 

known beforehand. Generally a linear relationship is assumed, though other type of 

relationships could also be assumed. 

Consider the case of a variety trial in which weed incidence is used as a covariate. 

With a known functional relationship between weed incidence and grain yield, the 

character of primary interest, the covariance analysis can adjust grain yield in each 

plot to a common level of weed incidence. With this adjustment, the variation in 

yield due to weed incidence is quantified and effectively separated from that due to 

varietal difference. 

ANCOVA can be applied to any number of covariates and to any type of functional 

relationship between variables viz. quadratic, inverse polynomial, etc. Here we 

illustrate the use of covariance analysis with the help of a single covariate that is 

linearly related with the character of primary interest. It is expected that this 

simplification shall not unduly reduce the applicability of the technique, as a single 

covariate that is linearly related with the primary variable is adequate for most of 

the experimental situations in agricultural research. 

Uses of Covariance Analysis in Agricultural Research 

There are several important uses of covariance analysis in agricultural research. 

Some of the most important ones are: 

1. To control experimental error and to adjust treatment means. 

2. To aid in the interpretation of experimental results. 

3. To estimate missing data. 

Error Control and Adjustment of Treatment Means 

It is now well realized that the size of experimental error is closely related to the 

variability between experimental units. It is also known that proper blocking can 

reduce experimental error by maximizing the differences between the blocks and 

thus minimizing differences within blocks. Blocking, however, can not cope with 

certain types of variability such as spotty soil heterogeneity and unpredictable insect 

incidence. In both instances, heterogeneity between experimental plots does not 

follow a definite pattern, which causes difficulty in getting maximum differences 
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between blocks. Indeed, blocking is ineffective in the case of nonuniform insect 

incidences because blocking must be done before the incidence occurs. 

Furthermore, even though it is true that a researcher may have some information on 

the probable path or direction of insect movement, unless the direction of insect 

movement coincides with the soil fertility gradient, the choice of whether soil 

heterogeneity or insect incidence should be the criterion for blocking is difficult. The 

choice is especially difficult if both sources of variation have about the same 

importance. 

Use of covariance analysis should be considered in experiments in which blocking 

couldn't adequately reduce the experimental error. By measuring an additional 

variable (e.g., covariate X) that is known to be linearly related to the primary variable 

Y, the source of variation associated with the covariate can be deducted from 

experimental error.  This adjusts the primary variable Y linearly upward or 

downward, depending on the relative size of its respective covariate. The adjustment 

accomplishes two important improvements: 

1. The treatment mean is adjusted to a value that it would have had; had there 

been no differences in the values of the covariate. 

2. The experimental error is reduced and the precision for comparing treatment 

means is increased. 

Although blocking and covariance techniques are both used to reduce experimental 

error, the differences between the two techniques are such that they are usually not 

interchangeable. The ANCOVA can be used only when the covariate representing the 

heterogeneity among the experimental units can be measured quantitatively. 

However, that is not a necessary condition for blocking. In addition, because blocking 

is done before the start of the experiment, it can be used only to cope with sources of 

variation that are known or predictable. ANCOVA, on the other hand, can take care of 

unexpected sources of variation that occur during the experiment. Thus, ANCOVA is 

useful, as a supplementary procedure to take care of sources of variation that cannot 

be accounted for by blocking.   

When covariance analysis is used for error control and adjustment of treatment 

means, the covariate must not be affected by the treatments being tested. 

Otherwise, the adjustment removes both the variation due to experimental error 
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and that due to treatment effects. A good example of covariates that are free of 

treatment effects are those that are measured before the treatments are applied, 

such as soil analysis and residual effects of treatments applied in the past 

experiments. In other cases, care must be exercised to ensure that the covariates 

defined are not affected by the treatments being tested. This technique can be 

illustrated through the following example: 

Example 1: A trial was designed to evaluate 15 rice varieties grown in soil with a 

toxic level of iron. The experiment was in a RCB design with three replications. Guard 

rows of a susceptible check variety were planted on two sides of each experimental 

plot. Scores for tolerance for iron toxicity were collected from each experimental 

plot as well as from guard rows. For each experimental plot, the score of susceptible 

check (averaged over two guard rows) constitutes the value of the covariate for that 

plot. Data on the tolerance score of each variety (Y variable) and on the score of the 

corresponding susceptible check (X variable) are shown below: 

Scores of tolerance for iron toxicity (Y) of 15 rice varieties and those of the 
corresponding guard rows of a susceptible check variety (X) in a RCB trial 
 

Variety 
Number 

Replication-I Replication-II Replication-III 

X Y X Y X Y 

1. 15 22 16 13 16 14 

2. 16 14 15 23 15 23 

3. 15 24 15 24 15 23 

4. 16 13 15 23 15 23 

5. 17 17 17 16 16 16 

6. 16 14 15 23 15 23 

7. 16 13 15 23 16 13 

8. 16 16 17 17 16 16 

9. 17 14 15 23 15 24 

10. 17 17 17 17 15 26 

11. 16 15 15 24 15 25 

12. 16 15 15 23 15 23 

13. 15 24 15 24 16 15 

14. 15 25 15 24 15 23 

15. 15 24 15 25 16 16 
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The usual analysis of variance without using the covariate (X variable) is as follows: 

Source                   DF                 SS          Mean Square    F Value      Pr > F 

Replication              2             104.0444        52.0222           2.85          0.0745 

Treatment              14             265.9111        18.9937           1.04          0.4448 

Error                      28             510.6222        18.2365 

Total                     44             880.5778 

R-Square                    C.V.                 Root MSE               Y - Mean 

  0.4201                    21.5436                  4.2704                    19.82222 

Using the covariate, the analysis is the following: 

Source                 DF           S.S.               M.S.        F-Value    Pr > F 

Replication           2           22.4802          11.2402       2.71         0.0844 

Treatment           14         152.5606          10.8972       2.63         0.0151 

Covariate X          1         398.7516        398.7516     96.24         0.0001 

Error                   27         111.8707            4.1434 

R-Square                  C.V.                 Root MSE                    Y Mean 

  0.8730                  10.2689                   2.0355                       19.8222 

It is interesting to note that the use of a covariate has resulted into a considerable 

reduction in the error mean square and hence the CV has also reduced drastically. 

This has helped in catching the small differences among the treatment effects as 

significant. This was not possible when the covariate was not used. The covariance 

analysis will thus result into a more precise comparison of treatment effects. 

The probability of significance of pairwise comparisons among the least square 

estimates of the treatment effects are given below: 
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Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

i/j        1           2           3           4           5           6          7           8            9        

1       .           0.3370   0.0666  0.4431  0.0019  0.3370  1.0000  0.0252  0.0232       

2     0.3370          .      0.3370  0.8425  0.0237  1.0000  0.3370  0.1834  0.1697       

3     0.0666  0.3370          .      0.2497  0.1620  0.3370  0.0666  0.6757  0.6751       

4     0.4431  0.8425  0.2497          .      0.0157  0.8425  0.4431  0.1320  0.1191       

5     0.0019  0.0237  0.1620  0.0157          .      0.0237  0.0019  0.2361  0.2493       

6     0.3370  1.0000  0.3370  0.8425  0.0237          .      0.3370  0.1834  0.1697       

7    1.0000  0.3370  0.0666  0.4431   0.0019  0.3370          .      0.0252  0.0232       

8     0.0252  0.1834  0.6757  0.1320  0.2361  0.1834  0.0252          .      0.9727       

9     0.0232  0.1697  0.6751  0.1191  0.2493  0.1697  0.0232  0.9727       .           

10   0.0001  0.0019  0.0237  0.0012  0.3370  0.0019  0.0001  0.0361  0.0385   

11   0.0874  0.4294  0.8575  0.3249  0.1046  0.4294  0.0874  0.5445  0.5439   

12   0.2497  0.8425  0.4431  0.6915  0.0351  0.8425  0.2497  0.2493  0.2361   

13   0.1270  0.5524  0.7066  0.4294  0.0739  0.5524  0.1270  0.4298  0.4229   

14   0.0446  0.2497  0.8425  0.1803  0.2158  0.2497  0.0446  0.8096  0.8204   

15   0.0589  0.3249  0.9860  0.2393  0.1452  0.3249  0.0589  0.6736  0.6809   

   Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

     i/j           10         11      12             13             14             15 

     1      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 

     2      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 

     3      0.0237  0.8575    0.4431      0.7066      0.8425      0.9860 

     4      0.0012  0.3249    0.6915      0.4294      0.1803      0.2393 

     5      0.3370  0.1046    0.0351      0.0739      0.2158      0.1452 

     6      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 

     7      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 
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     8      0.0361  0.5445    0.2493      0.4298      0.8096      0.6736 

     9      0.0385  0.5439   0.2361      0.4229      0.8204      0.6809 

    10       .          0.0124   0.0031      0.0079      0.0351      0.0191 

    11     0.0124      .         0.5524      0.8425      0.7066      0.8425 

    12     0.0031  0.5524      .              0.6915      0.3370      0.4294       

    13     0.0079  0.8425   0.6915         .              0.5671      0.6915       

    14     0.0351  0.7066   0.3370      0.5671         .              0.8575       

    15     0.0191  0.8425   0.4294      0.6915      0.8575        .   
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FACTORIAL EXPERIMENTS 
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1.   Introduction 

Factorial Experiments are experiments that investigate the effects of two or more 

factors or input parameters on the output response of a process.  Factorial experiment 

design, or simply factorial design, is a systematic method for formulating the steps 

needed to successfully implement a factorial experiment. Estimating the effects of 

various factors on the output of a process with a minimal number of observations is 

crucial to being able to optimize the output of the process. 

In a factorial experiment, the effects of varying the levels of the various factors 

affecting the process output are investigated. Each complete trial or replication of the 

experiment takes into account all the possible combinations of the varying levels of 

these factors.  Effective factorial design ensures that the least number of experiment 

runs are conducted to generate the maximum amount of information about how input 

variables affect the output of a process. 

For example, an experiment on rooting of cuttings involving two factors, each at two 

levels, such as two hormones at two doses, is referred to as a 2 x 2 or a 22 factorial 

experiment. Its treatments consist of the following four possible combinations of the 

two levels in each of the two factors. 

Treatment number 
Treatment Combination 

Hormone Dose (ppm) 

1 NAA 10 

2 NAA 20 

3 IBA 10 

4 IBA 20 

 

The total number of treatments in a factorial experiment is the product of the number 

of levels of each factor; in the 22 factorial example, the number of treatments is 2 x 2 

= 4, in the 23 factorial, the number of treatments is 2 x 2 x 2 = 8. The number of 

treatments increases rapidly with an increase in the number of factors or an increase 

in the levels in each factor. For a factorial experiment involving 5 clones, 4 

espacements, and 3 weed-control methods, the total number of treatments would be 5 
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x 4 x 3 = 60. Thus, indiscriminate use of factorial experiments has to be avoided 

because of their large size, complexity, and cost. Furthermore, it is not wise to 

commit oneself to a large experiment at the beginning of the investigation when 

several small preliminary experiments may offer promising results. For example, a 

tree breeder has collected 30 new clones from a neighbouring country and wants to 

assess their reaction to the local environment. Because the environment is expected to 

vary in terms of soil fertility, moisture levels, and so on, the ideal experiment would 

be one that tests the 30 clones in a factorial experiment involving such other variable 

factors as fertilizer, moisture level, and population density. Such an experiment, 

however, becomes extremely large as factors other than clones are added. Even if 

only one factor, say nitrogen or fertilizer with three levels were included, the number 

of treatments would increase from 30 to 90. Such a large experiment would mean 

difficulties in financing, in obtaining an adequate experimental area, in controlling 

soil heterogeneity, and so on. Thus, the more practical approach would be to test the 

30 clones first in a single-factor experiment, and then use the results to select a few 

clones for further studies in more detail. For example, the initial single-factor 

experiment may show that only five clones are outstanding enough to warrant further 

testing. These five clones could then be put into a factorial experiment with three 

levels of nitrogen, resulting in an experiment with 15 treatments rather than the 90 

treatments needed with a factorial experiment with 30 clones.  

The amount of change produced in the process output for a change in the 'level' of a 

given factor is referred to as the 'main effect' of that factor. Table 1 shows an 

example of a simple factorial experiment involving two factors with two levels 

each. The two levels of each factor may be denoted as 'low' and 'high', which are 

usually symbolized by '-' and '+' in factorial designs, respectively.  

Table 1. A Simple 2-Factorial Experiment 

 

 A (-) A (+) 

B (-) 20 40 

B (+) 30 52 

The main effect of a factor is basically the 'average' change in the output response as 

that factor goes from '-' to '+'.  Mathematically, this is the average of two numbers: 1) 

the change in output when the factor goes from low to high level as the other factor 



  

 
 

170 

stays low, and 2) the change in output when the factor goes from low to high level as 

the other factor stays high.     

In the example in Table 1, the output of the process is just 20 (lowest output) when 

both A and B are at their '-' level, while the output is maximum at 52 when both A and 

B are at their '+' level. The main effect of A is the average of the change in output 

response when B stays '-' as A goes from '-' to '+', or (40-20) = 20, and the change in 

output response when B stays '+' as A goes from '-' to '+', or (52-30) = 22.  The main 

effect of A, therefore, is equal to 21.     

Similarly, the main effect of B is the average change in output as it goes from '-' to '+' 

, i.e., the average of 10 and 12, or 11. Thus, the main effect of B in this process is 11. 

Here, one can see that the factor A exerts a greater influence on the output of process, 

having a main effect of 21 versus factor B's main effect of only 11. It must be noted 

that aside from 'main effects', factors can likewise result in 'interaction 

effects.'  Interaction effects are changes in the process output caused by two or more 

factors that are interacting with each other. Large interactive effects can make the 

main effects insignificant, such that it becomes more important to pay attention to the 

interaction of the involved factors than to investigate them individually. In Table 1, as 

effects of A (B) is not same at all the levels of B (A) hence, A and B are interacting.  

Thus, interaction is the failure of the differences in response to changes in levels of 

one factor, to retain the same order and magnitude of performance through out all the 

levels of other factors OR the factors are said to interact if the effect of one factor 

changes as the levels of other factor(s) changes. 

Graphical representation of lack of interaction between factors and interaction 

between factors are shown below. In case of two parallel lines, the factors are non-

interacting. 
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If interactions exist which is fairly common, we should plan our experiments in such 

a way that they can be estimated and tested.  It is clear that we cannot do this if we 

vary only one factor at a time.  For this purpose, we must use multilevel, multifactor 

experiments.  

The running of factorial combinations and the mathematical interpretation of the 

output responses of the process to such combinations is the essence of factorial 

experiments.  It allows to understand which factors affect the process most so that 

improvements (or corrective actions) may be geared towards these.  

We may define factorial experiments as experiments in which the effects (main 

effects and interactions) of more then one factor are studied together. In general if 

there are ‘n’ factors, say, F1, F2,..., Fn and ith factor has si levels, i=1,...,n, then total 

number of treatment combinations is si

n

i


1

. Factorial experiments are of two types. 

Experiments in which the number of levels of all the factors are same i.e all s i’s are 

equal are called symmetrical factorial experiments and the experiments in at least 

two of the si‘s are different are called as asymmetrical factorial experiments. 

Factorial experiments provide an opportunity to study not only the individual effects 

of each factor but also there interactions. They have the further advantage of 
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economising on experimental resources.  When the experiments are conducted 

factor by factor much more resources are required for the same precision than when 

they are tried in factorial experiments.   

2.   Experiments with Factors Each at Two Levels 

The simplest of the symmetrical factorial experiments are the experiments with each 

of the factors at 2 levels.  If there are ‘n’ factors each at 2 levels, it is called as a 2n 

factorial where the power stands for the number of factors and the base the level of 

each factor. Simplest of the symmetrical factorial experiments is the 22 factorial 

experiment i.e. 2 factors say A and B each at two levels say 0 (low) and 1 (high). 

There will be 4 treatment combinations which can be written as 

 00   = a0 b0   =   1; A and B both at first (low) levels 

 10   = a1 b0   =   a ; A at second (high) level and B at first (low) level 

 01   = a0 b1   =   b ; A at first level (low) and B at second (high) level 

 11   = a1 b1   =  ab; A and B both at second (high) level. 

In a 22 factorial experiment wherein r replicates were run for each combination 

treatment, the main and interactive effects of A and B on the output may be 

mathematically expressed as follows: 

A = [ab + a - b - (1)] / 2r;     (main effect of factor A) 

B = [ab + b - a - (1)] / 2r;     (main effect of factor B) 

AB = [ab + (1) - a - b] / 2r;   (interactive effect of factors A and B) 

where r is the number of replicates per treatment combination; a is the total of the 

outputs of each of the r replicates of the treatment combination a (A is 'high and B is 

'low); b is the total output for the n replicates of the treatment combination b (B is 

'high' and A is 'low); ab is the total output for the r replicates of the treatment 

combination ab (both A and B are 'high'); and (1) is the total output for the r replicates 

of the treatment combination (1) (both A and B are 'low’). 

Had the two factors been independent, then [ab + (1) - a - b] / 2n will be of the order 

of zero. If not then this will give an estimate of interdependence of the two factors and 

it is called the interaction between A and B.  It is easy to verify that the interaction of 

the factor B with factor A is BA which will be same as the interaction AB and hence 

the interaction does not depend on the order of the factors. It is also easy to verify that 

the main effect of factor B, a contrast of the treatment totals is orthogonal to each of 

A and AB. 
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Table 2. Two-level 2-Factor Full-Factorial  

RUN Comb. M A B AB 

1 (1) + - - + 

2 a + + - - 

3 b + - + - 

4 = 22 ab + + + + 

 

Consider the case of 3 factors A, B, C each at two levels (0 and 1) i.e. 23 factorial 

experiment. There will be 8 treatment combinations which are written as 

000  = a0 b0 c0   = (1);  A, B and C all three at first level 

100  = a1 b0 c0   =  a ;  A at second level and B and C at first level 

010  = a0 b1 c0  =  b ;  A and C both at first level and B at second level 

110  = a1 b1 c0   = ab;  A and B both at second level and C is at first level. 

001  = a0 b0 c1  =  c  ;  A and B both at first level and C at second level. 

101  = a1 b0 c1  =  ac;  A and C at second level, B at first level  

011  = a0 b1 c1 =  bc;  A is at first level and B and C both at second level 

111  = a1 b1 c1  = abc;  A, B and C all the three at second level 

In a three factor experiment there are three main effects A, B, C;  3 first order or two 

factor interactions AB, AC, BC; and one second order or three factor interaction 

ABC.   

Table 3. Two-level 3-Factor Full-Factorial Experiment Pattern 

RUN Comb. M A B AB C AC BC ABC 

1 (1) + - - + - + + - 

2 A + + - - - - + + 

3 B + - + - - + - + 

4 Ab + + + + - - - - 

5 C + - - + + - - + 

6 Ac + + - - + + - - 

7 Bc + - + - + - + - 

8 = 23 Abc + + + + + + + + 

  Main effect A = 
1

4
{[abc] -[bc] +[ac] -[c] + [ab] -[b] + [a] -[1]} 

            = 
1

4
(a-1) (b+1) (c+1)        

AB  = 
1

4
  [(abc)-(bc) -(ac) +c) - (ab) - (b) - (a)+ (1) ] 
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ABC = 
1

4
 [ (abc) - (bc) - (ac) + (c) - (ab) + (b) + (a) - (1) ] 

or equivalently,  

 AB    =  
1

4
  (a-1) (b-1) (c+1)                 

 ABC = 
1

4
 (a-1) (b-1) (c-1)           

The method of representing the main effect or interaction as above is due to Yates and 

is very useful and quite straightforward.  For example, if the design is 24 then 

 A   = (1/23)  [ (a-1) (b+1) (c+1) (d+1) ] 

ABC  =  (1/23)  [ (a-1) (b-1) (c-1) (d+1)] 

In case of a 2n factorial experiment, there will be 2n (=v) treatment combinations with 

‘n’ main effects, 
n

2








  first order or two factor interactions, 

n

3








  second order or three 

factor interactions, 
n

4








  third order or four factor interactions and so on , 

n

r








 , (r-1)th 

order or r factor interactions and 
n

n








  (n-1)th order or n factor interaction. Using these 

v treatment combinations, the experiment may be laid out using any of the suitable 

experimental designs viz. completely randomised design or block designs or row-

column designs, etc. 

Steps for Analysis 

1. The Sum of Squares (S.S.) due to treatments, replications [in case randomised 

block design is used], due to rows and columns (in case a row-column design has 

been used), total S.S. and error S.S. is obtained as per established procedures. No 

replication S.S. is required in case of a completely randomised design. 

2. The treatment sum of squares is divided into different components viz. main 

effects and interactions each with single d.f. The S.S. due to these factorial effects 

is obtained by dividing the squares of the factorial effect total by r.2n.  For 

obtaining 2n-1 factorial effects in a 2n factorial experiment, the ‘n’ main effects is 

obtained by giving the positive signs to those treatment totals where the particular 

factor is at second level and minus to others and dividing the value so obtained by 

r.2n-1, where r is the number of replications of the treatment combinations. All 
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interactions can be obtained by multiplying the corresponding coefficients of main 

effects.  

For a 22 factorial experiment, the S.S. due to a main effect or the interaction effect 

is obtained by dividing the square of the effect total by 4r. Thus, 

 S.S. due to main effect of A   = [A]2/ 4r, with 1 d.f. 

 S.S. due to main effect of B   = [B]2/ 4r, with 1 d.f 

 S.S. due to interaction AB     = [AB]2/ 4r, with 1 d.f. 

3. Mean squares (M.S) is obtained by dividing each S.S. by corresponding degrees 

of freedom. 

4. After obtaining the different S.S.’s, the usual Analysis of variance (ANOVA) 

table is prepared and the different effects are tested against error mean square and 

conclusions drawn. 

5. Standard errors (S.E.’s) for main effects and two factor interactions: 

S.E of difference between main effect means =
2MSE

r.2n 1
 

S.E of difference between A means at same level of B=S.E of difference 

between B means at same level of A= 
2MSE

r.2n 2
  

In general,  

      S.E. for difference between means in case of a r-factor interaction = 
2MSE

r.2nr
 

The critical differences are obtained by multiplying the S.E. by the student’s t 

value at % level of significance at error degrees of freedom. 

The ANOVA for a 22 factorial experiment with r replications conducted using a 

RCBD is as follows: 

ANOVA 

Sources of Variation DF S.S. M.S. F 

Between Replications r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 22-1=3 SST MST=SST/3 MST/MSE 

A 1 SSA=[A]2/4r MSA=SSA MSA/MSE 

  B 1 SSB=[B]2/4r MSB=SSB MSB/MSE 

AB 1 SSAB=[AB]2/4r MSAB=SSAB MSAB/MSE 

Error  3(r-1) SSE MSE=SSE/3(r-1)  

Total 4r-1 TSS   
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ANOVA for a 23-factorial experiment conducted in RCBD with r replications is given by 

ANOVA 

 

Sources of Variation DF SS MS F 

Between Replications r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 23 -1=7 SST MST=SST/7 MST/MSE 

A 1 SSA MSA=SSA MSA/MSE 

B 1 SSB MSB=SSB MSB/MSE 

C 1 SSC MSC=SSC MSC/MSE 

AB 1 SSAB MSAB=SSAB MSAB/MSE 

AC 1 SSAC MSAC=SSAC MSAC/MSE 

BC 1 SSBC MSBC=SSBC MSBC/MSE 

ABC 1 SSABC MSABC=SSABC MSABC/MSE 

Error  (r-1)(23-1) 

=7(r-1) 

SSE MSE=SSE/7(r-1)  

Total r.23-1=8r-1 TSS   

 

Similarly ANOVA table for a 2n factorial experiment can be made. 

3.   Experiments with Factors Each at Three Levels  

When factors are taken at three levels instead of two, the scope of an experiment 

increases. It becomes more informative. A study to investigate if the change is linear 

or quadratic is possible when the factors are at three levels. The more the number of 

levels, the better, yet the number of the levels of the factors cannot be increased too 

much as the size of the experiment increases too rapidly with them. Consider two 

factors A and B, each at three levels say 0, 1 and 2 (32-factorial experiment). The 

treatment combinations are 

 00 = a0b0   = 1  ; A and B both at first levels 

 10  = a1b0  = a  ; A is at second level and B is at first level 

 20  = a2b0   = a2 ; A is at third level and b is at first level 

 01  = a0b1  = b ; A is at first level and B is at second level 

 11  = a1b1  = ab ; A and B both at second level 

 21  = a2b1  = a2b ; A is at third level and B is at second level 

 02 = a0b2  = b2 ; A is at first level and B is at third level 

 12  = a1b2  = ab2 ; A is at second level and B is at third level 

 22  = a2b2  = a2b2 ; A and B both at third level 
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Any standard design can be adopted for the experiment.   

The main effects A, B can respectively be divided into linear and quadratic 

components each with 1 d.f. as AL, AQ, BL and BQ. Accordingly AB can be 

partitioned into four components as AL BL , AL BQ,  AQ BL, AQ BQ. 

The coefficients of the treatment combinations to obtain the above effects are given as 

Treatment 

Totals 

Factorial 

Effects  

 

[1] 

 

[a] 

 

[a2] 

 

[b] 

 

[ab] 

 

[a2b] 

 

[b2] 

 

[ab2] 

 

[a2

b2] 

 

Divisor 

M +1 +1 +1 +1 +1 +1 +1 +1 +1 9r=r32 

AL -1 0 +1 -1 0 +1 -1 0 +1 6r=r2 3 

AQ +1 -2 +1 +1 -2 +1 +1 -2 +1 18r=63 

BL -1 -1 -1 0 0 0 +1 +1 +1 6r=r23 

AL BL +1 0 -1 0 0 0 -1 0 +1 4r=r22 

AQ BL -1 +2 -1 0 0 0 +1 -2 +1 12r=r62 

BQ +1 +1 +1 -2 -2 -2 +1 +1 +1 18r=r36 

AL BQ -1 0 +1 +2 0 -2 -1 0 +1 12r=r26 

AQ BQ +1 -2 +1 -2 +4 -2 +1 -2 +1 36r=r66 

 

The rule to write down the coefficients of the linear (quadratic) main effects is to give 

a coefficient as +1 (+1) to those treatment combinations containing the third level of 

the corresponding factor, coefficient as 0(-2) to the treatment combinations containing 

the second level of the corresponding factor and coefficient as -1(+1) to those 

treatment combinations containing the first level of the corresponding factor. The 

coefficients of the treatment combinations for two factor interactions are obtained by 

multiplying the corresponding coefficients of two main effects. The various factorial 

effect totals are given as 

[AL]  = +1[a2b2]+0[ab2] -1[b2]+1[a2b]+0[ab] -1[b]+1[a2]+0[a] -1[1] 

[AQ] = +1[a2b2] -2[ab2]+1[b2]+1[a2b] -2[ab]+1[b]+1[a2] -2[a]+1[1] 

[BL]  = +1[a2b2]+1[ab2]+1[b2]+0[a2b]+0[ab]+0[b] -1[a2] -1[a] -1[1] 

[ALBL] = +1[a2b2]+0[ab2] -1[b2]+0[a2b]+0[ab]+0[b] -1[a2]+0[a] -1[1] 

[AQBL] = +1[a2b2] -2[ab2]+1[b2]+0[a2b]+0[ab]+0[b] -1[a2]+2[a] -1[1] 

[BQ] = +1[a2b2]+1[ab2]+1[b2] -2[a2b] -2[ab] -2[b] -1[a2] -1[a] -1[1] 

[ALBQ] = +1[a2b2]+0[ab2] -1[b2] -2[a2b]+0[ab]+2[b]+1[a2]+0[a] -1[1] 
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[AQBQ]  = +1[a2b2] -2[ab2]+1[b2] -2[a2b]+4[ab] -2[b]+1[a2] -2[a]+1[1] 

Factorial effects are given by 

AL = [AL]/r.3 AQ= [AQ]/r.3 BL = [BL]/r.3 ALBL = [ALBL]/r.3 

AQBL = [AQBL]/r.3 BQ = [BQ]/r.3 ALBQ = [ALBQ]/r.3 AQBQ = [AQBQ]/r.3 

The sum of squares due to various factorial effects is given by 

SSAL = 
 A

r.2.3

L

2

; SSAq = 
 A

r.6.3

Q

2

; SSBL = 
 B

r.3.2

L

2

;  

SSALBL = 
 A B

r.2.2

L L

2

; 

SSAQBL = 
 A B

r.6.2

Q L

2

; SSBQ= 
 B

r.3.6

Q

2

; SSALBQ = 
 A B

r..2.6

L Q

2

;  

SSAQBQ = 
 A B

r.6.6

Q Q

2

; 

If a RBD is used with r-replications then the outline of analysis of variance is  

ANOVA 

Sources of Variation D.f SS MS 

Between Replications r-1 SSR MSR=SSR/(r-1) 

Between treatments 32-1=8 SST MST=SST/8 

A 2 SSA MSA=SSA/2 

AL 1 SSAL MSAL= SSAL 

AQ 1 SSAQ          MSAQ=SSAQ 

B 2 SSB MSB=SSB/2 

BL 1 SSBL MSBL= SSBL 

BQ 1 SSBQ MSBQ=SSBQ 

AB 4 SSAB MSAB=SSAB/2 

ALBL 1 SSALBL MSALBL=SSALBL 

AQBL 1 SSAQBL MSAQBL=SSAQBL 

ALBQ 1 SSALBQ MSALBQ=SSALBQ 

AQBQ 1 SSAQBQ MSAQBQ=SSAQBQ 

Error  (r-1)(32-`1) 

=8(r-1) 

SSE MSE=SSE/8(r-1) 

Total r.32-1=9r-1 TSS  
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In general, for n factors each at 3 levels, the sum of squares due to any linear 

(quadratic) main effect is obtained by dividing the square of the linear (quadratic) 

main effect total by r.2.3n-1(r.6.3n-1). Sum of squares due to a ‘p’ factor interaction is 

given by taking the square of the total of the particular interaction component divided 

by r.(a1 a2 ...ap). 3
n-p, where a1, a2,...,ap are taken as 2 or 6 depending upon the linear or 

quadratic effect of particular factor.  

4.   Confounding in Factorial Experiments 

When the number of factors and/or levels of the factors increase, the number of 

treatment combinations increase very rapidly and it is not possible to accommodate 

all these treatment combinations in a single homogeneous block. For example, a 25 

factorial would have 32 treatment combinations and blocks of 32 plots are quite big to 

ensure homogeneity within them. A new technique is therefore necessary for 

designing experiments with a large number of treatments. One such device is to take 

blocks of size less than the number of treatments and have more than one block per 

replication. The treatment combinations are then divided into as many groups as the 

number of blocks per replication. The different groups of treatments are allocated to 

the blocks. 

There are many ways of grouping the treatments into as many groups as the number 

of blocks per replication. It is known that for obtaining the interaction contrast in a 

factorial experiment where each factor is at two levels, the treatment combinations are 

divided into two groups.  Such two groups representing a suitable interaction can be 

taken to form the contrasts of two blocks each containing half the total number of 

treatments. In such case the contrast of the interaction and the contrast between the 

two block totals are given by the same function. They are, therefore, mixed up and 

can not be separated.  In other words, the interaction has been confounded with the 

blocks. Evidently the interaction confounded has been lost but the other interactions 

and main effects can now be estimated with better precision because of reduced block 

size. This device of reducing the block size by taking one or more interaction 

contrasts identical with block contrasts is known as confounding. Preferably only 

higher order interactions, that is, interactions with three or more factors are 

confounded, because their loss is immaterial. As an experimenter is generally 

interested in main effects and two factor interactions, these should not be confounded 

as far as possible. 
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When there are two or more replications, if the same set of interactions are 

confounded in all the replications, confounding is called complete and if different sets 

of interaction are confounded in different replications, confounding is called partial. 

In complete confounding all the information on confounded interactions are lost. But 

in partial confounding, the confounded interactions can be recovered from those 

replications in which they are not confounded.   

Advantages of Confounding 

It reduces the experimental error considerably by stratifying the experimental material 

into homogeneous subsets or subgroups. The removal of the variation among 

incomplete blocks (freed from treatments) within replicates results in smaller error 

mean square as compared with a RBD, thus making the comparisons among some 

treatment effects more precise. 

Disadvantages of Confounding 

 In the confounding scheme, the increased precision is obtained at the cost of 

sacrifice of information (partial or complete) on certain relatively unimportant 

interactions. 

 The confounded contrasts are replicated fewer times than are the other contrasts 

and as such there is loss of information on them and they can be estimated with a 

lower degree of precision as the number of replications for them is reduced. 

 An indiscriminate use of confounding may result is complete or partial loss of 

information on the contrasts or comparisons of greatest importance. As such the 

experimenter should confound only those treatment combinations or contrasts 

which are of relatively less or of importance at all. 

 The algebraic calculations are usually more difficult and the statistical analysis is 

complex, especially when some of the units (observations) are missing. 

Confounding in 23 Experiment 

Although 23 is a factorial with small number of treatment combinations but for 

illustration purpose, this example has been considered. Let the three factors be A, B, 

C each at two levels. 
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    Factorial Effects  

Treat. Combinations  

A B C AB AC BC ABC 

(1) - - - + + + - 

(a) + - - - - + + 

(b) - + - - + - - 

(ab) + + - + - - - 

(c) - - + + - - + 

(ac) + - + - + - - 

(bc) - + + - - + - 

(abc) + + + + + + + 

 

The various factorial effects are as follows: 

A   = (abc) + (ac) + (ab) + (a) - (bc) - (c) -  (b) - (1) 

B     = (abc) + (bc) + (ab) + (b) - (ac) - (c) -  (a) - (1) 

C     = (abc) + (bc) + (ac) + (c) - (ab) - (b) -  (a) - (1) 

AB   = (abc) +  (c)  + (ab) + (1) - (bc) - (ac) - (b) - (a) 

AC   = (abc) + (ac) + (b)   + (1) - (bc) - (c) -  (ab) - (a) 

BC   = (abc) + (bc) + (a)   + (1) - (ac) - (c) -  (ab) - (b) 

ABC = (abc) +  (c)  + (b)   + (a) - (bc) - (ac) - (ab) - (1) 

Let the highest order interaction ABC be confounded and we decide to use two blocks 

of 4 units (plots) each per replicate. 

Thus in order to confound the interaction ABC with blocks all the treatment 

combinations with positive sign are allocated at random in one block and those with 

negative signs in the other block.  Thus the following arrangement gives ABC 

confounded with blocks and hence we loose information on ABC. 

   Replication I  

 Block 1: (1) (ab) (ac) (bc) 

 Block 2 : (a) (b) (c) (abc) 

It can be observed that the contrast estimating ABC is identical to the contrast 

estimating block effects.  

The other six factorial effects viz. A, B, C, AB, AC, BC each contain two treatments 

in block 1 (or 2) with the  positive signs and two with negative sign so that they are 

orthogonal with block totals and hence these differences are not influenced among 

blocks and can thus be estimated and tested as usual without any difficulty. Whereas 
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for confounded interaction, all the treatments in one group are with positive sign and 

in the other with negative signs. 

Similarly if AB is to be confounded, then the two blocks will consists of  

Block 1  (abc) (c) (ab) (1) 

Block 2 (bc) (ac) (b) (a) 

Here AB is confounded with block effects and cannot be estimated independently 

whereas all other effects A, B, C, AC, Bc and ABC can be estimated independently. 

When an interaction is confounded in one replicate and not in another, the experiment 

is said to be partially confounded.  Consider again 23 experiment with each replicate 

divided into two blocks of 4 units each. It is not necessary to confound the same 

interaction in all the replicates and several factorial effects may be confounded in one 

single experiment. For example, the following plan confounds the interaction ABC, 

AB, BC and AC in replications I, II, III and IV respectively. 

Rep. I 

Block 1      Block 2 

Rep. II 

Block 3       Block 4 

Rep. III 

Block 5       Block 6 

Rep. IV 

Block 7       Block 

8 

(abc) (ab) (abc) (ac) (abc) (ab) (abc) (ab) 

(a) (ac) (c) (bc) (bc) (ac) (ac) (bc) 

(b) (bc) (ab) (a) (a) (b) (b) (a) 

(c) (1) (1) (b) (1) (c) (1) (c) 

 

In the above arrangement, the main effects A, B and C are orthogonal with block 

totals and are entirely free from block effects. The interaction ABC is completely 

confounded with blocks in replicate 1, but in the other three replications the ABC is 

orthogonal with blocks and consequently an estimate of ABC may be obtained from 

replicates II, III and IV.  Similarly it is possible to recover information on the other 

confounded interactions AB (from I, III, IV), BC (from I, II, IV) and AC (from I, II, 

III). Since the partially confounded interactions are estimated from only a portion of 

the observations, they are determined with a lower degree of precision than the other 

effects. 

For carrying out the statistical analysis, the various factorial effects and their S.S. are 

estimated in the usual manner with the modification that for completely confounded 

interactions neither the S.S due to confounded interaction is computed nor it is 

included in the ANOVA table. The confounded component is contained in the (2p-1) 
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degrees of freedom (D.f.) (in case of p replicates) due to blocks. The partitioning of 

the d.f for a 23 completely confounded factorial is as follows. 

Source of Variation D.f  

Blocks 2p-1 

A 1 

B 1 

C 1 

AB 1 

AC 1 

BC 1 

Error 6(p-1) 

Total 8p-1 

In general for a 2n completely confounded factorial in p replications, the different 

d.f’s are given as follows 

Source of Variation D.f  

Replication p-1 

Blocks within replication p(2n-r-1) 

Treatments 2n-1-(2n-r-1) 

Error By subtraction 

Total p2n-1 

The treatment d.f has been reduced by 2n-r-1 as this is the total d.f confounded per 

block. 

  In case of partial confounding, we can estimate the effects confounded in one 

replication from the other replication in which it is not confounded. In (2n, 2r) 

factorial experiment with p replications, following is the splitting of d.f’s. 

Source of Variation D.f  

Replication p-1 

Blocks within 

replication 

p(2n-r-1) 

Treatments 2n-1 

Error By subtraction 

Total p2n-1 
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The S.S. for confounded effects are to be obtained from those replications only in 

which the given effect is not confounded.  

5.   Fractional Factorial 

In a factorial experiment, as the number of factors to be tested increases, the complete 

set of factorial treatments may become too large to be tested simultaneously in a 

single experiment. A logical alternative is an experimental design that allows testing 

of only a fraction of the total number of treatments. A design uniquely suited for 

experiments involving large number of factors is the fractional factorial. It provides a 

systematic way of selecting and testing only a fraction of the complete set of factorial 

treatment combinations. In exchange, however, there is loss of information on some 

pre-selected effects. Although this information loss may be serious in experiments 

with one or two factors, such a loss becomes more tolerable with large number of 

factors. The number of interaction effects increases rapidly with the number of factors 

involved, which allows flexibility in the choice of the particular effects to be 

sacrificed. In fact, in cases where some specific effects are known beforehand to be 

small or unimportant, use of the fractional factorial results in minimal loss of 

information.  

In practice, the effects that are most commonly sacrificed by use of the fractional 

factorial are high order interactions - the four-factor or five-factor interactions and at 

times, even the three-factor interaction. In almost all cases, unless the researcher has 

prior information to indicate otherwise one should select a set of treatments to be 

tested so that all main effects and two-factor interactions can be estimated. 

In forestry research, the fractional factorial is to be used in exploratory trials where 

the main objective is to examine the interactions between factors. For such trials, the 

most appropriate fractional factorials are those that sacrifice only those interactions 

that involve more than two factors. 

With the fractional factorial, the number of effects that can be measured decreases 

rapidly with the reduction in the number of treatments to be tested. Thus, when the 

number of effects to be measured is large, the number of treatments to be tested, even 

with the use of fractional factorial, may still be too large. In such cases, further 

reduction in the size of the experiment can be achieved by reducing the number of 

replications. Although the use of fractional factorial without replication is uncommon 

in forestry experiments, when fractional factorial is applied to exploratory trials, the 

number of replications required can be reduced to the minimum.  
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Another desirable feature of fractional factorial is that it allows reduced block size by 

not requiring a block to contain all treatments to be tested. In this way, the 

homogeneity of experimental units within the same block can be improved. A 

reduction in block size is, however, accompanied by loss of information in addition to 

that already lost through the reduction in number of treatments.  
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Introduction 

Rapid advances in data collection and storage technology have enables organizations 

to accumulate vast amounts of data. However, extracting useful information has 

proven extremely challenging. Often, traditional data analysis tools and techniques 

cannot be used because of the massive size of a data set. Sometimes, the non-

traditional nature of the data means that traditional approaches cannot be applied even 

if the data set is relatively small. In other situations, the questions that need to be 

answered cannot be addressed using existing data analysis techniques, and thus, new 

methods need to be developed. 

Data mining is a technology that blends traditional data analysis methods with 

sophisticated algorithms for processing large volumes of data. It has also opened up 

exiting opportunities for exploring and analyzing new types of data and for analyzing 

old types of data in new ways. Data Mining is the process of automatically 

discovering useful information in large data repositories. Data mining techniques are 

deployed to scour large databases in order to find novel and useful patterns that might 

otherwise remain unknown. They also provide capabilities to predict the outcome of a 

future observation, such as predicting whether a newly arrived customer will spend 

more than Rs.1000 at a department store. 

Data mining, or knowledge discovery, has become an indispensable technology for 

businesses and researchers in many fields. Drawing on work in such areas as 

statistics, machine learning, pattern recognition, databases, and high performance 

computing, data mining extracts useful information from the large data sets now 

available to industry and science. 

Knowledge Discovery in Database 

The transformation of data into knowledge has been using mostly manual methods for 

data analysis and interpretation, which makes the process of pattern extraction of 

databases too expensive, slow and highly subjective, as well as unthinkable if the 

volume of data is huge. The interest in automating the analysis process of great 

volumes of data has been fomenting several research projects in an emergent field 

called Knowledge Discovery in Databases (KDD).  KDD is the process of knowledge 
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extraction from great masses of data with the goal of obtaining meaning and 

consequently understanding of the data, as well as to acquire new knowledge. This 

process is very complex because it consists of a technology composed of a group of 

mathematical and technical models of software that are used to find patterns and 

regularities in the data.  

Knowledge discovery in databases (KDD) has been defined as the process of 

discovering valid, novel, and potentially useful patterns from data. Let us examine 

these terms in more details:  

 Data is a set of facts F (e.g. cases in databases). 

 Pattern is an expression E in a language L describing facts in a subset FEof F. 

E is called a pattern if it simpler than the enumeration of all facts in FE. 

 Process: Usually in KDD is a multi step process, which involves data 

preparation, search for patterns, knowledge evaluation, and refinement 

involving iteration after modification. The process is assumed to be non-

trivial-that is, to have some degree of search autonomy. 

 Validity: The discovered patterns should be valid on new data with some 

degree of certainty.  

 Novel: The patterns are novel (at least to the system). Novelty can be 

measured with respect to changes in data (by comparing current values to 

previous or expected values) or knowledge (how a new finding is related to 

old ones). In general, it can be measured by a function N (E, F), which can be 

a Boolean function or a measure of degree of novelty or unexpectedness.  

 Potentially useful: The patterns should potentially lead to some useful actions, 

as measured by some utility function. Such a function U maps expressions in 

L to a partially or totally ordered measure space MU: hence u=U (E,F). 

 Ultimately Understandable: A goal of KDD is to make patterns 

understandable to humans in order to facilitate a better understanding of the 

underlying data. While this is difficult to measure precisely, one frequent 

substitute is the simplicity measure. Several measure of simplicity exist, and 

they range form the purely syntactic to the semantic. It is assumed that this is 

measured, if possible, by a function S mapping expressions E in L to a 

partially or totally ordered space MS: hence, s= S (E, F).  
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An important notion, called interestingness, is usually taken as an overall measure of 

pattern value, combining validity, novelty, usefulness, and simplicity. Some KDD 

systems have an explicit interestingness function i = I (E, F, C, N, U, S) which maps 

expressions in L to a measure space MI. Other systems define interestingness 

indirectly via an ordering of the discovered patterns.  

Based on the notions given above, we can now make an attempt to define knowledge. 

Knowledge: A pattern E is called knowledge if for some user-specified threshold i 

MI, I (E, F, C, N, U, S) > i.  

This definition of knowledge is purely user-oriented and determined by whatever 

functions and thresholds the user chooses.  

To extract knowledge from databases, it is essential that the Expert follows some 

steps or basic stages in order to find a path from the raw data to the desired 

knowledge. The KDD process organizes these stages in a sequential and iterative 

form. In this way, it would be interesting if the obtained results of these steps were 

analyzed in a more interactive and friendly way, seeking a better evaluation of these 

results. The process of knowledge extraction from databases combines methods and 

statistical tools, machine learning and databases to find a mathematical and/or logical 

description, which can be eventually complex, of patterns and regularities in data. The 

knowledge extraction from a large amount of data should be seen as an interactive 

and iterative process, and not as a system of automatic analysis.  

The interactivity of the KDD process refers to the greater understanding, on the part 

of the users of the process, of the application domain. This understanding involves the 

selection of a representative data subset, appropriate pattern classes and good 

approaches to evaluating the knowledge. For a better understanding the functions of 

the users that use the KDD process can be divided in three classes:  

(a) Domain Expert, who should possess a large understanding of the application 

domain;  

(b) Analyst, who executes the KDD process and, therefore, he should have a lot 

of knowledge of the stages that compose this process and  

(c) Final User, who does not need to have much knowledge of the domain, the 

Final User uses knowledge extracted from the KDD process to aid him in a 

decision-making process. 

KDD Process: Knowledge discovery from data can be understood as a process that 

contains, at least, the steps of application domain understanding, selection and 



  

 
 

189 

preprocessing of data, Data Mining, knowledge evaluation and consolidation and use 

of the knowledge. The KDD process is interactive and iterative, involving numerous 

steps with many decisions being made by the user. Practical view of the KDD process 

emphasizing the interactive nature of the process outlines the following basic steps:  

 Data Selection: Where data relevant to the analysis task are retrieved from the 

database. 

 Data Preprocessing: To remove noise and inconsistent data which is called 

cleaning and integration of data that is combining multiple data sources. 

 Data Transformation: Where data are transformed or consolidated into forms 

appropriate for mining by performing summary or aggregation operations. 

 Data Mining: An essential process where intelligent methods are applied in 

order to extract data patterns. 

 Pattern Evaluation: To identify the truly interesting patterns representing 

knowledge based on some interestingness measures. 

 Knowledge Presentation: Where visualization and knowledge representation 

techniques are used to present the mined knowledge to the user. 

The several steps of KDD have been shown in the following figure. 

 

Figure: Various Steps of KDD process 

The KDD process begins with the understanding of the application domain, 

considering aspects such as the objectives of the application and the data sources. 

Next, a representative sample (e.g. using statistical techniques) is removed from 

database, preprocessed and submitted to the methods and tools of the Data Mining 

stage with the objective of finding patterns/models (knowledge) in the data. This 

knowledge is then evaluated as to its quality and/or usefulness, so that it can be used 

to support a decision-making process. 

The data mining component of the KDD process is mainly concerned with means by 

which patterns are extracted and enumerated from the data. Knowledge discovery 

involves the evaluation and possibly interpretation of the patterns to make the 
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decision of what constitutes knowledge and what does not. It also includes of 

encoding schemes, preprocessing, sampling and projections of the data prior to the 

data mining step. 

Data Mining 

Generally, Data Mining is the process of analyzing data from different perspectives 

and summarizing it into useful information. Data Mining can be defined as "the 

nontrivial extraction of implicit, previously unknown, and potentially useful 

information from data” and "the science of extracting useful information from large 

data sets or databases". Although it is usually used in relation to analysis of data, data 

mining, like artificial intelligence, is an umbrella term and is used with varied 

meaning in a range of wide contexts. It is usually associated with a business or other 

organization's need to identify trends. 

Data Mining involves the process of analyzing data to show patterns or relationships; 

sorting through large amounts of data; and picking out pieces of relative information 

or patterns that occur e.g., picking out statistical information from some data. 

The Data-Mining Communities: As data-mining has become recognized as a 

powerful tool, several different communities have laid claim to the subject: 

1. Statistics. 

2. AI, where it is called \machine learning." 

3. Researchers in clustering algorithms. 

4. Visualization researchers. 

5. Databases.  

In a sense, data mining can be thought of as algorithms for executing very complex 

queries on non-main-memory data. 

Motivating Challenges 

Traditional data analysis techniques have often encountered practical difficulties in 

meeting the challenges posed by new data sets. The following are some of the specific 

challenges that motivated the development of data mining: 

 Scalability: Because of advances in data generation and collection datasets 

with sizes of gigabytes, terabytes, or even petabytes are becoming common. If 

data mining algorithms are to handle these massive datasets, then they must be 

scalable. Many data mining algorithms employ special search strategies to 

handle exponential search problems. Scalability may also require the 

implementation of novel data structures to access individual records in an 
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efficient manner. For instance, out-of-core algorithms may be necessary when 

processing data sets that cannot fit into main memory. Scalability can also be 

improved by using sampling or developing parallel and distributed algorithms. 

 High Dimensionality: It is now common to encounter data sets with hundreds 

or thousands of attributes instead of the handful common a few decades ago. 

In bioinformatics, progress in microarray technology has produced gene 

expression data involving thousands of features. Data sets with temporal or 

spatial components also tend to have high dimensionality. For example, 

consider a data set that contains measurements of temperature at various 

locations. It the temperature measurements are taken repeatedly for an 

extended period, the number of dimensions (features) increases in proportion 

to the number of measurements taken. Traditional data analysis techniques 

that were developed for low-dimensional data often do not work well for such 

high-dimensional data. Also, for some data analysis algorithms, the 

computational complexity increase rapidly as the dimensionality (the number 

of features) increases. 

 Heterogeneous and Complex Data: Traditional data analysis methods often 

deal with data sets containing attributes of the same type, either continuous or 

categorical. As the role of data mining in business, science, medicine, and 

other fields has grown, so has the need for techniques that can handle 

heterogeneous attributes. Recent years have also seen the emergence of more 

complex data objects. Examples of such non-traditional types of data include 

collections of Web pages containing semi-structured text and hyper lines; 

DNA data with sequential and three-dimensional structure; and climate data 

that consists of time series measurements (temperature, pressure, etc.) at 

various locations on the Earth’s surface. Techniques developed for mining 

such complex objects should take into consideration relationships in the data, 

such as temporal and spatial autocorrelation, graph connectivity, and parent-

child relationships between the elements in semi-structures text and XML 

documents. 

 Data Ownership and Distribution: Sometimes, the data needed for an 

analysis is not stored in one location or owned by one organization. Instead, 

the data is geographically distributed among resources belonging to multiple 
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entities. This requires the development of distributed data mining techniques. 

Among the key challenges faced distributed data mining algorithms include 

(1) how to reduce the amount of communication needed to perform the 

distributed computation, (2) how to effectively consolidate the data mining 

results obtained from multiple sources, and (3) how to address data security 

issues. 

 Non-Traditional Analysis: The traditional statistical approach is based on a 

hypothesize-the test paradigm. In other words, a hypothesis is proposed, an 

experiment is designed to gather the data, and then the data is analysed with 

respect to the hypothesis. Unfortunately, this process is extremely labor-

intensive. Current data analysis tasks often require the generation and 

evaluated of thousands of hypotheses, and consequently, the development of 

some data mining techniques has been motivated by the desire to automate the 

process of hypothesis generation and evaluation. Furthermore, the data sets 

analyzed in data mining are typically nor the result of a carefully designed 

experiments and often represent opportunistic samples of the data, rather than 

random samples. Also, the data sets frequently involve non-traditional types of 

data and data distributions. 

Data Preprocessing 

Data preprocessing is a broad area and consists of a number of different strategies and 

techniques that are interrelated in complex ways. We will present some of the most 

important ideas and approaches, and try to point the interrelationships among them. 

The preprocessing techniques fall into two categories: selecting data objects and 

attributes for the analysis or creating/ changing the attributes. In both cases the goal is 

to improve the data mining analysis with respect to time, cost, and quality. 

Specifically, following are the important preprocessing techniques: 

 Aggregation: Sometimes “less is more” and this is the case with aggregation, 

the combining of two or more objects into a single object.. Consider a dataset 

consisting of transactions (data objects) recording the daily sales of products 

in various store locations for different days over the course of a year. One way 

of aggregate the transactions of this data set is to replace all the transactions of 

a single store with a single storewide transaction. This reduces the hundreds or 
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thousands of transactions that occur daily at a specific store to a single daily 

transaction, and the number of data objects is reduced to the number of stores. 

  An obvious issue is how an aggregate transaction is created; i.e. how the 

values  of each attribute are combined across all the records corresponding to a 

particular location to create the aggregate transaction that represents the sales of a 

single store or date. Quantitative attributes, such as price, are typically aggregated by 

taking a sum or an average. A qualitative attribute, such as item, can either be omitted 

or summarized as the set of all the items that were sold at that location. 

 Sampling:  Sampling is a commonly used approach for selectinga subset of 

the data objects to be analyzed. In statistics, it has long been used for both the 

preliminary investigation of the data and the final data analysis. Sampling can 

also be very useful in data mining. However, the motivations for sampling in 

statistics and data mining are often different. Statisticians use sampling 

because obtaining the entire set of data of interest is too expensive or time 

consuming to process all the data. In some cases, using a sampling algorithm 

can reduce the data size to the point where a better, but more expensive 

algorithm can be used. 

 Dimensionality reduction: Datasets can have a large number of feature. 

Consider set documents, where each documents is represented by a vector 

whose components are the frequencies with which each word occurs in the 

document. In such cases, there are typically thousands or tens of thousands of 

attributes (components), one for each word in the vocabulary. As another 

example, consider a set of time series consisting of the daily closing price of 

various stocks over a period of 30 days. In this case, the attributes, which are 

the prices on specific days again number in the thousands. 

 There is variety of benefits to dimensionality reduction. A key benefit is that  

many data mining algorithms work better if the dimensionality — the number of 

attributes in the data—is lower. This is partly because the dimensionality reduction 

can eliminateirrelevant features and reduce noise and partly because of the curse of 

dimensionality. Another benefit of dimensionality reduction is that a reduction of 

dimensionality can lead to a more understandable model because the model may 

involve fewer attributes. Also, dimensionality reduction may allow the data to be 

more easily visualized. Even if dimensionality reduction doesn’t reduce the data to 
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two or three dimensions, data is often visualized by looking at pairs or triplets of 

attributes, and the number of such combinations is greatly reduced.  

Finally, the amount of time and memory required by the data mining algorithms is 

reduced with a reduction in dimensionality. 

 Feature subset selection:   The term dimensionality reduction is often those 

techniques that reduce the dimensionality of data set by creating new attributes 

that are a combination of the old attributes. The reduction of dimensionality by 

selecting new attributes that are a subset of the old is known as feature subset 

selection or feature selection. While it might seem that such as approach 

would lose information, this is not the case if redundant and irrelevant features 

are present. Redundant features duplicate much or all the information 

contained in one or more other attributes. For example, the purchase price of a 

product and ge amount of sales tax paid contain much of the same 

information. Irrelevant features contain almost no useful information for the 

data mining task at hand. For instance, student’s ID numbers are irrelevant to 

the task of predicting student’s grade point averages. Redundant and irrelevant 

features can reduce classification accuracy and the quality of the clusters that 

are found. 

 Feature creation: It is frequently possible to create, from the original 

attributes, a new set of attributes that captures the important information in a 

data set much more effectively. Furthermore, the number of new attributes can 

be smaller than the number of original attributes, allowing us to reap all the 

benefits of dimensionality reduction. Three related methodologies for creating 

new attributes are: feature extraction, mapping the data to a new space, and 

feature construction. 

 Discretization and Binarization: Some data mining algorithms, especially 

certain classification algorithms, require that the data be in the form of 

categorical attributes. Algorithms that fine association patterns require that the 

data be in the form of binary attributes. Thus, it is often necessary to transform 

a continuous attribute into a categorical attribute (discretization), and both 

continuous and discrete attributes may need to be transformed into one or 

more binary attributes (binarization). Additionally, if a categorical attribute 

has a large number of values (categories), or some values occur infrequently, 
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then it may be beneficial for certain data mining tasks to reduce the number of 

categories by combining some of the values. 

 Variable transformation: A variable transformation refers to a 

transformation that is applied to all the values of a variable. In other words, for 

each subject, the transformation is applied to the value of the variable for that 

object. For example, if only the magnitude of a variable is important, then the 

values of the variable can be transformed by taking the absolute value.  

What kinds of Data can be Mined? 

Data mining can be applied to any kind of data as long as the data are meaningful for 

a target application. The most basic forms of data for mining applications are database 

data, data warehouse data, and transactional data. Data mining can also be applied to 

other forms of data (e.g., data streams, ordered/sequence data, graph or networked 

data, spatial data, text data, multimedia data, and the world wide web data). 

Techniques for mining of these kinds of data may be different. Data mining will 

certainly continue to embrace new data types as they emerge. 

Tasks in Classical Data Mining 

The two “high-level” primary goals of data mining in practice tend to be prediction 

and description. Data Mining tasks are generally divided into two major categories: 

Predictive Tasks: the objective of these tasks is to predict the value of a particular 

attribute based on the values of other attributes. The attribute to be predicted is 

commonly known as the target or dependent variable, while the attributes used for 

making the prediction are known as the explanatory or independent variables. 

Descriptive Tasks: Here, the objective is to derive patterns (correlations, trends, 

clusters, trajectories and anomalies) that summarize the underlying relationships in 

data. Descriptive data mining tasks are often explanatory in nature and frequently 

require post processing techniques to validate and explain and results. 

The relative importance of prediction and description for particular data mining 

applications can vary considerably. However, in context of KDD, description tends to 

be more important than prediction. 

Discovering patterns and rules: Other data mining applications are concerned with 

pattern detection. One example is spotting fraudulent behavior by detecting regions of 

the space defining the different types of transactions where the data points 

significantly different from the rest. Another use is in astronomy, where detection of 

unusual stars or galaxies may lead to the discovery of previously unknown 
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phenomenon. Yet another is the task of finding combinations of items that occur 

frequently in transaction databases (e.g., grocery products that are often purchased 

together). This problem has been the focus of much attention in data mining and has 

been addressed using algorithmic techniques based on association rules. 

A significant challenge here, one that statisticians have traditionally dealt with in the 

context of outlier detection, is deciding what constitutes truly unusual behavior in the 

context of normal variability. In high dimensions, this can be particularly difficult. 

Background knowledge and human interpretation can be invaluable.  

To achieve the goals of prediction and description, following data mining tasks are 

carried out. 

 Classification 

 Association Rule Mining 

 Clustering 

 Evolution Analysis 

 Outlier Detection 

 Dependency Modeling 

 Change and Deviation Detection 

1. Classification: Classification, which is the task of assigning objects to one of 

several predefined categories, is a pervasive problem that encompasses many diverse 

applications. Examples include, detecting spam email messages based upon the 

message header and content, categorizing cells as malignant or benign based upon the 

results of MRI scans, and classifying galaxies based upon their shapes. 

The input data for a classification task is a collection of records. Each record, also 

known as an instance or example, is categorized by a tuple (x, y), where x is the 

attribute set and y is a special attribute, designated as the class label (also known as 

category or the target attribute). The attributes set in a dataset for classification can be 

either discrete or continuous but the class label must be a discrete attribute. This is the 

key characteristic that distinguishes classification from regression, a predictive 

modeling task in which y is a continuous attribute. 

Definition (classification): Classification is the task of learning a target function f 

that maps each attribute set x to one of the predefined class labels y. 

The target function is also known informally as a classification model. A 

classification model is useful for the following purposes. 



  

 
 

197 

Descriptive Modeling:  A classification model can serve as an explanatory tool to 

distinguish between objects of different classes. For example, it would be useful-for 

both biologists and others-to have a descriptive model that summarizes that data 

shown… and explains what features define a vertebrate as a mammal, reptile, bird, 

fish, and amphibian. 

Predictive Modeling: A classification model can also be used to predict the class label 

of unknown records. A classification model can be treated as a black box that 

automatically assigns a class label when presented with the attribute set of an 

unknown record.  

Classification techniques are most suited for predicting or describing data sets with 

binary or nominal categories. They are less effective for ordinal categories (e.g., to 

classify a person as a member of high, medium or low income group) because they do 

not consider the implicit order among the categories. Other forms of relationships, 

such as subclass-super class relationships among categories (e.g., humans and apes 

are primates, which in turn is a subclass of mammals) are also ignored.  

The classifier-training algorithm uses pre-classified examples to determine the set of 

parameters required for proper discrimination. The algorithm then encodes these 

parameters into a model called a classifier. Types of classification models: 

 Classification by decision tree induction 

 Bayesian Classification 

 Neural Networks 

 Support Vector Machines (SVM) 

 Classification Based on Associations 

2. Association Rule Mining: Association rule mining, one of the most important and 

well researched techniques of data mining, was first introduced in 1993.It aims to 

extract interesting correlations, frequent patterns, associations or casual structures 

among sets of items in the transaction databases or other data repositories. 

Association rules are widely used in various areas such as telecommunication 

networks, market and risk management, inventory control etc. Various association 

mining techniques and algorithms will be briefly introduced and compared later. 

Association rule mining is to find out association rules that satisfy the predefined 

minimum support and confidence from a given database. The problem is usually 

decomposed into two sub-problems. One is to find those item sets whose occurrences 
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exceed a predefined threshold in the database; those item sets are called frequent or 

large item sets. The second problem is to generate association rules from those large 

item sets with the constraints of minimal confidence. Suppose one of the large item 

sets is Lk, Lk = {I1, I2, … , Ik}, association rules with this item sets are generated in the 

following way: the first rule is {I1, I2, … , Ik-1}⇒{Ik}, by checking the confidence this 

rule can be determined as interesting or not. Then other rule are generated by deleting 

the last items in the antecedent and inserting it to the consequent, further the 

confidences of the new rules are checked to determine the interestingness of them. 

Those processes iterated until the antecedent becomes empty. Since the second sub 

problem is quite straight forward, most of the researches focus on the first sub 

problem. The first sub-problem can be further divided into two sub-problems: 

candidate large item sets generation process and frequent item sets generation 

process. We call those item sets whose support exceed the support threshold as large 

or frequent item- sets, those item sets that are expected or have the hope to be large or 

frequent are called candidate item sets. In many cases, the algorithms generate an 

extremely large number of association rules, often in thousands or even millions. 

Further, the association rules are sometimes very large. It is nearly impossible for the 

end users to comprehend or validate such large number of complex association rules, 

thereby limiting the usefulness of the data mining results. Several strategies have been 

proposed to reduce the number of association rules, such as generating only 

“interesting” rules, generating only “non redundant” rules, or generating only those 

rules satisfying certain other criteria such as coverage, leverage, lift or strength.  

Methods for association rule mining: 

  Multilevel association rule 

  Multidimensional association rule 

  Quantitative association rule 

3. Clustering: Clustering or cluster analysis divides the data into groups (clusters) 

that are meaningful, useful or both. If meaningful groups are the goal, then the 

clusters should capture the natural structure of the data. In some cases, however, 

cluster analysis is only a useful starting point for other purposes, such as data 

summarization. Cluster analysis groups data objects based only on information found 

in the data that describes the objects and their relationships. The goal is that the 

objects within a group be similar (or related) to one another and different from (or 
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unrelated to) the objects in other groups. The greater the similarity (or homogeneity) 

within a group and the greater the difference between groups, the better or more 

distinct the clustering. There are various clustering methods:  

 Partitioning Methods 

 Hierarchical Agglomerative (divisive) methods 

 Density based methods 

 Grid-based methods 

 Model-based methods 

4. Evolution Analysis: Data evolution analysis describes and models regularities or 

trends for objects whose behaviors changes over time. Although this may include 

characterization, discrimination, association, classification, or clustering of time-

related data, distinct feature of such an analysis include time-series data analysis, 

sequence or periodicity pattern matching, and similarity-based data analysis. 

5. Outlier Detection: A database may contain data objects that do not comply with 

the general behavior or model of the data. Theses data objects are outliers. Most data 

mining methods discard outliers as noise as exceptions. However, in some 

applications such as fraud detection, the rare events can be more interesting than the 

more regularly occurring ones. The analysis of outlier data is referred to as outlier 

mining. 

6. Dependency modeling: Dependency modeling consists of finding a model that 

describes significant dependencies between variables. Dependency models exist at 

two levels: (1) the structural level of the model specifies (often in graphic form) 

which variables are locally dependent on each other and (2) the quantitative level of 

the model specifies the strengths of the dependencies using some numeric scale. For 

example, probabilistic dependency networks use conditional independence to specify 

the structural aspect of the model and probabilities or correlations to specify the 

strengths of the dependencies. Probabilistic dependency networks are increasingly 

finding applications in areas as diverse as the development of probabilistic medical 

expert systems from databases, information retrieval, and modeling of the human 

genome. 

7. Change and deviation detection: Change and deviation detection focuses on 

discovering the most significant changes in the data from previously measured or 

normative values. 
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Components of Data Mining Algorithms 

The data mining algorithms that address various data mining tasks have four basic 

components: 

1. Model or Pattern Structure: Determining the underlying structure of 

functional forms that we seek from the data. 

2. Score Function: Score functions are for judging the quality of a fitted model. 

Score Functions quantify how well a model or parameter structure fits a given 

data set. In an ideal world the choice of score function would precisely reflect 

the utility (i.e., the true expected benefit) of a particular predictive model. In 

practice, however, it is often difficult to specify precisely the true utility of a 

model’s predictions. Hence, simple, “generic” score functions, such as least 

squares and classification accuracy are commonly used. 

3. Optimization and Search Method: Optimizing the score function and 

searching over different model and pattern structures. The score function is a 

measure of how ell aspects of the data match proposed models or patterns. 

Usually, these models or patters are described in terms of a structure, 

sometimes with unknown parameter values. The goal of optimization and 

search is to determine the structure and the parameter values that achieve a 

minimum (or maximum, depending on the context) value of the score 

function. The task of finding the “best” values of parameters in models is 

typically cast as an optimization (for estimation) problem. The task of finding 

interesting patterns (such as rules) from a large family of potential patterns is 

typically cast as a combinatorial search problem, and is, often accomplished 

using heuristic search techniques. In linear regression, a prediction rule is 

usually found by minimizing a least squares score function (the sum of 

squared errors between the prediction from a model and the observed values 

of the predicted variable). Such a score function is amenable to mathematical 

manipulation, and the model that minimizes it can be found algebraically. In 

contrast, a score function such as misclassification rate in supervised 

classification is difficult to minimize analytically. 

4. Data Management Strategy: Handling the data access efficiently during the 

search/optimization. The final component in any data mining algorithm is the 

data management strategy: the ways in which the data stored, indexed, and 

accessed. Most well-known data analysis algorithms in statistics and machine 
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learning have been developed under the assumption that all individual data 

points can be accessed quickly and efficiently in random-access 

memory(RAM), while main memory technology has improved rapidly, there 

have been equally rapid improvements in secondary (disk) and tertiary tape) 

storage technologies, to the extent that many massive data sets still reside 

largely on disk or tape and will not fit in available RAM. Thus, there will 

probably be a price to pay for accessing massive data sets, since not all data 

points can be simultaneously close to the main processor.  

Some Challenges 

A data mining system which is quick and correct on some small training sets, could 

behave completely different when applied to a larger database. A data mining system 

may work perfect for consistent data and may not perform well when a little noise is 

added to the training set. The most prominent challenges for data mining systems 

today are: 

 Noisy Data 

 Difficult Training Set 

 Databases are Dynamic 

 Databases may be Huge 

Noisy Data: In a large database, many of the attribute values will be inexact or 

incorrect. This may be due to erroneous instruments measuring some property, or 

human error when registering it. We will distinguish between two forms of noise in 

the data, both described below: 

Corrupted Values: Sometimes some of the values in the training set are altered from 

what they should have been. This may result in one or more tuples in the database 

conflict with the rules already established. The system may then regard these extreme 

values as noise, and ignore them. Alternatively, one may take the values into account 

possibly changing correct patterns recognized. The problem is that one never knows if 

the extreme values are correct or not, and the challenge is how to handle ``weird'' 

values in the best manner. 

Missing Attribute Values: One or more of the attribute values may be missing both for 

examples in the training set and for object which are to be classified. If attributes are 

missing in the training set, the system may either ignore this object totally, try to take 

it into account by for instance finding what is the missing attribute's most probable 

value, or use the value ``unknown'' as a separate value for the attribute. When an 

http://www.pvv.ntnu.no/~hgs/project/report/node23.html#SECTION00561000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node24.html#SECTION00562000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node25.html#SECTION00563000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node26.html#SECTION00564000000000000000
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attribute value is missing for an object during classification, the system may check all 

matching rules and calculate the most probable classification.  

Difficult Training Set: Sometimes the training set is not the ultimate training set due 

to several reasons. These are the following: 

Not Representative Data: If the data in the training set is not representative for the 

objects in the domain, we have a problem. If rules for diagnosing patients are being 

created and only elderly people are registered in the training set, the result for 

diagnosing a kid based on these data probably will not be good. Even though this may 

have serious consequences, we would say that not representative data is mainly a 

problem of machine learning when the learning is based on few examples. When 

using large data sets, the rules created probably are representative, as long as the data 

being classified belongs to the same domain as those in the training set. 

No Boundary Cases: To find the real differences between two classes, some boundary 

cases should be present. If a data mining system for instance is to classify animals, the 

property counting for a bird might be that it has wings and not that it can fly. This 

kind of detailed distinction will only be possible if e.g. penguins are registered. 

Limited Information: In order to classify an object to a specific class, some condition 

attributes are investigated. Sometimes, two objects with the same values for condition 

attributes have a different classification. Then, the objects have some properties which 

are not among the attributes in the training set, but still make a difference. This is a 

problem for the system, which does not have any way of distinguish these two types 

of objects.  

Databases are Dynamic: Databases usually change continually. We would like rules 

which reflect the content of the database at all times, in order to make the best 

possible classification. Many existing data mining systems require that all the training 

examples are given at once. If something is changed at a later time, the whole learning 

process may have to be conducted again. An important challenge for data mining 

systems is to avoid this, and instead change its current rules according to updates 

performed.  

Databases may be Huge: The size of databases seem to be ever increasing. Most 

machine learning algorithms have been created for handling only a small training set, 

for instance a few hundred examples. In order to use similar techniques in databases 

thousands of times bigger, much care must be taken. Having very much data is 

advantageous since they probably will show relations really existing, but the number 
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of possible descriptions of such a dataset is enormous. Some possible ways of coping 

with this problem, are to design algorithms with lower complexity and to use 

heuristics to find the best classification rules. Simply using a faster computer is 

seldom a good solution.  
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1. Introduction 

In certain research studies, development of a reliable decision rule, which can be used to 

classify new observations into some predefined categories, plays an important role. The 

existing traditional statistical methods are inappropriate to use in certain specific situations, 

or of limited utility, in addressing these types of classification problems. There are a 

number of reasons for these difficulties. First, there are generally many possible “predictor” 

variables which makes the task of variable selection difficult. Traditional statistical 

methods are poorly suited for this sort of multiple comparisons. Second, the predictor 

variables are rarely nicely distributed. Many variables (in agriculture and other real life 

situations) are not normally distributed and different groups of subjects may have markedly 

different degrees of variation or variance. Third, complex interactions or patterns may exist 

in the data. For example, the value of one variable (e.g., age) may substantially affect the 

importance of another variable (e.g., weight). These types of interactions are generally 

difficult to model and virtually impossible to model when the number of interactions and 

variables becomes substantial. Fourth, the results of traditional methods may be difficult to 

use. For example, a multivariate logistic regression model yields a probability for different 

classes of the dependent variable, which can be calculated using the regression coefficients 

and the values of the explanatory variable. But practitioners generally do not think in terms 

of probability but, rather in terms of categories, such as “presence” versus “absence.” 

Regardless of the statistical methodology being used, the creation of a decision rule 

requires a relatively large dataset.  

Classification methods include the conventional clustering methods (e.g. K-means), 

discriminant function method and SOFMs while predictive models include decision trees 

(e.g., CART - Classification And Regression Trees), neural networks (the most popular 

type of architectures being MLP – MultiLayer Perceptron) and statistical models (e.g. MLR 

- Multiple Linear Regression, Logistic regression etc.). Decision trees are nothing but 

classification systems that predict or classify future observations based on a set of decision 

rules and are sometimes called rule induction methods because the reasoning process 

behind them is clearly evident when browsing the trees. Neural network models are used 
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when the underlying relationship between the different variables in the system are unknown 

(which are complex and typically non-linear). Self-Organizing Feature Maps (SOFMs) also 

known as Kohonen neural networks which comes under the category of unsupervised 

learning which are used when the study or main or dependent variable is a categorical 

variable and hence such networks are used for classification purposes.   

The Kohonen architecture of neural networks is a special type of architecture and is totally 

different from other types and solely meant for classification rather than prediction. 

Kohonen network offers a considerably different approach to ANNs and are designed 

primarily for unsupervised learning rather than for supervised problems. The very first thing 

to be aware of while employing any classification method or prediction model is of 

ascertaining whether the nature of the problem requires a ‘supervised’ or an ‘unsupervised’ 

approach.  The supervised problem occurs when there is a known membership class or 

output associated with each input in the ‘training’ data set i.e. the set upon which the 

method or model will be fitted or employed.  The unsupervised problem means that one 

deals with a set of data which have no specific associated classes or outputs attached.     

In this write-up, two chief methods viz., CART and SOM in the context of classification 

(i.e. when the main or study or dependent variable is categorical) are discussed in detail.  

1. Classification And Regression Tree (CART) 

CART analysis is a tree-building technique which is different from traditional data analysis 

methods. In a number of studies, CART has been found to be quite effective for creating 

decision rules which perform as well or better than rules developed using more traditional 

methods aiding development of DSS (Decision Support Systems). In addition, CART is 

often able touncover complex interactions between predictors which may be difficult or 

impossible using raditional multivariate techniques. It is now possible to perform a CART 

analysis with a simple understanding of each of the multiple steps involved in its procedure. 

Classification tree methods such as CART are convenient way to produce a prediction rule 

from a set of observations described in terms of a vector of features and a response value. 

The aim is to define a general prediction rule which can be used to assign a response value 

to the cases solely on the bases of their predictor (explanatory) variables. Tree-structured 

classifications are not based on assumptions of normality and user-specified model 

statements, as are some conventional methods such as discriminant analysis and ordinary 

least square regression. 

Tree based classification and regression procedure have greatly increased in popularity 

during the recent years. Tree based decision methods are statistical systems that mine data 



  

 
 

206 

to predict or classify future observations based on a set of decision rules and are sometimes 

called rule induction methods because the reasoning process behind them is clearly evident 

when browsing the trees. The CART methodology have found favour among researchers 

for application in several areas such as agriculture, medicine, forestry, natural resources 

management etc. as alternatives to the conventional approaches such as discriminant 

function method, multiple linear regression, logistic regression etc. In CART, the 

observations are successively separated into two subsets based on associated variables 

significantly related to the response variable; this approach has an advantage of providing 

easily comprehensible decision strategies. CART can be applied either as a classification 

tree or as a regressive tree depending on whether the response variable is categorical or 

continuous. Tree based methods are not based on any stringent assumptions. These methods 

can handle large number of variables, are resistant to outliers, non-parametric, more 

versatile, can handle categorical variables, though computationally more intensive. They 

can be applied to data sets having both a large number of cases and a large number of 

variables, and are extremely robust to outliers. These are not based on assumptions such as 

normality and user-specified model statements, as are some conventional methods such as 

discriminant analysis or ordinary least square (OLS) regression. Yet, unlike the case for 

other nonparametric methods for classification and regression, such as kernel-based 

methods and nearest neighbor methods, the resulting tree-structured predictors can be 

relatively simple functions of the predictor variables which are easy to use. 

CART can be a good choice for the analysts as they give fairly accurate results quickly, 

than traditional methods. If more conventional methods are called for, trees can still be 

helpful if there are a lot of variables, as they can be used to identify important variables and 

interactions. These are also invariant to the monotonic transformations of the explanatory 

variables and do not require the selection of the variable in advance as in regression 

analysis. 

Agriculture being a highly uncertain occupation, classification and prediction in the field of 

agriculture aid planners to take proactive measures. Keeping in view the requirements to 

develop a sound classificatory system and that the potentials of the tree based methods for 

this purpose has not fully been explored, it will be of interest to employ these  

methodologies upon a suitable data set in the field of agriculture. More importantly, since 

the real world data often does not satisfy the usual assumptions like that of normality, 

homoscedasticity etc it can be taken up as a motivation to find such a classificatory rule 

where assumptions of such rules fail. Apart from all these, tree based methods are one 
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among the promising data mining tools that provide easily comprehensible decision 

strategy. 

Tree based applications originated in the 1960s with the development of AID (Automatic 

Interaction Detector) by Morgan and Sonquistin the 1960s as regression trees. Further 

modifications in this technique was carried out to result in THAID (THeta AID) by Morgan 

and Messenger (1973) to produce classification trees and CHAID (CHi AID) by Kass in the 

late 1970s.Breimanet al.(1984) developed CART (Classification and Regression Trees) 

which is a sophisticated program for fitting trees to data. Breiman, again in 1994, 

developed the bagging predictors which is a method of generating multiple versions of a 

predictor and using them to get an aggregated predictor.  A good account of the CART 

methodology can be found in many recent books, say, Izenman (2008).An application of 

classification trees in the field of agriculture can be found in Sadhu et al. (2014). 

Theconventional CART methodologyis outlined briefly. Following is a schematic 

representation of aconventional CART tree structure: 

 

The unique starting point of,say, a classification tree, is called a root node and consists 

of the entire learning set L at the top of the tree. A node is a subset of the set of 

variables, and it can be terminal or nonterminal node. A nonterminal (or parent) node is 

a node that splits into two left and right child nodes (binary split). Such a binary split is 

determined by a condition on the value of a single variable, where the condition is 

either satisfied or not satisfied by the observed value of that variable. All observations 

in L that have reached a particular (parent) node and satisfy the condition for that 

variable drop down to one of the two child nodes; the remaining observations at that 

(parent) node that do not satisfy the condition drop down to the other child node. A 

node that does not split is called a terminal node and is assigned a class label. Each 

observation in L falls into one of the terminal nodes. When an observation of unknown 

class is “dropped down” the tree and ends up at a terminal node, it is assigned the class 

corresponding to the class label attached to that node. There may be more than one 
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terminal node with the same class label. To produce a tree-structured model using 

recursive binary partitioning, CART determines the best split of the learning set L to 

start with and thereafter the best splits of its subsets on the basis of various issues such 

as identifying which variable should be used to create the split, and determining the 

precise rule for the split, determining when a node of the tree is a terminal one, and 

assigning a predicted class to each terminal node. The assignment of predicted classes 

to the terminal nodes is relatively simple, as is determining how to make the splits, 

whereas determining the right-sized tree is not so straightforward. After growing a fully 

expanded tree, a tree of optimum size is obtained. In a particular type of tree building 

called ‘exhaustive search’, at each stage of recursive partitioning, all of the allowable 

ways of splitting a subset of L are considered, and the one which leads to the greatest 

increase in node purity is chosen. This can be accomplished using what is called an 

“impurity function”, which is nothing but a function of the proportion of the learning 

sample belonging to the possible classes of the response variable. To choose the best 

split over all variables, first the best split for a given variable has to be determined. To 

assess the goodness of a potential split, the value of the ‘impurity function’ such as 

Gini diversity index and the Entropy function can be calculated using the cases in the 

learning sample corresponding to the parent node, and subtract from this the weighted 

average of the impurity for the two child nodes, with the weights proportional to the 

number of cases of the learning sample corresponding to each of the child nodes, to get 

the decrease in the overall impurity that would result from the split. To select the way 

to split a subset ofLin the tree growing procedure, all allowable ways of splitting can be 

considered, and the one which will result in the greatest decrease in node impurity (or, 

in other words, greatest increase in the node purity) can be chosen.  

In order to grow a tree, the starting point is the root node, which consists of the learning 

setL.  Using the “goodness of split” criterion for a single variable, the tree algorithm 

finds the best split at the root node for each of the variables. The best split s at the root 

node is then defined as the one that has the largest value of this goodness of split 

criterion over all single-variable best splits at that node. Next is to split each of the 

child nodes of the root node in the same way. The above computations are repeated for 

each of the child nodes except that this time only the observations in that specific child 

node are considered for the calculations rather than all the observations. When these 

splits are completed, the splitting is continued with the subsequent nodes. This 
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sequential splitting procedure of building a tree layer-by-layer is hence called recursive 

partitioning. If every parent node splits in two child nodes, the result is called a binary 

tree. If the binary tree is grown until none of the nodes can be split any further, then the 

tree is said to be saturated. Usually, first a very large tree is grown, splitting subsets in 

the current partition of L even if a split does not lead to an appreciable decrease in 

impurity. Then a sequence of smaller trees can be created by “pruning” the initial large 

tree, where in the pruning process, splits that were made are removed and a tree having 

a fewer number of nodes is produced. The crucial part of creating a good tree-

structured classification model is determining how complex the tree should be. If nodes 

continue to be created until no two distinct values of the independent variables for the 

cases in the learning sample belong to the same node, the tree may be over fitting the 

learning sample and not be a good classifier of future cases. On the other hand, if a tree 

has only a few terminal nodes, then it may be that it is not making enough use of 

information in the learning sample, and classification accuracy for future cases will 

suffer. Initially, in the tree-growing procedure, the predictive accuracy typically 

increases as more nodes are created and the partition gets finer. But it is usually seen 

that at some point the misclassification rate for future cases will start to get worse as 

the tree becomes more complex. In order to compare the prediction accuracy of various 

tree-structured models, there needs to be a way to estimate a given tree’s 

misclassification rate for the future observations, a measure named ‘resubstitution 

estimate’ of the misclassification rate is obtained by using the tree to classify the 

members of the learning sample (that were used to create the tree), and observing the 

proportion that are misclassified. More often, a better estimate of a tree’s 

misclassification rate can be obtained using an independent “test set”, which is a 

collection of cases coming from the same population or distribution as the learning set. 

Like the learning set, for the test set the true class for each case is known in addition to 

the values for the predictor variables. The test set estimate of the misclassification rate 

is just the proportion of the test set cases that are misclassified when predicted classes 

are obtained using the tree created from the learning set. The learning set and the test 

set are both composed of cases for which the true class is known in addition to the 

values for the predictor variables. Generally, about one third of the available cases 

should be set aside to serve as a test set, and the rest of the cases should be used as 

learning set. But sometimes a smaller fraction, such as one tenth, is also used and then 

resorting to 10-fold cross validation. A specific way to create a useful sequence of 



  

 
 

210 

different-sized trees is to use “minimum cost-complexity pruning”. In this process, a 

nested sequence of subtrees of the initial large tree is created by “weakest-link cutting”. 

With weakest-link cutting (pruning), all of the nodes that arise from a specific 

nonterminal node are pruned off (leaving that specific node itself as terminal node), and 

the specific node selected is the one for which the corresponding pruned nodes provide 

the smallest per node decrease in the resubstitution misclassification rate. If two or 

more choices for a cut in the pruning process would produce the same per node 

decrease in the resubstitution misclassification rate, then pruning off the largest number 

of nodes is preferred. The sequence of subtrees produced by the pruning procedure 

serves as the set of candidate subtrees for the model, and to obtain the classification 

tree, all that remains to be done is to select the one which will hopefully have the 

smallest misclassification rate for future observations. The selection of final tree is 

based on estimated misclassification rates, obtained using a test set or by cross 

validation. 

1. Self Organizing Map (SOM) 

In SOM, the training data set contains only input variables and no outputs. It is a 'self-

organizing' system, which automatically adapts itself in such a way that similar input 

objects are associated with the topological close neurons in the ANN. The phrase 

'topological close neurons' means that neurons that are physically located close to 

each other will react similar to similar inputs, while the neurons that are far apart in 

the lay-out of the ANN will react quite different to similar inputs. A practical 

treatment on SOFM based Kohonen networks can be found in Haykin (1996).   

The principal goal is to transform an incoming input pattern of arbitrary dimension 

into a two dimensional discrete map.  Neurons in the network are arranged in a two 

dimensional grid and there happens a competition among these neurons to represent 

the input pattern. The ‘winning’ neurons and the similar pattern neurons i.e. the 

neighboring neurons are placed in contiguous locations in output space. The neurons 

learn to pin-point the location of the neuron in the ANN that is most 'similar' to the 

input vector. Here, the phrase 'location of the most similar neuron' has to be taken in a 

very broad sense. It can mean the location of the closest neuron with the smallest or 

with the largest Euclidean distance to the input vector, or it can mean the neuron with 

the largest output in the entire network for this particular input vector etc. In other 

words, in the Kohonen network, a ‘rule’ deciding which of all neurons will be 

selected after the input vector enters the ANN is mandatory.  During the training in 
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the Kohonen’s ANN, the multidimensional neurons self-organise themselves in the 

two-dimensional plane in such a way that the objects from the multidimensional 

measurement space are mapped into the plane of neurons with respect to some 

internal property correlated to the m-dimensional measurement space of objects.  

Bullinaria (2004) has explained the above discussion in the following manner. 

Neurons are placed at the nodes of a lattice that is usually two-dimensional and 

undergo the following three steps: 

(i) Competition 

Neurons become selectively tuned to various input patterns (stimuli). Such “winning” 

neurons become ordered w.r. to each other in such a way that a meaningful coordinate 

system for different input features is created over the lattice. The competitive learning 

is characterized by formation of a topographic map of the inputs in which spatial 

locations  of the neurons in the lattice are indicative of intrinsic features contained in 

the inputs, hence the name SOFM. 

(ii) Cooperation 

The winning neurons determines the spatial location of a topographic neighbourhood 

of excited neurons, thereby providing the basis for cooperation 

(iii) Adaptation 

The excited neurons adapts their individual values of its functional form in relation to 

the input pattern through suitable adjustments applied to their synaptic weights.  Thus 

the response of the winning neuron to the subsequent application of a similar input 

pattern is enhanced 

The correction of weights is carried out after the input of each input object in the 

following four steps:  

(i) the neuron with the most ’distinguished’ response of all (in a sense explained 

above) is selected and named the ’central’ or the ’most excited’ neuron 

(ii) the maximal neighbourhood around this central neuron is determined.  

(iii) the ‘correction factor’ is calculated for each neighbourhood ring separately (the 

correction changes according to the distance and time of training) 

(iv) the ‘weights’ in neurons of each neighbourhood are corrected according to a 

pre-specified equation 

The most important difference is that the neurons in the error back propagation 

learning (in that of the most famous multi-layer perceptron type of architectured 

neural network) tries to yield quantitatively an answer as close as possible to the 
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target, while in the Kohonen approach the neurons learn to pin-point the location of 

the neuron in the ANN that is most ’similar’ to the input vector.  

In order to make things clear, let us consider the following figure wherein there are 

six input variables along with a two-dimensional map of order 7x7. The neurons are 

in the columns associating the input variables with the (i, j)-th neuron in the output 

map, with weights at various levels corresponding to the inputs.  That is, because the 

Kohonen ANN has only one layer of neurons, the specific input variable, let us say 

the i-th variable xi is always received in all neurons of the ANN by the weight placed 

in the i-th position.  If the neurons are presented as columns of weights then all i-th 

weights in all neurons can be regarded as the weights of the i-th level (Zupan, 1994). 

 

Because the Kohonen ANN has only one layer of neurons the specific input variable, 

let us say the i-th variable, xi, is always received in all neurons of the ANN, by the 

weight placed at the i-th position. If the neurons are presented as columns of weights 

then all i-th weights in all neurons can be regarded as the weights of the i-th level. 

This is especially important because the neurons are usually ordered in a two-

dimensional formation.  

Thus the main goal of Kohonen is to perform a non-linear mapping from an high-

dimensional variable space to a low-dimensional (usually 2D) target space so that the 

distance and proximity relations between the samples or, in a single word, the 

topology, are preserved. The target space used in Kohonen mapping is a two-
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dimensional array of neurons fully connected to the input layer, onto which the 

samples are mapped. Introducing the preservation of topology, results in specifying 

for each node in the Kohonen layer, a defined number of neurons as nearest 

neighbors, second-nearest neighbors and so on.  

The layout of neurons in the Kohonen ANN is an important feature to be discussed 

(Marini et al., 2007). The neighborhood of a neuron is usually considered to be 

hexagonal [see (a) in figure below] or square [see (b) in figure below] which means 

that each neuron has eight or six nearest neighbors, respectively. 

 

The main issue in Kohonen learning is that similar input vectors excite neurons which 

are very close in the 2D layer. From an algorithmic point of view, Kohonen mapping 

implements competitive learning, i.e. only one neuron in the 2D layer is selected after 

each input is presented to the network (winner takes-all). The winning neuron c is 

selected as the one having the weight vector most similar to the input pattern. After 

the winning neuron in the Kohonen layer is selected, the weights of each other neuron 

in the Kohonen layer are updated on the basis of the difference between their old 

value and the values of the input vector; this correction is scaled according to the 

topological distance from the winner. 

Lynn (2014) have extensively discussed about the theKohonen package available in 

the open source and freely available R software. This Kohonen R package allows us 

to visualise the count of how many samples are mapped to each node on the map. 

This metric can be used as a measure of map quality – ideally the sample distribution 

is relatively uniform. Large values in some map areas suggests that a larger map 

would be benificial. Empty nodes indicate that the map size is too big for the number 
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of samples. He suggest that one should aim for at least 5-10 samples per node when 

choosing map size. One such output where node counts are visualized is given 

subsequently. 

 

The node weight vectors, or “codes”, are made up of normalised values of the original 

variables used to generate the SOM. Each node’s weight vector is representative / 

similar of the samples mapped to that node. By visualising the weight vectors across 

the map, we can see patterns in the distribution of samples and variables. Such a 

visualisation of the weight vectors can be done using a “fan diagram”, where 

individual fan representations of the magnitude of each variable in the weight vector 

is shown for each node. One such fan diagram is given below. 
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1. Introduction 

Clustering algorithms maps the data items into clusters, where clusters are natural 

grouping of data items based on similarity methods. Unlike classification and 

prediction which analyzes class-label data objects, clustering analyzes data objects 

without class-labels and tries to generate such labels. Clustering has many 

applications. In business/ marketing, clustering can help in identifying different 

customer groups and appropriate marketing campaign can be carried out targeting 

different groups. In agriculture, it can be used to derive plant and animal taxonomies, 

characterization of diseases and varieties, in bioinformatics- categorization of genes 

with similar functionally. Further it can be used to group similar documents on the 

web for faster discovery of content. It can be used to group geographical locations 

based on crime, amenities, weather etc. As data mining function, cluster analysis is 

used to gain insight into distribution of data, to observe the characteristics of each 

cluster and to focus on a particular set of clusters for further analysis.  

1. Similarity Measures 

Similarity is fundamental to majority of clustering algorithms. Similarity is quantity 

that reflects the strength of relationship between two objects or two features. This 

quantity is usually having range of either -1 to +1 or normalized into 0 to 1. If the 

similarity between feature i and feature j is denoted by sij , we can measure this 

quantity in several ways depending on the scale of measurement (or data type) that we 

have. Dissimilarity is opposite to similarity. There are many types of distance and 

similarity measures. 

Similarity and dissimilarity can be measured for two objects based on several 

features/ variables. After the distance or similarity of each variable is determined, we 

can aggregate all features/ variables together into single Similarity (or dissimilarity) 

index between the two objects.  
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2.1 Distance for binary variables 

We often face variables that only binary value such as Yes and No, or Agree and 

Disagree, True and False, Success and Failure, 0 and 1, Absence or Present, Positive 

and Negative, etc. Similarity of dissimilarity (distance) of two objects that represented 

by binary variables can be measured in term of number of occurrence (frequency) of 

positive and negative in each object.  

For example:  

Feature of Fruit  Sphere shape  Sweet  Sour  Crunchy  

Object =Apple  Yes  Yes  Yes  Yes  

Object =Banana  No  Yes  No  No  

The coordinate of Apple is (1,1,1,1) and coordinate of Banana is (0,1,0,0). Because 

each object is represented by 4 variables, we say that these objects have 4 dimensions.  

Let p = number of variables that positive for both objects . 

q = number of variables that positive for the i th objects and negative for the j th 

object  

r= number of variables that negative for the th objects and positive for the th 

object 

s= number of variables that negative for both objects  

t= p+q+r+s = total number of variables.  

 Object     

      Yes  No  

object  Yes    

   No    

 For our example above, we have measured Apple and Banana have p=1, q=3 and 

r=0, s=0. Thus, t= p+q+r+s=4. 

 The most common use of binary dissimilarity (distance) is  

Simple Matching distance  

Jaccard's distance  

Hamming distance  

Example: Simple matching distance between Apple and Banana is 3/4. 

Jaccard's distance between Apple and Banana is 3/4. 
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Hamming distance between Apple and Banana is 3. 

2.2 Distance for quantitative variables 

Variable which have quantitative values.  

      Features        

   cost  time  weight  incentive  

Object A  0  3  4  5  

Object B  7  6  3  -1  

We can represent the two objects as points in 4 dimension. Point A has coordinate (0, 

3, 4, 5) and point B has coordinate (7, 6, 3, -1). Dissimilarity (or similarity) between 

the two objects are based on these coordinates.  

Euclidean Distance: Euclidean Distance is the most common use of distance. In most 

cases when people said about distance, they will refer to Euclidean distance. 

Euclidean distance or simply 'distance' examines the root of square differences 

between coordinates of a pair of objects. 

  Formula  

 

Euclidean distance is a special case of Minkowski distance with  

City block (Manhattan) distance : It is also known as Manhattan distance, boxcar 

distance, absolute value distance. It examines the absolute differences between 

coordinates of a pair of objects. City block distance is a special case of Minkowski 

distance with    

Formula:  

The City Block Distance between point A and B is  

 

Chebyshev Distance : Chebyshev distance is also called Maximum value distance. It 

examines the absolute magnitude of the differences between coordinates of a pair of 

objects. This distance can be used for both ordinal and quantitative variables.  

http://people.revoledu.com/kardi/tutorial/similarity/OrdinalVariables.html
http://people.revoledu.com/kardi/tutorial/similarity/QuantitativeVariables.html
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Formula and B is  

 

Minkowski Distance: This is the generalized metric distance. When it becomes 

city block distance and when , it becomes Euclidean distance. Chebyshev 

distance is a special case of Minkowski distance with (taking a limit). This 

distance can be used for both ordinal and quantitative variables.  

  Formula  

2. Clustering Algorithms 

There are many clustering algorithms available in literature, choice of appropriate 

algorithm depends on the data type and desired results. We will be focusing on 

commonly used clustering algorithms. 

3.1 Hierarchical Algorithms 

A hierarchical method creates a hierarchical decomposition of data objects in the form 

of tree like diagram which is called a dendogram. There are two approaches to 

building a cluster hierarchy.  

Agglomerative approach also called bottom up approach starts with each object 

forming a separate group and successively merges the objects close to one another, 

until all the groups are merged into one.  

Divisive approach also called top-down approach starts with all the objects in same 

cluster, until each object is in one cluster.  

 

Process flow of agglomerative hierarchical clustering method is given below: 

 Convert object features to distance matrix.  

s1 

 

s2 s4 s5 s3 

http://people.revoledu.com/kardi/tutorial/similarity/OrdinalVariables.html
http://people.revoledu.com/kardi/tutorial/similarity/QuantitativeVariables.html
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 Set each object as a cluster (thus if we have 6 objects, we will have 6 clusters 

in the beginning)  

 Iterate until number of cluster is 1  

1. Merge two closest clusters  

2. Update distance matrix  

First distance matrix is computed using any valid distance measure between pairs of 

objects. The choice of which clusters to merge is determined by a linkage criterion, 

which is a function of the pairwise distances between observations. Commonly used 

linkage criteria are mentioned below: 

 Complete Linkage: The maximum distance between elements of each cluster 

 

 Single Linkage: The minimum distance between elements of each cluster 

 

 Average Linkage /UPGMA: The mean distance between elements of each 

cluster   

 

3.1.1 Hierarchical Clustering (HC) using R: 

In R, function hclust() performs hierarchical clustering. First the dissimilarity values 

are computed with dist function. Feed these values into hclust and specify the 

agglomeration method to be used (i.e. “complete”, “average”, “single”, “ward.D”). 

Then plot  the dendrogram. 

# Dissimilarity matrix 

d <- dist(df, method = "euclidean") 

# Hierarchical clustering using Complete Linkage 

hc1 <- hclust(d, method = "complete" ) 

# Plot the obtained dendrogram 

plot(hc1, cex = 0.6, hang = -1) 
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Alternatively, you can use the agnes function. These functions behave very similarly; 

however, with the agnes function you can also get the agglomerative coefficient, 

which measures the amount of clustering structure found (values closer to 1 suggest 

strong clustering structure). 

# Compute with agnes 

hc2 <- agnes(df, method = "complete") 

# Agglomerative coefficient 

hc2$ac 

## [1] 0.8531583 

This allows us to find certain hierarchical clustering methods that can identify 

stronger clustering structures. Here we see that Ward’s method identifies the strongest 

clustering structure of the four methods assessed. 

# methods to assess 

m <- c( "average", "single", "complete", "ward") 

names(m) <- c( "average", "single", "complete", "ward") 

# function to compute coefficient 

ac <- function(x) { 

  agnes(df, method = x)$ac 

} 

map_dbl(m, ac) 

##   average    single  complete      ward  
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## 0.7379371 0.6276128 0.8531583 0.9346210 

hc3 <- agnes(df, method = "ward") 

pltree(hc3, cex = 0.6, hang = -1, main = "Dendrogram of agnes")  

Similarly, HC can be performed using function diana.  diana works similar to agnes; 

however, there is no method to provide. 

# compute divisive hierarchical clustering 

hc4 <- diana(df) 

# Divise coefficient; amount of clustering structure found 

hc4$dc 

## [1] 0.8514345 

# plot dendrogram 

pltree(hc4, cex = 0.6, hang = -1, main = "Dendrogram of diana") 

Working with Dendrograms 

In the dendrogram displayed above, each leaf corresponds to one observation. As we 

move up the tree, observations that are similar to each other are combined into 

branches, which are themselves fused at a higher height. The height of the fusion, 

provided on the vertical axis, indicates the (dis)similarity between two observations.  

The height of the cut to the dendrogram controls the number of clusters obtained. we 

can cut the dendrogram with cutree (): 

# Ward's method 

hc5 <- hclust(d, method = "ward.D2" ) 

# Cut tree into 4 groups 

sub_grp <- cutree(hc5, k = 4) 

# Number of members in each cluster 

table(sub_grp) 

## sub_grp 

##  1  2  3  4  

##  7 12 19 12 

It’s also possible to draw the dendrogram with a border around the 4 clusters. The 

argument border is used to specify the border colors for the rectangles: 

plot(hc5, cex = 0.6) 

rect.hclust(hc5, k = 4, border = 2:5) 
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3.2 Partitional Algorithms 

It basically involves segmenting data objects into k partitions, optimizing some 

criteria, over t iterations. These methods are popularly known as iterative relocation 

methods.  

3.2.1 K-means Algorithm 

K-means is the most popularly used algorithm in this category. It randomly selects k 

objects as cluster mean or center. It works towards optimizing square error criteria 

function, defined as: 








k

i Cx
i

i

mx
1

2
, where im  is the mean of cluster iC . 

Main steps of k-means algorithm are:  

1)  Assign initial means im   

2)  Assign each data object x to the cluster iC  for the closest mean 

3)  Compute new mean for each cluster  

4)Iterate until criteria function converges, that is, there are no more new 

assignments.  

The k-means algorithm is sensitive to outliers since an object with an extremely large 

value may substantially distort the distribution of data.  

3.2.2 k-means clustering in R : 

We can compute k-means in R with the kmeans function. In this example, data is 

grouped into two clusters (centers = 2). The kmeans function also has an nstart option 

that attempts multiple initial configurations and reports on the best one. For example, 

adding nstart = 25 will generate 25 initial configurations.  
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k2 <- kmeans(df, centers = 2, nstart = 25) 

str(k2) 

## List of 9 

##  $ cluster     : Named int [1:50] 1 1 1 2 1 1 2 2 1 1 ... 

##   ..- attr(*, "names")= chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ... 

##  $ centers     : num [1:2, 1:4] 1.005 -0.67 1.014 -0.676 0.198 ... 

##   ..- attr(*, "dimnames")=List of 2 

##   .. ..$ : chr [1:2] "1" "2" 

##   .. ..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape" 

##  $ totss       : num 196 

##  $ withinss    : num [1:2] 46.7 56.1 

##  $ tot.withinss: num 103 

##  $ betweenss   : num 93.1 

##  $ size        : int [1:2] 20 30 

##  $ iter        : int 1 

##  $ ifault      : int 0 

##  - attr(*, "class")= chr "kmeans" 

The output of kmeans is a list with several bits of information. The most important 

being: 

cluster: A vector of integers (from 1:k) indicating the cluster to which each point is 

allocated. 

centers: A matrix of cluster centers. 

totss: The total sum of squares. 

withinss: Vector of within-cluster sum of squares, one component per cluster. 

tot.withinss: Total within-cluster sum of squares, i.e. sum(withinss). 

betweenss: The between-cluster sum of squares, i.e. $totss-tot.withinss$. 

size: The number of points in each cluster. 

We can also view the results by using fviz_cluster. This provides a nice illustration of 

the clusters. If there are more than two dimensions (variables). fviz_cluster will 

perform principal component analysis (PCA) and plot the data points according to the 

first two principal components that explain the majority of the variance. 

fviz_cluster(k2, data = df) 
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Introduction 

The most widely used technique for analysis of time-series data is; undoubtedly, the 

Box Jenkins’ Autoregressive integrated moving average (ARIMA) methodology (Box 

et al., 2007). However, it is based on some crucial assumptions, like linearity and 

homoscedastic prediction error variances.  In reality, underlying relationships among 

variables are highly complex and cannot be described satisfactorily through a linear 

modelling approach. There are many features, like existence of threshold value, which 

can be described only through a nonlinear approach. During the last few decades a 

new area of “Nonlinear time-series modelling” is fast coming up. Here, there are 

basically two approaches, viz. Parametric or Nonparametric. Evidently, if in a 

particular situation, we are quite sure about the functional form, we should use the 

former; otherwise the latter may be employed.  

When dealing with nonlinearities, Campbell et al. (1997) made the distinction 

between: 

 Linear Time-Series: shocks are assumed to be uncorrelated but not necessarily 

identically and independently distributed (iid). 

 Nonlinear Time-Series: shocks are assumed to be iid, but there is a nonlinear 

function relating the observed time-series  
0ttX  and the underlying shocks, 

 
0tt
. 

A nonlinear process is described as 

   ,...,,..., 2121   tttttt hgX  .    ,...,/ 211   tttt gXE   

  2

121 /,...,  ttth   

where  function g(·) corresponds to  conditional mean of tX , and  function h(·) is 

coefficient of proportionality between  innovation in tX  and  shock t . The general 

form above leads to a natural division in Nonlinear time-series literature in two 

branches:  

• Models Nonlinear in Mean:  g(·) is nonlinear; 

• Models Nonlinear in Variance:  h(·) is nonlinear. 

      2

11 //   ttttt XEXEXVar 
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The most promising parametric nonlinear time series models like ARCH and GARCH 

models are described below. 

Autoregressive Conditional Heteroscedastic (ARCH) Model 

The most promising parametric nonlinear time-series model has been the 

Autoregressive conditional heteroscedastic (ARCH) model, which was introduced by 

Engle (1982). It allows the conditional variance to change over time as a function of 

squared past errors leaving the unconditional variance constant. The presence of 

ARCH type effects in financial and macro-economic time-series is a well established 

fact. The combination of ARCH specification for conditional variance and the 

Autoregressive (AR) specification for conditional mean has many appealing features, 

including a better specification of the forecast error variance. Ghosh and Prajneshu 

(2003) employed AR(p)-ARCH(q)-in-Mean model for carrying out modelling and 

forecasting of volatile monthly onion price data. The AR-ARCH model has also been 

used as the basic “building blocks” for Markov switching and mixture models (See 

e.g. Lanne and Saikkonen 2003 and Wong and Li 2001). 

The ARCH (q) model for series  is defined by specifying the conditional 

distribution of t  given information available up to time t −1. Let 1t  denote this 

information. It consists of the knowledge of all available values of the series, and 

anything which can be computed from these values, e.g. innovations, and squared 

observations. In principle, it may even include  knowledge of the values of other 

related time-series, and anything else which might be useful for forecasting and is 

available by time t −1. 

We say that the process  is ARCH (q), if the conditional distribution of  given 

available information 1t  is  

 ttt hN ,0~| 1 and 



q

i

itit aah
1

2

0      (1) 

where 00 a , 0ia  for all i and 



q

i

ia
1

1 

Properties of the ARCH model (Tsay,2005) 

To study the properties of ARCH model, consider the simple ARCH (1) model. The 

conditional variance equation of the this model is defined as  

  
2/1

ttt h  ,  

 t

 t  t
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t is white noise and conditional variance ht satisfies 

2

110  tt aah   

where 00 a , 01 a .The important properties of ARCH models are mentioned 

below: 

(i) The unconditional mean of t  remains zero because, 

        0εEhE|ΨεEEεE tt1ttt    

 (ii) The unconditional variance of t  can be defined as  

          2

110

2

1101

22 |var   tttttt EaaaaEEEE  . 

If t  is a stationary process with   0tE  ,      2

11varvar   ttt E  . Therefore, 

   tt aa  varvar 10   and so   tvar  a0 / (1 – a1). Since variance of t  must be 

positive, therefore 1a0 1  . 

(iii) In some applications, higher order moments of t  are required to exist and, 

hence,  must satisfy some additional constraints. For instance, to study its tail 

behavior, we require that the fourth moment of t  is finite.  

Heavy tails are a common aspect of financial data, and hence the ARCH models are 

very popular in this field. Besides that, Bera and Higgins (1993) mention the 

following reasons for the ARCH success: 

• ARCH models are simple and easy to handle. 

• ARCH models take care of clustered errors. 

• ARCH models take care of nonlinearities. 

• ARCH models take care of changes in the econometrician’s ability to forecast. 

Forecasting  

Forecasts of the ARCH model can be obtained recursively as those of an AR model. 

Consider an ARCH (q) model. At the forecast origin t, the one-step ahead forecast is 

  2
q1tq

2
t10t εa...εaa1h  (2) 

The two-step ahead forecast is     2
q2tq

2
t2t10t εa...εa1haa2h  , and l- step 

ahead forecast is    



q

i

tit ilhaalh
1

0  where   2

iltt ilh    if 0 il . 

However, ARCH model has some drawbacks. Firstly, when the order of ARCH 

model is very large, estimation of a large number of parameters is required. Secondly, 

1a
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conditional variance of ARCH(q) model has the property that unconditional 

autocorrelation function (Acf) of squared residuals; if it exists, decays very rapidly 

compared to what is typically observed, unless  maximum lag q is large. To overcome 

these difficulties, Bollerslev (1986) proposed the Generalized ARCH (GARCH) 

model in which conditional variance is also a linear function of its own lags. This 

model is also a weighted average of past squared residuals, but it has declining 

weights that never go completely to zero. It gives parsimonious models that are easy 

to estimate and, even in its simplest form, has proven surprisingly successful in 

predicting conditional variances. Angelidis et al. (2004) evaluated the performance of 

GARCH models in modelling the daily Value-at-Risk (VaR) of perfectly distributed 

portfolios in five stock indices, using a number of distributional assumptions and 

sample sizes. Paul et al. (2009, 2014) applied GARCH model for forecasting of spices 

export and wheat yield respectively. 

Generalized ARCH(GARCH) Model 

 To overcome the weaknesses of ARCH model, Bollerslev (1986) and Taylor (1986) 

proposed the Generalized ARCH (GARCH) model independently of each other, in 

which conditional variance is also a linear function of its own lags and has the 

following form 

2/1

ttt h  






 
p

j

jtj

q

i

itit hbaah
11

2

0                              (3) 

where t  ~ IID(0,1). A sufficient condition for the conditional variance to be positive 

is  

 p,...2,1,j0,bq.,...2,1,i0,a0,a ji0   

The GARCH (p, q) process is weakly stationary if and only if    1ba
p

1j

j

q

1i

i 


.  

The conditional variance defined by (3) has the property that the unconditional 

autocorrelation function of 
2

t  ; if it exists, can decay slowly. For the ARCH family, 

the decay rate is too rapid compared to what is typically observed in financial time-

series, unless the maximum lag q is long. As (3) is a more parsimonious model of the 

conditional variance than a high-order ARCH model, most users prefer it to the 

simpler ARCH alternative. 
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The most popular GARCH model in applications is the GARCH(1,1) model. To 

express GARCH model in terms of ARMA model, denote ttt h 2 . Then from 

equation (3)  
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2

0

2                                  (4) 

Thus a GARCH model can be regarded as an extension of the ARMA approach to 

squared series {
2

t }. Using the unconditional mean of an ARMA model, we have  

 E(
2

t ) = 

 



),(

1

0

1
qpMax

i

ii ba

a
                                                           (5) 

provided that the denominator of the prior fraction is positive. 

Properties of GARCH model 

The most widely used GARCH specification asserts that the best predictor of the 

variance in the next period is a weighted average of the long-run average variance, the 

variance predicted for this period, and the new information in this period that is 

captured by the most recent squared residual. Such an updating rule is a simple 

description of adaptive or learning behavior and can be thought of as Bayesian 

updating. 

The properties of GARCH models can easily be studied by focusing on the simplest 

GARCH(1,1) model with  

2/1

ttt h  11

2

110   ttt hbaah  ,                                             (6) 

where t  ~ IID(0,1) and   1,1,0 1111  baba .   

The GARCH model that has been described is typically called the GARCH(1,1) 

model. The (1,1) in parentheses is a standard notation in which the first number refers 

to how many autoregressive lags, or ARCH terms, appear in the equation, while the 

second number refers to how many moving average lags are specified, which here is 

often called the number of GARCH terms. Sometimes models with more than one lag 

are needed to find good variance forecasts. 

First a large 
2

1t  or 1th  gives rise to a large th . This means that a large 
2

1t  tends to 

followed by another large
2

t , generating again the well known behavior of volatility 

clustering in financial time-series.  
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Second it can be seen that if   021
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Consequently, similar to ARCH models, the tail distribution of a GARCH(1,1) 

process is heavier than that of a normal distribution.  

Third, the model provides a simple parametric function that can be used to describe 

the volatility evolution. 

Forecasting volatility by GARCH model 

Forecasts of a GARCH model can be obtained using methods similar to those of an 

ARMA model. Although this model is directly set up to forecast for just one period, it 

turns out that based on the one-period forecast, a two-period forecast can be made. 

Ultimately, by repeating this step, long-horizon forecasts can be constructed. For the 

GARCH(1,1), the two-step forecast is a little closer to the long-run average variance 

than is the one-step forecast, and, ultimately, the distant-horizon forecast is the same 

for all time periods as long as   111 ba . This is just the unconditional variance. 

Thus, the GARCH models are mean reverting and conditionally heteroscedastic, but 

have a constant unconditional variance. 

Consider the GARCH(1,1) model in (6) and assume that the forecast origin is t, the 

one-step ahead forecast is   ttt hbaah 1

2

101    

For multi-step ahead forecasts, use ttt h22    and rewrite the volatility equation in (6) 

as  

   12

11101  tttt hahbaah   

For two-step ahead forecasts    12

11111102   tttt hahbaah  Since

    0/12

1  ttE  ,  

The two-step ahead volatility forecast at the forecast origin t satisfies the equation  

  )1()2( 110 tt hbaah   

In general we have    )1()( 110  lhbaalh tt ,  l>1   

This result is exactly the same as that of an ARMA(1,1) model. By repeated 

substitution in the equation (7), the one- step ahead forecast can be written as  
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Therefore,  


 las
ba

a
lht ,

1
)(

11

0 ,provided that 
11 ba  <1.  

Consequently, the multi-step ahead volatility forecast of a GARCH(1,1) model 

converge to the unconditional variance of t  as the forecast horizon increases to 

infinity provided that Var( t )exists. 

In order to estimate the parameters of GARCH model, three types of estimator are 

available in literature. They are the conditional maximum likelihood estimator, 

Whitle’s estimator and the least absolute deviation estimator.  

Conditional maximum likelihood estimator 

Similar to the estimation for ARMA models, the most frequently used estimators for 

ARCH/GARCH models are those derived from a (conditional) Gaussian likelihood 

function.  

The loglikelihood function of a sample of T observations, apart from constant, is  

    



T

1t

1
t

2
tt

1
T hhlogTL  , where 
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For a general GARCH model the conditional variance ( th ) cannot be expressed in 

terms of a finite number of the past observations. Some truncation is inevitable. By 

induction, it is possible to derive 
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where the multiple sum vanishes if q = 0. It is to be noted that the multiple sum above 

converges with probability 1 since each ia  and ib is nonnegative, and since the 

expected value of the multiple series is finite. In practice the above expression of th is 

replaced by truncation version 
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wheret>q. 

In general, suppose that f(.) is the probability density function of t . However, 

generally, maximum likelihood estimators are derived by minimizing  
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where th
~

 is the truncated version of th  (Fan and Yao, 2003).  

Whitle’s estimator 

 For GARCH(p,q) defined by (3), the conditional variance can be written a 
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Suppose that { t } is fourth-order stationary in the sense that its first four moments 

are all time-invariant. 2

ttx  then {xt} is a stationary AR(∞) process satisfying  

















1

1

0

1
i

titiq

i

i

t exd

a

a
x whereet is a martingale difference  

 





































 










1

1

02

1

1
i

itiq

i

i

tt xd

a

a
e  with 2

e  = Var(et) <∞. Therefore, the spectral 

density of the process {xt} is  
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Whitle’s estimators for ia  and ib  are obtained by minimizing    
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/
T

j

jjT gI   

whereIT(.) is the periodogram of {xt} and 2/2 jj   .  

Whittle’s estimator suffer from the lack of efficiency, as et is unlikely to be normal 

even when t  is normal. 

Least absolute deviations estimator 

Both the estimators discussed above are derived from maximizing a Gaussian 

likelihood or an approximate Gaussian likelihood. In time-series they are known as L2 

- estimators. Empirical evidence suggests that some financial time-series exhibit 

heavy-tailed than those of a normal distribution would be more appropriate. Based on 

this consideration, Peng and Yao (2003) proposed Least absolute deviations 

estimation (LADE) which minimizes 
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2

t hloglogε wherev = p+1, if q = 0 and v >p+1, if q >0.   

The idea behind this implies implicitly a reparameterization of model (3) such that E(

t ) = 0 and the median (instead of variance) of 2

t  is equal to 1. Peng and Yao (2002) 

showed that under very mild conditions, the least absolute deviations estimators are 

asymptotically normal with the standard convergence rate T1/2 regardless of whether 

the distribution of t  has heavy tails or not. This is in marked contrast to the 

conditional maximum likelihood estimators, which will suffer from slow convergence 

when t  is heavy-tailed. 

Fan and Yao (2003) and Straumann (2005) have given a good description of various 

estimation procedures for conditionally heteroscedastic time- series models.  

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

values for GARCH model with Gaussian distributed errors are computed by:  

AIC =   



T

1t

1
t

2
tt h

~
εh

~
log  + 2(p + q + 1)                                     (7) 

and   

   BIC =   



T

1t

1
t

2
tt h

~
εh

~
log + 2(p + q + 1) log(T – v + 1)              (8) 

whereT is the total number of observations.  

Evidently, the likelihood equations are extremely complicated. Fortunately, the 

estimates can be obtained by using a software package, like EViews, SAS, SPLUS 

GARCH, GAUSS, TSP, R, MATLAB, and RATS.  

Testing for ARCH Effects 

Let 1ttt yy    be the residual series. The squared series  2

t is then used to 

check for conditional heteroscedasticity, which is also known as the ARCH effects. 

To this end, two tests, briefly discussed below, are available. The first one is to apply 

the usual Ljung-Box statistic Q(m) to the  2

t series. The null hypothesis is that the 

first m lags of autocorrelation functions of the  2

t  series are zero. The second test 

for conditional heteroscedasticity is the Lagrange multiplier test of Engle (1982). This 

test is equivalent to usual F-statistic for testing 0a:H i0  , i =1 ,2,… ,q in the linear 

regression  
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where te  denotes the error term, q is the prespecified positive integer, and T is the 

sample size.  

Let  
2

1

2

0 



T

qt

tSSR  , where T/2
t

T

1qt

 


 is the sample mean of  2

t , and 




T

1qt

2
t1 êSSR , where tê  is the least squares residual of (9). Then, under H0,  
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qTSSR

qSSRSSR
F                                                                  (10) 

is asymptotically distributed as chi-squared distribution with q degrees of freedom. 

The decision rule is to reject H0 if   2

qF  , where   2

q
 is the upper 100(1- )th 

percentile of 2

q  or, alternatively, the p-value of F is less than  . 

Illustration(Paul et al., 2009) 

Paul et al. (2009) found that AR(1)-GARCH (1,1) model was better than ARIMA 

model for modeling and forecasting of all-India data of monthly export of spices 

during the period April, 2000 to November, 2006.First of all they fitted ARIMA 

model. The appropriate model was chosen on the. ARIMA(1,1,1) model is selected 

for modelling and forecasting of the export of spices based on minimum Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) values. The 

estimates of parameters of above model are reported in Table 1. The graph of fitted 

model along with data points is exhibited in Fig. 1. Evidently, the fitted 

ARIMA(1,1,1) model is not able to capture successfully the volatility present at 

various time-epochs, like October, 2001; May, 2002; March, 2004; and March, 2006. 

Table 1.  Estimates of parameters along with their standard errors  

for fitted ARIMA(1,1,1) model  

 

Parameter Estimate Standard error 

AR1 -0.100 0.159 

MA1   0.696 0.119 

Constant  1.468 0.966 
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Fig. 1. Fitted ARIMA(1,1,1) model along with  data points 

Fitting of GARCH Model 

On investigating autocorrelation of the squared residuals of the fitted ARIMA(1,1,1) 

model it was found that the autocorrelation was highest at lag 24, which was 0.265. 

The ARCH-LM test statistic at lag 24 computed using equation (10) was 37.48, which 

was significant at 5% level of significance. But it is not reasonable to apply ARCH 

model of order 24 in view of the enormously large number of parameters. Therefore, 

the parsimonious GARCH model is applied. The AR(1)-GARCH(1,1) model is 

selected on the basis of minimum AIC and BIC values. The estimates of parameters 

of the above model along with their corresponding standard errors in brackets ( ) are 

yt = 157.99 + 0.829yt-1+ t  

(33.692)  (0.087) 

where ttt h  2/1 , and ht satisfies the variance equation 

ht = 1427.855 + 0.354 2

1t + 0.509ht-1 

(237.058)  (0.277)        (0.206)  

Using eqs. (7) and (8), the AIC and BIC values for fitted AR(1) – GARCH(1,1) 

model, are respectively computed as 479.77 and 521.97. To study the appropriateness 

of the fitted GARCH model, the autocorrelation function of the standardized residuals 

and squared standardized residuals are computed and it is found that, in both 

situations, the autocorrelation function is insignificant at 5% level of significance, 

thereby confirming that the mean and variance equations are correctly specified.The 
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graph of fitted model along with data points is exhibited in Fig. 2. Obviously, the 

fitted GARCH model is able to capture the volatility present in the data set.EViews 

software package was employed for fitting of these models.  

 

Fig. 4. Fitted AR(1) – GARCH(1,1) model along with  data points 

Forecasting 

One-step ahead forecasts of export of spices along with their corresponding standard 

errors inside the brackets ( ) for the months of September, 2006 to November, 2006 in 

respect of  above fitted models are reported in Table 2. A perusal indicates that, for 

fitted GARCH model, all the forecast values lie within one standard error of forecasts. 

However, this attractive feature does not hold for fitted ARIMA model. 

The Mean square prediction error (MSPE) values and Mean absolute prediction error 

(MAPE) values for fitted GARCH model are respectively computed as 18.14 and 

15.00, which are found to be lower than the corresponding ones for fitted ARIMA 

model, viz. 33.17 and 29.02 respectively. 

Table 2. One-step ahead forecasts of export of spices ( Rs. Crores) for fitted 

models 

Months Actual Price Forecasts by 

ARIMA(1,1,1)             AR(1)-GARCH(1,1) 

Sep. ’06 270.91 235.67(29.58) 247.14 (40.93) 

Oct. ’06 232.59 240.27 (30.12) 231.89 (48.17) 

Nov. ’06 286.21 241.50 (31.16) 265.68 (53.31) 
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To sum up, it may be concluded that the AR(1)-GARCH(1,1) model has performed 

better than the ARIMA(1,1,1) model for present data for both modelling as well as 

forecasting purposes. 
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Ensemble methods are techniques that aim at improving the accuracy of results in 

models by combining multiple models instead of using a single model. They combine 

multiple algorithms to produce better classification performance.It is a machine 

learning approach to combine multiple other models in the prediction process. The 

combined models increase the accuracy of the results significantly.Those models are 

referred to as base estimators. It is a solution to overcome the following technical 

challenges of building a single estimator:High variance: The model is very sensitive to 

the provided inputs to the learned features. 

 Low accuracy: One model or one algorithm to fit the entire training data might not 

be good enough to meet expectations. 

 Features noise and bias: The model relies heavily on one or a few features while 

making a prediction. 

Bagging is used to reduce the variance of weak learners. Boosting is used to reduce 

the bias of weak learners. Stacking is used to improve the overall accuracy of strong 

learners. 

Ensemble Algorithm 

A single algorithm may not make the perfect prediction for a given dataset. Machine 

learning algorithms have their limitations and producing a model with high accuracy is 

challenging. If we build and combine multiple models, the overall accuracy could get 

boosted. The combination can be implemented by aggregating the output from each 

model with two objectives: reducing the model error and maintaining its 

generalization. The way to implement such aggregation can be achieved using some 

techniques. Some textbooks refer to such architecture as meta-algorithms. 
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Ensemble Learning 

Building ensemble models is not only focused on the variance of the algorithm used. 

For instance, we could build multiple C45 models where each model is learning a 

specific pattern specialized in predicting one aspect. Those models are called weak 

learners that can be used to obtain a meta-model. In this architecture of ensemble 

learners, the inputs are passed to each weak learner while collecting their predictions. 

The combined prediction can be used to build a final ensemble model. 

One important aspect to mention is those weak learners can have different ways of 

mapping the features with variant decision boundaries. 

 

Ensemble Techniques 

Bagging 

We use bagging for combining weak learners of high variance. Bagging aims to 

produce a model with lower variance than the individual weak models. These weak 

learners are homogenous, meaning they are of the same type. 

Bagging is also known as Bootstrap aggregating. It consists of two steps: 

bootstrapping and aggregation. 

Bootstrapping 

Involves resampling subsets of data with replacement from an initial dataset. In other 

words, subsets of data are taken from the initial dataset. These subsets of data are 

called bootstrapped datasets or, simply, bootstraps. Resampled ‘with replacement’ 

means an individual data point can be sampled multiple times. Each bootstrap dataset 

is used to train a weak learner. 

Aggregating 

The individual weak learners are trained independently from each other. Each learner 

makes independent predictions. The results of those predictions are aggregated at the 
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end to get the overall prediction. The predictions are aggregated using either max 

voting or averaging. 

Max Voting is commonly used for classification problems. It consists of taking the 

mode of the predictions (the most occurring prediction). It is called voting because 

like in election voting, the premise is that ‘the majority rules’. Each model makes a 

prediction. A prediction from each model counts as a single ‘vote’. The most 

occurring ‘vote’ is chosen as the representative for the combined model. 

Averaging is generally used for regression problems. It involves taking the average of 

the predictions. The resulting average is used as the overall prediction for the 

combined model. 

It is one of the most straightforward and most intuitive ensemble-based algorithms 

that create separate samples of the training dataset. Each training dataset is used to 

train a different classification. 

 
 Bagging 

The idea of bagging is based on making the training data available to an iterative 

process of learning. Each model learns the error produced by the previous model 

using a slightly different subset of the training dataset. Bagging reduces variance 

and minimizes overfitting. One example of such a technique is the Random 

Forest algorithm. 

The steps of Bagging are as follows: 

1. We have an initial training dataset containing n-number of instances. 
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2. We create a m-number of subsets of data from the training set.  We take a 

subset of N sample points from the initial dataset for each subset. Each subset 

is taken with replacement. This means that a specific data point can be 

sampled more than once. 

3. For each subset of data, we train the corresponding weak learners 

independently. These models are homogeneous, meaning that they are of the 

same type. 

4. Each model makes a prediction. 

5. The predictions are aggregated into a single prediction. For this, either max 

voting or averaging is used. 

 

Bagging Algorithm:  

Input:  

Data Set D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn )}  

Number of iteration T  

Process:  

Step 1: for i = 1 to T  

(a) Through sampling data points with replacement, create a dataset sample 

Sm.  
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(b) From each dataset sample, Sm learns a classifier Cm.  

Step 2: for every test example.  

(a) Try all classifiers Cm.  

(b) Estimate the class that earns the largest number of votes. 

 Random Forest: Random Forest is another ensemble machine learning 

algorithm that follows the bagging technique. It is an extension of the bagging 

estimator algorithm. The base estimators in random forest are decision trees. 

Unlike bagging meta estimator, random forest randomly selects a set of 

features which are used to decide the best split at each node of the decision 

tree. It uses subset of training samples as well as subset of features to build 

multiple split trees. Multiple decision trees are built to fit each training set. The 

distribution of samples/features is typically implemented in a random mode. 

 

Looking at it step-by-step, this is what a random forest model does: 

1. Random subsets are created from the original dataset (bootstrapping). 

2. At each node in the decision tree, only a random set of features are considered 

to decide the best split. 

3. A decision tree model is fitted on each of the subsets. 

4. The final prediction is calculated by averaging the predictions from all 

decision trees. 

Note: The decision trees in random forest can be built on a subset of data and 

features. Particularly, the sklearn model of random forest uses all features for 
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decision tree and a subset of features are randomly selected for splitting at each 

node. 

To sum up, Random forest randomly selects data points and features, and 

builds multiple trees (Forest). 

 Extra-Trees Ensemble: is another ensemble technique where the predictions are 

combined from many decision trees. Similar to Random Forest, it combines a large 

number of decision trees. However, the Extra-trees use the whole sample while 

choosing the splits randomly. 

 Boosting: 

We use boosting for combining weak learners with high bias. Boosting aims to 

produce a model with a lower bias than that of the individual models. Like in 

bagging, the weak learners are homogeneous. 

Boosting involves sequentially training weak learners. Here, each subsequent 

learner improves the errors of previous learners in the sequence. A sample of data 

is first taken from the initial dataset. This sample is used to train the first model, 

and the model makes its prediction. The samples can either be correctly or 

incorrectly predicted. The samples that are wrongly predicted are reused for 

training the next model. In this way, subsequent models can improve on the errors 

of previous models. 

Unlike bagging, which aggregates prediction results at the end, boosting 

aggregates the results at each step. They are aggregated using weighted averaging. 

Weighted averaging involves giving all models different weights depending on 

their predictive power. In other words, it gives more weight to the model with the 

highest predictive power. This is because the learner with the highest predictive 

power is considered the most important. 

Boosting works with the following steps: 

1. We sample m-number of subsets from an initial training dataset. 

2. Using the first subset, we train the first weak learner. 

3. We test the trained weak learner using the training data. As a result of the 

testing, some data points will be incorrectly predicted. 

4. Each data point with the wrong prediction is sent into the second subset of 

data, and this subset is updated. 

5. Using this updated subset, we train and test the second weak learner. 
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6. We continue with the following subset until the total number of subsets is 

reached. 

7. We now have the total prediction. The overall prediction has already been 

aggregated at each step, so there is no need to calculate it. 

 

Algorithm:  

Input:  

Data set D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn )}  

Number of iteration T  

Process:  

Step 1: Initialize Weight: Each case receives the same weight.  

Wi = 1/N, where i = 1, 2, 3 … N.  

Step 2: Construct a classifier using current weight, Compute its error: 

 

Step 3: Get a classifier influence and update example weight. 

 

Step 4: Go to step 2. 

 Adaptive Boosting (AdaBoost): is an ensemble of algorithms, where we build 

models on the top of several weak learners. As we mentioned earlier, those 

learners are called weak because they are typically simple with limited 
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prediction capabilities. It is one of the simplest boosting algorithms. Usually, 

decision trees are used for modelling. Multiple sequential models are created, 

each correcting the errors from the last model. AdaBoost assigns weights to 

the observations which are incorrectly predicted and the subsequent model 

works to predict these values correctly. 

The adaptation capability of AdaBoost made this technique one of the earliest 

successful binary classifiers. Sequential decision trees were the core of such 

adaptability where each tree is adjusting its weights based on prior knowledge 

of accuracies. Hence, we perform the training in such a technique in sequential 

rather than parallel process. In this technique, the process of training and 

measuring the error in estimates can be repeated for a given number of iteration 

or when the error rate is not changing significantly. 

AdaBoost was the first boosting technique and is still now widely used in 

several domains. AdaBoost, in theory, is not prone to overfitting. Stage-wise 

estimation may slow down the learning process since parameters aren’t jointly 

optimized. AdaBoost may be used to increase the accuracy of the weak 

classifiers, allowing it to be more flexible. It requires no normalization and has 

a low generalization error rate. However, training the algorithm takes 

enormous time. The method is also susceptible to noisy data and outliers. 

Therefore, removing them before employing them is strongly advised. 

Looking at it step-by-step, this is what a AdaBoost model does: 

1. Initially, all observations in the dataset are given equal weights. 

2. A model is built on a subset of data. 

3. Using this model, predictions are made on the whole dataset. 

4. Errors are calculated by comparing the predictions and actual values. 

5. While creating the next model, higher weights are given to the data points 

which were predicted incorrectly. 

6. Weights can be determined using the error value. For instance, higher the 

error more is the weight assigned to the observation. 

7. This process is repeated until the error function does not change, or the 

maximum limit of the number of estimators is reached. 

 Gradient Boosting: Gradient Boosting or GBM is another ensemble machine 

learning algorithm that works for both regression and classification problems. 

GBM uses the boosting technique, combining a number of weak learners to 
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form a strong learner. Regression trees used as a base learner, each subsequent 

tree in series is built on the errors calculated by the previous tree.Gradient 

boosting algorithms are great techniques that have high predictive 

performance. Xgboost, LightGBM, and CatBoost are popular boosting 

algorithms that can be used for regression and classification problems. Their 

popularity has significantly increased after their proven ability to win some 

Kaggle competitions. 

 Stacking 

Stacking, also known as Stacked Generalization,is use to improve the 

prediction accuracy of strong learners. Stacking aims to create a single robust 

model from multiple heterogeneous strong learners. 

Stacking differs from bagging and boosting in that: 

 It combines strong learners 

 It combines heterogeneous models 

 It consists of creating a Metamodel. A metamodel is a model created using 

a new dataset. 

Individual heterogeneous models are trained using an initial dataset. These 

models make predictions and form a single new dataset using those 

predictions. This new data set is used to train the metamodel, which makes the 

final prediction. The prediction is combined using weighted averaging. 

Because stacking combines strong learners, it can combine bagged or boosted 

models. 

Stackingis a method similar to boosting. It is an interesting way of combining 

different models where multiple different algorithms are applied to the 

training dataset to create a model. The Meta classifier is used to predict unseen 

data accurately. They produce more robust predictors. It is a process of 

learning how to create such a stronger model from all weak learners’ 

predictions. 

It is an ensemble technique that combines multiple classifications or 

regression models via a meta-classifier or a meta-regressor. The base-level 

models are trained on a complete training set, then the meta-model is trained 

on the features that are outputs of the base-level model. The base-level often 
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consists of different learning algorithms and therefore stacking ensembles are 

often heterogeneous. 

The models(Base-Model) in stacking are typically different (e.g. not all 

decision trees) and fit on the same dataset. Also, a single model( Meta-model) 

is used to learn how to best combine the predictions from the contributing 

models. 

The architecture of a stacking model involves two or more base models, often 

referred to as level-0 models and a meta-model. Meta-model, also referred to 

as a level-1 model combines the predictions of the base models. 

The steps of Stacking are as follows: 

1. We use initial training data to train m-number of algorithms. 

2. Using the output of each algorithm, we create a new training set. 

3. Using the new training set, we create a meta-model algorithm. 

4. Using the results of the meta-model, we make the final prediction. The 

results are combined using weighted averaging. 

The outputs from the base models used as input to the meta-model may be real 

values in the case of regression, and probability values, probability like values, 

or class labels in the case of classification. 

 

Please note that what is being learned here (as features) is the prediction from 

each model. 
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When to use Bagging, Boosting and Stacking? 

 

 If you want to reduce the overfitting or variance of your model, you use 

bagging. If you are looking to reduce underfitting or bias, you use 

boosting. If you want to increase predictive accuracy, use stacking. 

 Bagging and boosting both works with homogeneous weak learners. 

Stacking works using heterogeneous solid learners. 

 All three of these methods can work with either classification or regression 

problems. 

 One disadvantage of boosting is that it is prone to variance or overfitting. 

It is thus not advisable to use boosting for reducing variance. Boosting will 

do a worse job in reducing variance as compared to bagging. 

 On the other hand, the converse is true. It is not advisable to use bagging 

to reduce bias or underfitting. This is because bagging is more prone to 

bias and does not help reduce bias. 

 Stacked models have the advantage of better prediction accuracy than 

bagging or boosting. But because they combine bagged or boosted models, 

they have the disadvantage of needing much more time and computational 

power.   If you are looking for faster results, it’s advisable not to use 

stacking. However, stacking is the way to go if you’re looking for high 

accuracy. 
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1. Introduction 

Mining association rules is one of the most useful data mining applications. 

Association rules, were first introduced in 1993 [Agrawal1993], and are used to 

identify relationships among a set of items in a database.  These relationships are not 

based on inherent properties of the data themselves (as in the case of functional 

dependencies), but are rather based on co-occurrence of the data items. Association 

rules are mainly used to analyze transactional data.  The association rules are useful in 

management, to increase the effectiveness and/or reduce the cost associated with 

advertising, marketing, inventory, stock location on the floor etc.  Association rules 

also provide assistance in other applications such as prediction by identifying what 

events occur before a set of particular events. An association rule may be one of the 

following types: Boolean, Spatial, Temporal, Generalized, Quantitative, Interval, and 

Multiple Min-Support Association etc or a mix of them.  

Formally the association rule as stated in [Agrawal1993] and [Cheung1996] is,  

Let D be a transaction database and I = {I1, I2, …, Im} be a set of m distinct items 

(attributes) of D, where each transaction (record) T is a set of items such that TI and 

has unique identifier. A transaction T is said to contain a set of item A if and only if 

AT.  An association rule is of the form of an implication expression AB, where A, 

BI, are sets of items called itemsets, and A  B=. The rule AB holds in the 

transaction data D with support (s) where s is the ratio (in percent) of the records that 

contain A B (i.e. both A and B) to the total number of records in the database, i.e. the 

probability P(A B). The rule AB has confidence (c) in the D, the ratio (in percent) 

of the number of records that contain A B to the number of records that contain A. 

This is taken to be the conditional probability P(B | A). Mining of association rules 

from a database consists of finding all rules that meet the user-specified thresholds of 

support and confidence termed as minimum support and minimum confidence.  The 

problem of mining association rules has been decomposed into the following two 

subproblems [Agrawal1994]: 

mailto:Anshu.Bharadwaj@icar.gov.in
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1) To find all sets of items which occur with a frequency that is greater than or 

equal to the user-specified threshold support, say s.  

2) To generate the rules using the frequent itemsets, which have confidence 

greater than or equal to the user-specified threshold confidence, say c. 

The Association relationships are not based on inherent properties of the data 

themselves but rather based on co-occurrence of the data items. Application of 

association rules spans across a wide range of domains such as, business, finance, 

health, geographical information system, weather forecast and many such areas of real 

life application. The association rules in management may be handy to increase the 

effectiveness and/or reduce the cost associated with advertising, marketing, inventory, 

stock location on the floor etc.  Association rules could assist in prediction of an event 

co-occurrence of a set of events. Association rules are generally categorized in 

following types: Boolean, Spatial, Temporal, Generalized, Quantitative, and Interval 

or may be mixed of them. The above definition of association rule is also known as 

Boolean Association Rule.  

Association rule mining is: 

 Unsupervised learning 

 Used for pattern discovery 

 Each rule has form: A -> B, or Left -> Right 

For example: “70% of customers who purchase 2% milk will also purchase whole 

wheat bread.” 

Data mining using association rules is the process of looking for strong rules: 

1. Find the large itemsets (i.e. most frequent combinations of items) 

2. Generate association rules for the above itemsets. 

2. Performance Evaluation Measure of Association Rules 

How to measure the strength of an association rule?  Using support/confidence 

Support: Support shows the frequency of the patterns in the rule; it is the percentage 

of transactions that contain both A and B, i.e.  

Support = Probability(A and B) 

Support = (# of transactions involving A and B) / (total number of 

transactions). 

Confidence: Confidence is the strength of implication of a rule; it is the percentage of 

transactions that contain B if they contain A, ie. 
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Confidence = Probability (B if A) = P(B/A) 

Confidence =  

(# of transactions involving A and B) / (total number of transactions that have 

A). 

3. The Apriori Algorithm 

The Apriori Algorithm is an influential algorithm for miningfrequent itemsets for 

boolean association rules. Some keyconcepts for Apriori algorithm are: 

 Frequent Itemsets: The sets of item which hasminimum support (denoted by 

Li for ith-Itemset). 

 Apriori Property: Any subset of frequent itemset mustbe frequent. 

 Join Operation: To find Lk , a set of candidate kitemsets is generated by 

joining Lk-1 with itself. 

Very first algorithm proposed for association rules miningwas the Apriori for frequent 

itemset mining. The mostpopular algorithm for pattern mining is without a doubt 

Apriori.It is designed to be applied on a transaction database to discover patterns in 

transactions made by customers in stores. But it can also be applied in several other 

applications. A transaction is defined a set of distinct items (symbols).  

Aprioritakes as input  

(1)  a minsup threshold set by the user and  

(2)  atransaction database containing a set of transactions.  

Apriorioutputs all frequent itemsets, i.e. groups of items shared by noless than minsup 

transactions in the input database. Forexample, consider the following transaction 

data base containing four transactions. Given a minsup of twotransactions, frequent 

itemsets are“bread, butter”, “breadmilk”, “bread”, “milk” and “butter”. 

T1: bread, butter, spinach 

T2: butter, salmon 

T3: bread, milk, butter 

T4: cereal, bread, milk 

The Apriori algorithm employs the downward closureproperty if an item set is not 

frequent, any superset of it cannotbe frequent either. The Apriori algorithm performs 

a breadthfirstsearch in the search space by generating candidate k+1-itemsets from 

frequent k itemsets. 
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The frequency of an item set is computed by counting its occurrence in each 

transaction. Apriori is an significantalgorithm for mining frequent itemsets for 

Boolean associationrules. Since the Algorithm uses prior knowledge of frequentitem 

set it has been given the name Apriori. Apriori is aniterative level wise search 

Algorithm, where k- itemsets areused to explore (k+1)-itemsets. First, the set of 

frequents 1- itemsets is found. 

This set is denoted by L1. L1 is used to find L2, the set offrequent 2-itemsets , which 

is used to find L3 and so on , untilno more frequent k-itemsets can be found. The 

finding of eachLk requires one full scan of database. 

There are twosteps for understanding that how Lk-1 is usedto find Lk:- 

1) The join step: To find Lk , a set of candidate k-itemsets isgenerated by joining Lk-1 

with itself. This set ofcandidates is denoted Ck. 

2) The prune step: Ck is a superset of Lk , that is , itsmembers may or may not be 

frequent , but all of thefrequent k-itemsets are included in Ck . 

A scan of the database to determine the count of eachcandidate in Ck would result in 

the determination of Lk. Ck,however, can be huge, and so this could involve 

heavycomputation. 

To reduce the size of Ck , the Apriori property is used as follows: 

i. Any (k-1)-item set that is not frequent cannot be asubset of frequent k-item 

set. 

ii. Hence, if (k-1) subset of a candidate k item set is notin Lk-1 then the 

candidate cannot be frequent eitherand so can be removed from C. 

Based on the Apriori property that all subsets of a frequentitemset must also be 

frequent, we can determine that four lattercandidates cannot possibly be frequent. 

How? 

For example, let’s take {I1, I2, I3}. The 2-item subsets of itare {I1, I2}, {I1, I3} & 

{I2, I3}. Since all 2-item subsets of {I1,I2, I3} are members of L2, We will keep {I1, 

I2, I3} in C3. 

Let’s take another example of {I2, I3, I5} which shows howthe pruning is performed. 

The 2-item subsets are {I2, I3}, {I2,I5} & {I3,I5}. 

BUT, {I3, I5} is not a member of L2 and hence it is notfrequent violating Apriori 

Property. Thus, we will have toremove {I2, I3, I5} from C3. 
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Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after checking forall members of result of 

Join operation for Pruning. 

Example : The Titanic Dataset 

The Titanic dataset in the datasets package is a 4-dimensional table with summarized 

information on the fate of passengers on the Titanic according to social class, sex, age 

and survival. I To make it suitable for association rule mining, we reconstruct the raw 

data as titanic.raw, where each row represents a person. The reconstructed raw data 

can also be downloaded at http://www.rdatamining.com/data/titanic.raw.rdata. 

> str(titanic.raw) 

'data.frame': 2201 obs. of 4 variables: 

$ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 ... 

$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ... 

$ Age : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 ... 

$ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... 

 

Association Rule Mining 

> library(arules) 

> # find association rules with default settings 

> rules <- apriori(titanic.raw) 

> inspect(rules) 

  lhs               rhs         support   confidence lift 

1 {}             => {Age=Adult} 0.9504771 0.9504771  1.0000000 

2 {Class=2nd}    => {Age=Adult} 0.1185825 0.9157895  0.9635051 

3 {Class=1st}    => {Age=Adult} 0.1449341 0.9815385  1.0326798 

4 {Sex=Female}   => {Age=Adult} 0.1930940 0.9042553  0.9513700 

5 {Class=3rd}    => {Age=Adult} 0.2848705 0.8881020  0.9343750 

6 {Survived=Yes} => {Age=Adult} 0.2971377 0.9198312  0.9677574 

7 {Class=Crew}   => {Sex=Male}  0.3916402 0.9740113  1.2384742 

 

We then set rhs=c("Survived=No", "Survived=Yes") in appearance to make sure that 

only "Survived=No" and "Survived=Yes" will appear in the rhs of rules. 

 

> # rules with rhs containing "Survived" only 

> rules <- apriori(titanic.raw, 

  + parameter = list(minlen=2, supp=0.005, conf=0.8), 

  + appearance = list(rhs=c("Survived=No", "Survived=Yes"), 

  + default="lhs"), 

  + control = list(verbose=F)) 

> rules.sorted <- sort(rules, by="lift") 

> inspect(rules.sorted) 

http://www.rdatamining.com/data/titanic.raw.rdata


  

 
 

256 

 

  

 
Pruning Redundant Rules 

In the above result, rule 2 provides no extra knowledge in addition to rule 1, since 

rules 1 tells us that all 2nd-class children survived. Generally speaking, when a rule 

(such as rule 2) is a super rule of another rule (such as rule 1) and the former has the 

same or a lower lift, the former rule (rule 2) is considered to be redundant. Below we 

prune redundant rules. 

> # find redundant rules 

> subset.matrix <- is.subset(rules.sorted, rules.sorted) 

> subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA 

> redundant <- colSums(subset.matrix, na.rm=T) >= 1 

> which(redundant) 

[1] 2 4 7 8 

> # remove redundant rules 

http://www.rdatamining.com/examples/association-rules/association-rules.jpg?attredirects=0
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> rules.pruned <- rules.sorted[!redundant] 

> inspect(rules.pruned) 

 

 
Visualizing Association Rules 

Package arules Viz supports visualization of association rules with scatter plot, 

balloon plot, graph, parallel coordinates plot, etc. 

> library(arulesViz) 

> plot(rules) 

 

http://www.rdatamining.com/examples/association-rules/association-rules-pruned.jpg?attredirects=0
http://www.rdatamining.com/examples/association-rules/scatter-plot.jpg?attredirects=0
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> plot(rules, method="graph", control=list(type="items")) 

 

 
> plot(rules, method="paracoord", control=list(reorder=TRUE)) 

 

 
 

4. Frequent Pattern (FP) Growth Method 

The FP-Growth Algorithm is an alternative way to find frequent itemsets without 

using candidate generations, thus improving performance. For so much it uses a 

http://www.rdatamining.com/examples/association-rules/graph.jpg?attredirects=0
http://www.rdatamining.com/examples/association-rules/parallel-coordinates.jpg?attredirects=0
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divide-and-conquer strategy. The core of this method is the usage of a special data 

structure named frequent-pattern tree (FP-tree), which retains the itemset association 

information. 

In simple words, this algorithm works as follows: first it compresses the input 

database creating an FP-tree instance to represent frequent items. After this first step 

it divides the compressed database into a set of conditional databases, each one 

associated with one frequent pattern. Finally, each such database is mined separately. 

Using this strategy, the FP-Growth reduces the search costs looking for short patterns 

recursively and then concatenating them in the long frequent patterns, offering good 

selectivity. 

In large databases, it’s not possible to hold the FP-tree in the main memory. A 

strategy to cope with this problem is to firstly partition the database into a set of 

smaller databases (called projected databases), and then construct an FP-tree from 

each of these smaller databases. 

4.1 FP-Tree structure 

The frequent-pattern tree (FP-tree) is a compact structure that stores quantitative 

information about frequent patterns in a database [4]. 

Han defines the FP-tree as the tree structure io below [1]: 

1. One root labeled as “null” with a set of item-prefix subtrees as children, and a 

frequent-item-header table (presented in the left side of Figure 1); 

2. Each node in the item-prefix subtree consists of three fields: 

1. Item-name: registers which item is represented by the node; 

2. Count: the number of transactions represented by the portion of the 

path reaching the node; 

3. Node-link: links to the next node in the FP-tree carrying the same 

item-name, or null if there is none. 

1. Each entry in the frequent-item-header table consists of two fields: 

1. Item-name: as the same to the node; 

2. Head of node-link: a pointer to the first node in the FP-tree carrying 

the item-name. 

Additionally the frequent-item-header table can have the count support for an 

item. The Figure below show an example of a FP-tree. 

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Kumar2010-4
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-HanPei2000-1
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Figure 1: An FP-tree registers compressed, frequent pattern information 

Table 1: Transactional data for an AllElectronics branch. 

 

The first scan of the database is the same as Apriori, which derives the set of frequent 

items (1-itemsets) and their support counts (frequencies). Let the minimum support 

count be 2. The set of frequent items is sorted in the order of descending support 

count. This resulting set or list is denoted by L. Thus, we have L ={{I2: 7}, {I1: 6}, 

{I3: 6}, {I4: 2}, {I5: 2}}. An FP-tree is then constructed as follows. First, create the 

root of the tree, labeled with “null.” Scan database D a second time. The items in each 

transaction are processed inL order (i.e., sorted according to descending support 

count), and a branchis created for each transaction. For example, the scan of thefirst 

transaction, “T100: I1, I2, I5,” which contains three items (I2, I1, I5 in L order), leads 

to the construction of the first branch of the tree with three nodes,hI2: 1i,hI1:1i, and 

hI5: 1i, where I2islinked as a child to the root, I1islinked to I2, and I5islinked to I1. 

The second transaction, T200, contains theitems I2 and I4inLorder, whichwould result 

in a branch where I2 is linked to the root and I4 is linked to I2. However, this branch 

would share a common prefix, I2, with the existing path for T100. Therefore, we 
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insteadincrement the count of the I2 node by 1, and create a new node,hI4: 1i, which 

is linked as a child to hI2: 2i. In general, when considering the branch to be addedfor 

a transaction, the count of each node along a common prefix is incremented by 1, and 

nodes for the items following the prefix are created and linked accordingly. To 

facilitate tree traversal, an item header table is built so that each item points to its 

occurrences in the tree via a chain of node-links. The tree obtained after scanning all 

of the transactions is shown in Figure 6.7 with the associated node-links. In this way, 

the problem of mining frequent patterns in databases is transformed to that of mining 

the FP-tree. The FP-tree is mined as follows. Start from each frequent length-1 pattern 

(as an initial suffix pattern), construct its conditional pattern base (a “sub-database,” 

which consists of the set of prefix paths in the FP-tree co-occurring with the suffix 

pattern), then construct its (conditional) FP-tree, and perform mining recursively on 

such a tree. The pattern growth is achieved by the concatenation of the suffix pattern 

with the frequent patterns generated from a conditional FP-tree. 

Mining of the FP-tree is summarized in Table 2 and detailed as follows. We first 

consider I5, which is the last item in L, rather than the first. The reason for starting at 

the end of the list will become apparent as we explain the FP-tree mining process. I5 

occurs in two branches of the FP-tree of Figure 2. (The occurrences of I5 can easily 

be found by following its chain of node-links.) The paths formed by these branches 

are hI2, I1, I5: 1i and hI2, I1, I3, I5: 1i. Therefore, considering I5 as a suffix, its 

corresponding two prefix paths are hI2, I1: 1i and hI2, I1, I3: 1i, which form its 

conditional pattern base. Using this conditional pattern base as a transaction database, 

we build an I5-conditional FP-tree, which contains only a single path, hI2: 2, I1: 2i; I3 

is not included because its support count of 1 is less than the minimum support count. 

The single path generates all the combinations of frequent patterns: {I2, I5: 2}, {I1, 

I5: 2}, {I2, I1, I5: 2}. For I4, its two prefix paths form the conditional pattern base, 

{{I2 I1: 1}, {I2: 1}}, which generates a single-node conditional FP-tree, hI2: 2i, and 

derives one frequent pattern, {I2, I4: 2} 
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Table 2: Mining the FP-tree by creating conditional (sub-)pattern bases 

 

 

Figure 2: The conditional FP-tree associated with the conditional node I3 

Similar to the above analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2}, 

{I1: 2}}. Its conditional FP-tree has two branches, hI2: 4, I1: 2i and hI1: 2i, as shown 

in Figure 6.8, which generates the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 

2}}. Finally, I1’s conditional pattern base is {{I2: 4}}, whose FP-tree contains only 

one node, hI2: 4i, which generates one frequent pattern, {I2, I1: 4}. This mining 

process is summarized in Figure 6.9. The FP-growth method transforms the problem 

of finding long frequent patterns to searching for shorter ones in much smaller 

conditional databases recursively and then concatenating the suffix. It uses the least 

frequent items as a suffix, offering good selectivity. The method substantially reduces 

the search costs. 

5. Basic Association Rules: Problems, Solutions and New Applications 

Most of the research efforts in the scope of association rules have been oriented to 

simplify the rule set and to improve performance of algorithm. But these are not the 

only problems that can be found and when rules are generated and applied in different 

domains. Troubleshooting for them should also take into consideration the purpose of 

association model and data they come from. Some of the major drawbacks of 

association rule algorithms are as follows: 

 Obtaining huge number of rules 

 Obtaining non interesting rules 
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 Low algorithm performance  

 Cannot incorporate domain/ user defined knowledge 

 Not suitable for supervised learning 

Some of the recent studies have focused on overcoming these limitations. Many 

algorithms for obtaining a reduced number of rules with high support and confidence 

have been produced. However these measures are insufficient to determine if 

discovered associations are really useful.  An important property of discovered 

association rules is that they should be interesting and useful.  Though 

interestingness of rule is a subjective aspect, many researchers have tried to come up 

with some ways of measuring of interest.  It has been suggested that the rules are 

interesting if they are unexpected (unknown to user) and actionable (users can do 

something with them to their advantage). Further some other measures namely: any-

confidence, all confidence and bond has been suggested as alternative measures of 

interestingness. Some authors have considered alternative measures of interest as : 

gini index, entropy gain or chisquared for database or a measure of implication 

called conviction. Most of the approaches for finding interesting rules require user 

participation to articulate his knowledge or to express what rules are interesting for 

him. Systems have been developed to analyze the discovered rules against user’s 

knowledge. Discovered rules can be pruned to remove redundant and insignificant 

rules and further user’s evaluation can be used to rank the rules. Unexpected patterns 

discovered may represent “holes” in domain knowledge which needs to be resolved. 

These patterns can thus be used to refine already existing beliefs.  

Traditionally, association analysis has been considered as an unsupervised technique, 

so it has been applied for knowledge discovery tasks. Recent studies have shown that 

knowledge discovery algorithms such as association rule mining can be successfully 

applied for prediction in classification problems. In such cases the algorithms used for 

generating association rules must be tailored to peculiarities of predictions in order to 

build effective classifiers. Some work has been done, where association mining 

algorithms have been extended so that they can be used for classification/ prediction. 

A proposal of this category is Classification Based on Association (CBA) algorithm. 

The algorithm consists of two parts, a rule generator for finding association rules and 

a classifier builder based on these rules. Main contribution of this algorithm is 
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possibility of making prediction on any attribute in database. Moreover, new 

incomplete observations can be classified.  

In conclusion we can say that association rule mining is an important area of data 

mining research and a comparatively a younger member of data mining community. 

In addition to finding co-occurrence relation between items, which is basic objective, 

the algorithm has been applied for diverse applications. Many extensions of standard 

methods have been proposed. A major research area on association rules is 

interestingness of discovered rules. In fact its potential has still to be tapped, so that it 

can be tailored to solve different types of data mining problems.  
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STATISTICAL ANALYSIS USING SPSS SOFTWARE 

Raju Kumar 
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1. Introduction 

SPSS (Statistical Package for the Social Sciences) is a widely used software program 

for statistical analysis and data management. It provides a comprehensive set of tools 

and features that enable researchers, data analysts, and students to perform various 

data-related tasks efficiently. SPSS is known for its user-friendly interface and 

powerful capabilities, making it a popular choice in both academia and industry. 

Originally developed in 1968 by Norman H. Nie, C. Hadlai "Tex" Hull, and Dale H. 

Bent. The original SPSS manual (Nieet al., 1970) has been described as one of 

"sociology's most influential books" for allowing ordinary researchers to do their own 

statistical analysis. Originally it is an acronym of Statistical Package for the Social 

Science but now it stands for Statistical Product and Service Solutions. The current 

versions are officially named IBM SPSS Statistics. Long produced by SPSS Inc., it 

was acquired by IBM in 2009. During 2009 and 2010 it was called PASW (Predictive 

Analytics Software) Statistics.SPSS has evolved over the years and is now owned by 

IBM Corporation. The software has undergone several versions, with each release 

bringing new functionalities and enhancements to meet the ever-growing demands of 

statistical analysis. 

SPSS allows users to import, manipulate, and analyze data from a wide range of 

sources, including spreadsheets, databases, and other statistical formats. The software 

supports both structured and unstructured data, making it versatile for different types 

of research and analysis. Whether you are working with survey data, experimental 

data, or observational data, SPSS provides the necessary tools to handle and explore 

your datasets effectively. 

One of the key strengths of SPSS is its extensive range of statistical procedures. The 

software offers a vast array of statistical techniques, ranging from basic descriptive 

statistics to advanced multivariate analysis. Users can easily generate frequencies, 

descriptive statistics, cross-tabulations, and explore relationships between variables. 

Moreover, SPSS provides options for regression analysis, analysis of variance 

(ANOVA), factor analysis, cluster analysis, and many other techniques that allow for 

in-depth data exploration and hypothesis testing. 

mailto:raju.kumar@icar.gov.in
http://en.wikipedia.org/wiki/SPSS_Inc.
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SPSS also provides a variety of graphical tools for visualizing data. Users can create 

charts, histograms, scatterplots, and other visual representations to better understand 

their data and communicate findings effectively. The software supports customization 

options, enabling users to format and design visuals to suit their specific needs. 

In addition to its analytical capabilities, SPSS offers data management features to 

assist users in preparing and cleaning datasets. With SPSS, users can merge, subset, 

transform, and recode variables, ensuring data quality and consistency. This helps 

researchers save time and effort in data preparation, allowing them to focus more on 

analysis and interpretation. 

SPSS is known for its user-friendly interface, making it accessible to users with 

varying levels of statistical knowledge and programming skills. The software offers a 

menu-driven interface, where users can perform tasks by selecting options from 

dropdown menus. However, for more advanced users, SPSS also supports a syntax-

based approach, allowing for greater flexibility and automation in data analysis. 

Furthermore, SPSS provides options for integration with other statistical software and 

programming languages. Users can import and export data in various formats, such as 

Excel, CSV, and SQL, facilitating seamless data exchange between different software 

tools. SPSS also supports integration with R and Python, allowing users to leverage 

the power of these programming languages for custom analyses and extensions. 

In conclusion, SPSS is a powerful and versatile software program for statistical 

analysis and data management. With its user-friendly interface, extensive statistical 

procedures, and data visualization capabilities, SPSS enables researchers and data 

analysts to explore, analyze, and interpret data efficiently. Its wide range of features 

and compatibility with other software tools make SPSS a valuable asset in various 

fields, including social sciences, market research, healthcare, and more. 

Some versions of SPSS released in recent years are 

• SPSS Statistics 17.0.1 - December 2008 

• PASW Statistics 17.0.3 - September 2009 

• PASW Statistics 18.0, 18.0.1, 18.0.2, 18.0.3 

• IBM SPSS Statistics 19.0 - August 2010 

• IBM SPSS Statistics 19.0.1, 20.0, 20.0.1, 21.0, 22.0, 23.0, 

24.0,25.0,26.0,27,28,29 
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Companion products in the same family are used for survey authoring and 

deployment (IBM SPSS Data Collection), data mining (IBM SPSS Modeler), text 

analytics, and collaboration and deployment (batch and automated scoring services). 

2.Opening SPSS 

 Depending on how the computer you are working on is structured, you can open 

SPSS in one of two ways.  

1. If there is an SPSS shortcut like   this on the desktop, simply put the cursor on 

it and double click the left mouse button.  

2. Click the left mouse button on the button on your screen, then put your cursor on 

Programs or All Programs and left click the mouse. Select SPSS 17.0 for Windows 

or IBM SPSS STATISTICS20  by clicking the left mouse button. Either approach 

will launch the program. 

3. Key Featuresof SPSS 

Some of the key features of SPSS are 

 It is easy to learn and use with its pull-down menu features 

 It includes a full range of data management system and editing tools 

 It offers comprehensive range of plotting, reporting and presentation features. 

 It provides in-depth statistical analysis capabilities 

In addition to statistical analysis, data management (case selection, file reshaping, 

creating derived data) and data documentation (a metadata dictionary stored in 

the datafile) are features of the base software. There are varieties of statistics included 

in the base software. Some of the important statistics are: 

Descriptive statistics: Cross tabulation, Frequencies, Descriptives, Explore, 

DescriptiveRatio Statistics etc. 

Bivariate statistics: Means, t-test, ANOVA, Correlation (bivariate, partial, distances), 

nonparametric tests etc. 

Prediction for numerical outcomes: Linear regression, Multiple Regression 

Prediction for identifying groups: Factor analysis, Cluster analysis (two-step, K-

means,hierarchical),Discriminant analysis etc. 

4. Layout of SPSS 

Data Editor: This graphical user interface displays the contents of the data file. One 

can create new data files or modify existing ones. The Data Editor window opens 

automatically when an SPSS session is started. The Data Editorwindow has two views 

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Text_mining
http://en.wikipedia.org/wiki/Text_mining
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Descriptive_statistics
http://en.wikipedia.org/wiki/Cross_tabulation
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Hierarchical_clustering
http://en.wikipedia.org/wiki/Graphical_user_interface
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that can be selected from the lower left hand side of the screen. Data Viewis where 

you see the data you are using. Variable Viewis where you can specify the format of 

your data when you are creating a file or where you can check the format of a pre-

existing file. The data in the Data Editoris saved in a file with the extension .sav.The 

data editor offers a simple and efficient spreadsheet-like facility for entering data and 

browsing the working data file. To invoke SPSS in the windows environment, select 

the appropriate SPSS icon.  

 

One can have only one data file open at a time. This editor has two views which can 

be toggled by clicking on one of the two tabs in the bottom left of the SPSS window. 

 Data view: Displays the actual data values or defined value labels. The 'Data 

View' shows a spreadsheet view of the cases (rows) and variables (columns). 

Unlike spreadsheets, the data cells can only contain numbers or text, and 

formulas cannot be stored in these cells. One can modify data values in the 

Data view in many ways like change data values; cut, copy and paste data 

values; add and delete cases; 

 Variable view: Displays variable definition information contained or metadata 

dictionary where each row represents a variable and shows the variable name, 

variable label, value label(s), print width, measurement type, and a variety of 

other characteristics. One can modify variable properties in the Variable view 

for example, add and delete variables, change the order of variables etc. 

http://en.wikipedia.org/wiki/Spreadsheet
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Cells in both views can be manually edited, defining the file structure and allowing 

data entry without using command syntax. This may be sufficient for small datasets. 

Larger datasets such as statistical surveys aremore often created in data 

entry software, or entered during computer-assisted personal interviewing, by 

scanning and using optical character recognition and optical mark 

recognition software, or by direct capture from online questionnaires. These datasets 

are then read into SPSS. Extension of the saved data file will be “.sav”. 

Viewer: All results, tables, and charts performed by different statistical analysis are 

displayed in the Viewer. Extension of the saved output file will be “.spv”. One can 

use the Viewer to browse results, show or hide selected tables and charts, change the 

display order of results by moving selected items or move items between 

the Viewer and other applications. The output presented in Viewer can be edited and 

saved for later use. A Viewer window opens automatically the first time a procedure 

is run that generates output. The Viewer is divided into two panes: 

 The left pane contains an outline view of the contents. One can click an item 

in the outline to go directly to the corresponding table or chart. 

 The right pane contains statistical tables, charts, and text output. 

Syntax Editor: The pull-down menu interface generates command syntax: this can be 

displayed in the output. These command syntax can also be pasted into a syntax file in 

a syntax window using the "paste" button present in each menu. One can then edit the 

command syntax toutilize special features of SPSS not available through dialog 

boxes. These commands can be saved in a file for use in subsequent SPSS sessions. 

Extension of the saved syntax file will be “.sps”. Command syntax programming has 

the benefits of reproducibility, simplifying repetitive tasks, and handling complex 

data manipulations and analyses. Additionally, some complex applications can only 

be programmed in syntax that are not accessible through the menu structure.  

Pivot Table Editor: The results from most statistical procedures are displayed in 

pivot tables. These pivot tables outputs can be modified in many ways with pivot 

table editor. One can edit text, swap data in rows and columns, create 

multidimensional tables, and selectively hide and show results. Changing the layout 

of the table does not affect the results. Instead, it's a way to display information in a 

different or more desirable manner. 

http://en.wikipedia.org/wiki/Statistical_survey
http://en.wikipedia.org/w/index.php?title=Data_entry_program&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Data_entry_program&action=edit&redlink=1
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Online_questionnaires
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Text Output Editor: Text output not displayed in pivot tables can be modified with 

the Text Output Editor. One can edit the output and change font characteristics (type, 

style, colour, size). 

Chart Editor: High-resolution charts and plots can be modified in chart windows. 

One can change the colours, select different type of fonts and sizes, switch the 

horizontal and vertical axes, rotate 3-D scatterplots, and even change the chart type.  

Script Window: It provides the opportunity to write full-blown programs, in a 

BASIC-like language. It is a text editor for syntax composition. Extension of the 

saved script file will be “.sbs” 

Many features of SPSS Statistics are accessible via pull-down menus or can be 

programmed with a proprietary 4GL command syntax language. Many of the tasks 

that are to be performed with SPSS start with menu selections. Each window has its 

own menu bar with menu selections appropriate for that window type. The various 

menu options available in SPSS are 

 

Most menu selections open dialog boxes. One can use dialog boxes to select variables 

and options for analysis. Since most procedures provide a great deal of flexibility, not 

all of the possible choices can be contained in a single dialog box. The main dialog 

box usually contains the minimum information required to run a procedure. 

Additional specifications are made in sub-dialog boxes. All these above mentioned 

options have further sub-options. To see what applications there are, we simply move 

the cursor to a particular option and press, when a drop-down menu will appear. To 

cancel a drop-down menu, place the cursor anywhere outside the option and press the 

left button. 

The three dots after an option term (...) on a drop-down menu, such as Define 

Variable...option in Data option, signifies that a dialog box will appear when this 

option is chosen. To cancel a dialog box, select the Cancel button in the dialog box. A 

right-facingarrowhead after an option term indicates that a further submenu will 

appear to the right of thedrop-down menu. An option with neither of these signs 

means that there are no further dropdownmenus to select. There are five standard 

command pushbuttons in most dialog boxes. 

OK:It runs the procedure. After the variables and additional specifications are 

selected, clickOK to run the procedure. 

http://en.wikipedia.org/wiki/4GL
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Paste:It generates command syntax from the dialog box selections and pastes the 

syntax into a syntax window. 

Reset:It deselects any variables in the selected variable list and resets all 

specifications in the dialog box. 

Cancel:It cancels any changes in the dialog box settings since the last time it was 

opened and closes the dialog box. 

Help:It contains information about the current dialog box. 

5.  Entering and Editing Data 

The easiest way of entering data in SPSS is to type it directly into the matrix of 

columns and numbered rows in the Data Editor window. The columns represent 

variables and the rows represent cases. The variables can be defined in the variable 

view. Variable name must be no longer than eight characters and the name must begin 

with a letter. 

Saving data 

To be able to retrieve a file, the file must be saved with a proper name. The default 

extension name for saving files is sav. To save this file on a floppy disk, we carry out 

the following sequence: 

→File →Save As... [opensSave Data As dialog box]→box under File 

Name:delete the asterisk and type file name →OK 

The output file can also be printed and saved. The extension name for output file is 

.spo. 

Retrieving a saved file 

To retrieve this file at a later stage when it is no longer the current file, use the 

following procedure: 

File→Open→Data...[opens the Open Data File dialog box] →choose drive 

from options listed →type name under File Name: →file name → OK 

Basic Steps in Data Analysis 

• Get your data into SPSS. You can open a previously saved SPSS data file, read a 

spreadsheet, database, or text data file, or enter your data directly in the Data Editor. 

• Select a procedure. Select a procedure from the menus to calculate statistics or to 

create a chart. 

• Select the variables for the analysis. The variables in the data file are displayed in 

a dialog box for the procedure. 

• Run the procedure. Results are displayed in the Viewer. 
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6. Statistical Procedures 

After entering the data set in Data Editor or reading an ASCII data file, we are now 

ready to analyse it. The Analyse option has the following sub options: 

Reports, Descriptive Statistics, Tables, Compare means, General Linear model, 

Mixed Models, Correlate, Regression, Loglinear, Neural Networks, Classify, 

Dimension Reduction, Scale, Non parametric tests, Forecasting, Time Series, 

Survival, Multiple response, Missing value analysis, Multiple imputation, Complex 

samples, Quality control, ROC curve. 

 

6.1Reports:  

This submenu provides techniques for reporting the results. The various sub-sub 

menus under this are as follows: 

Codebook reports the dictionary information such as variable names, variable labels, 

value labels, missing values and summary statistics for all or specified variables and 

multiple response sets in the active dataset. For nominal and ordinal variables and 

multiple response sets, summary statistics include counts and percents. For scale 

variables, summary statistics include mean, standard deviation, and quartiles. 

OLAP (Online Analytical Processing) Cubes procedure calculates totals, means, and 

other univariate statistics for continuous summary variables within categories of one 

or more categorical grouping variables. A separate layer in the table is created for 

each category of each grouping variable. 

Case Summaries calculates subgroup statistics for variables within categories of one 

or more grouping variables. All levels of the grouping variable are cross tabulated. 

One can choose the order in which the statistics are displayed. Summary statistics for 

each variable across all categories are also displayed. With large datasets, one can 

choose to list only the first n cases. 
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Report Summaries in Rows produces reports in which different summary statistics 

are laid out in rows. Case listings are also available from this command, with or 

without summary statistics. 

Report Summaries in Columns produces reports in which different summary 

statistics are laid out in separate columns. 

6.2 Descriptive Statistics:  

This submenu provides techniques for summarizing data with statistics, charts, and 

reports. The various sub-sub menus under this are as follows: 

Frequencies  provides information about the relative frequency of the occurrence of 

each category of a variable. This can be used it to obtain summary statistics that 

describe the typical value and the spread of the observations. To compute summary 

statistics for each of several groups of cases, Means procedure or the Explore 

procedure can be used. 

Descriptivesis used to calculate statistics that summarize the values of a variable like 

the measures of central tendency, measures of dispersion, skewness, kurtosis etc. 

Explore produces and displays summary statistics for all cases or separately for 

groups of cases. Boxplots, stem-and leaf plots, histograms, tests of normality, robust 

estimates of location, frequency tables and other descriptive statistics and plots can 

also be obtained. 

Crosstabs is used to count the number of cases that have different combinations of 

values of two or more variables, and to calculate summary statistics and tests. The 

variables you use to form the categories within which the counts are obtained should 

have a limited number of distinct values. 

P-P plots provides the cumulative proportions of a variable's distribution against the 

cumulative proportions of the normal distribution. 

Q-Q plots provide the quantiles of a variable's distribution against the quantiles of the 

normal distribution. 

6.3 Tables: 

Custom Tables submenu provides attractive, flexible displays of frequency counts, 

percentages and other statistics. 

6.4 Compare Means:  

This submenu provides techniques for testing differences among two or more means 

for both independent and related samples. 
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Means computes summary statistics for a variable when the cases are subdivided into 

groups based on their values for other variables. 

One-Sample tTest procedure tests whether the mean of a single variable differs from 

a specified constant. For each test variable: mean, standard deviation, and standard 

error of the mean.  

Independent Sample t test is used if two unrelated samples come from populations 

with the same mean. The observations should be from two unrelated groups, and for 

testing, the mean must be an appropriate summary measure for the variable to be 

compared in the two groups. For more than two independent groups, the One-way 

ANOVA option could be used. 

Paired Sample t test is used to compare the means of the same subjects in two 

conditions or at two points in time i.e. to compare subjects who had been matched to 

be similar in certain respects and then to test if two related samples come from 

populations with the same mean. The related, or paired, samples often result from an 

experiment in which the same person is observed before and after an intervention. If 

the distribution of the differences of the values between the members of a pair is 

markedly non-normal you should consider one of the nonparametric tests. 

One-Way ANOVA is used to test that several independent groups come from 

populations with the same mean. To see which groups are significantly different from 

each other, multiple comparison procedures can be used through Post Hoc Multiple 

Comparison option which consist of the options like Least-significant difference, 

Duncan’s multiple range test, Scheffeetc. The contrast analysis can also be performed 

in order to compare the different groups or treatments by using the Contrast option. 

The data obtained using completely randomised design can be analysed through this 

option. 

6.5 General Linear Model 

This submenu provides techniques for testing univariateand multivariate Analysis-of-

Variance models, including repeated measures.  

Univariatesub-option could be used to analyse the experimental designs like 

Completely randomised design, Randomised block design, Latin square design, 

Designs for factorial experiments etc. The covariance analysis can also be performed 

and alternate methods for partitioning sums of squares can be selected. If only some 

of the interactions of a particular order are to be included, the Custom procedure 
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should be used. If there is only one factor then One-Way ANOVA procedure should 

be used. 

Multivariate analyses analysis-of-variance and analysis-of-covariance designs when 

you have two or more correlated dependent variables. Multivariate analysis of 

variance is used to test hypotheses about the relationship between a set of interrelated 

dependent variables and one or more factor or grouping variables. For example, you 

can test whether verbal and mathematical test scores are related to instructional 

method used, sex of the subject, and the interaction of method and sex. This 

procedure should be used only if there are several dependent variables which are 

related to each other. For a single dependent variable or unrelated dependent 

variables, the Univariate ANOVA procedures can be adopted. If the same dependent 

variable is measured on several occasions for each subject, the Repeated Measures 

procedure is to be used. 

Repeated Measures is used to test hypotheses about the means of a dependent 

variable when the same dependent variable is measured on more than one occasion 

for each subject. Subjects can also be classified into mutually exclusive groups, such 

as males or females, or type of job held. Then you can test hypotheses about the 

effects of the between-subject variables and the within-subject variables, as well as 

their interactions. 

6.6 Correlate  

This submenu provides measures of association for two or more variables measured at 

the interval level. 

Bivariate calculates matrices of Pearson product-moment correlations, and of 

Kendall and Spearman nonparametric correlations, with significance levels and 

optional univariate statistics. The correlation coefficient is used to quantify the 

strength of the linear relationship between two variables. The Pearson correlation 

coefficient should be used only for data measured at the interval or ratio level. 

Spearman and Kendall correlation coefficients are nonparametric measures which are 

particularly useful when the data contain outliers or when the distribution of the 

variables is markedly non-normal. Both the Spearman and Kendall coefficients are 

based on assigning ranks to the variables. 

Partial calculates partial correlation coefficients that describe the relationship 

between two variables, while adjusting for the effects of one or more additional 

variables. If the value of a dependent variable from a set of independent variables is to 
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be predicted then the Linear Regression procedure may be used. If there are no 

control variables then the Bivariate Correlations procedure can be adopted. Nominal 

variables should not be used in the partial correlation procedure. 

Distances calculates statistics measuring either similarities or dissimilarities 

(distances), either between pairs of variables or between pairs of cases. These 

similarity or distance measures can then be used with other procedures, such as factor 

analysis, cluster analysis, or multidimensional scaling, to help analyze complex 

datasets. Dissimilarity (distance) measures for interval data are Euclidean distance, 

squared Euclidean distance, Chebychev, block, Minkowski, or customized; for count 

data, chi-square or phi-square; for binary data, Euclidean distance, squared Euclidean 

distance, size difference, pattern difference, variance, shape, or Lance and Williams. 

Similarity measures for interval data are Pearson correlation or cosine; for binary 

data, Russel and Rao, simple matching, Jaccard, etc. 

6.7 Regression 

This submenu provides a variety of regression techniques, including linear, logistic, 

nonlinear, weighted, and two-stage least-squares regression. 

Linear is used to examine the relationship between a dependent variable and a set of 

independent variables. If the dependent variable is dichotomous, then the logistic 

regression procedure should be used. If the dependent variable is censored, such as 

survival time after surgery, use the Life Tables, Kaplan-Meier, or proportional 

hazards procedure. 

Curve Estimation produces curve estimation regression statistics and related plots 

for 11 different curve estimation regression models. A separate model is produced for 

each dependent variable. One can also save predicted values, residuals, and prediction 

intervals as new variables. 

Logistic estimates regression models in which the dependent variable is dichotomous. 

If the dependent variable has more than two categories, use the Discriminant 

procedure to identify variables which are useful for assigning the cases to the various 

groups. If the dependent variable is continuous, use the Linear Regression procedure 

to predict the values of the dependent variable from a set of independent variables. In 

recent versions there are two options Binary Logistic as well as Multinomial 

Logistic. 

Probit performs probit analysis which is used to measure the relationship between a 

response proportion and the strength of a stimulus. For example, the probit procedure 
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can be used to examine the relationship between the proportion of plants dying and 

the strength of the pesticide applied or to examine the relationship between the 

proportion of people buying a product and the magnitude of the incentive offered. The 

Probit procedure should be used only if the response is dichotomousbuy/not buy, 

alive/dead--and several groups of subjects are exposed to different levels of some 

stimulus. For each stimulus level, the data must contain counts of the totals exposed 

and the totals responding. If the response variable is dichotomous but you do not have 

groups of subjects with the same values for the independent variables you should use 

the Logistic Regression procedure. 

Nonlinear estimates nonlinear regression models, including models in which 

parameters are constrained. The nonlinear regression procedure can be used if one 

knows the equation whose parameters are to be estimated, and the equation cannot be 

written as the sum of parameters times some function of the independent variables. In 

nonlinear regression the parameter estimates are obtained iteratively. If the function is 

linear, or can be transformed to a linear function, then the Linear Regression 

procedure should be used. 

Weight Estimation estimates a linear regression model with differential weights 

representing the precision of observations. This command is in the Professional 

Statistics option. If the variance of the dependent variable is not constant for all of the 

values of the independent variable, weights which are inversely proportional to the 

variance of the dependent variable can be incorporated into the analysis. This results 

in a better solution. The Weight Estimation procedure can also be used to estimate the 

weights when the variance of the dependent variable is related to the values of an 

independent variable. If you know the weights for each case you can use the linear 

regression procedure to obtain a weighted least squares solution. The linear regression 

procedure provides a large number of diagnostic statistics which help you evaluate 

how well the model fits your data. 

2-Stage Least Squares performs two-stage least squares regression for models in 

which the error term is related to the predictors. This command is in the Professional 

Statistics option. For example, if you want to model the demand for a product as a 

function of price, advertising expenses, cost of the materials, and some economic 

indicators, you may find that the error term of the model is correlated with one or 

more of the independent variables. Two-stage least squares allows you to estimate 

such a model. 
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The Loglinear submenu provides general and hierarchical log-linear analysis and 

logit analysis. 

6.8 Classify 

This submenu provides cluster and discriminant analysis. 

Two Step Cluster performs Two Step Cluster Analysis procedure which is an 

exploratory data analysis tool designed to reveal natural clustering within a dataset 

that would otherwise not be apparent. The algorithm employed by this procedure has 

several desirable features that differentiate it from traditional clustering techniques. 

The Log-likelihood and Euclidean Distance Measures are used as the similarity 

measure between two clusters. 

K-means Cluster performs cluster analysis using an algorithm that can handle large 

numbers of cases, but that requires you to specify the number of clusters. The goal of 

cluster analysis is to identify relatively homogeneous groups of cases based on 

selected characteristics. If the number of clusters to be formed is not known, then 

Hierarchical Cluster procedure can be used. If the observations are in known groups 

and one wants to predict group membership based on a set of independent variables, 

then the Discriminant procedure can be used. 

Hierarchical Cluster combines cases into clusters hierarchically, using a memory-

intensive algorithm that allows you to examine many different solutions easily. 

Discriminant is used to classify cases into one of several known groups on the basis 

of various characteristics. To use the Discriminant procedure the dependent variable 

must have a limited number of distinct categories. Independent variables that are 

nominal must be recoded to dummy or contrast variables. If the dependent variable 

has two categories, Logistic Regression can be used. If the dependent variable is 

continuous one may use Linear Regression. 

Nearest Neighbor performs Nearest Neighbor Analysis for classifying cases based 

on their similarity to other cases. In machine learning, it was developed as a way to 

recognize patterns of data without requiring an exact match to any stored patterns, or 

cases. Similar cases are near each other and dissimilar cases are distant from each 

other. Thus, the distance between two cases is a measure of their dissimilarity. 

6.9 Dimension Reduction 

This submenu provides factor analysis, correspondence analysis, and optimal scaling. 
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Factor is used to identify factors that explain the correlations among a set of 

variables. Factor analysis is often used to summarize a large number of variables with 

a smaller number of derived variables, called factors. 

Correspondence Analysis analyzes correspondence tables (such as cross-tabulations) 

to best measure the distances between categories or between variables. This command 

is in the Categories option. 

Distances computes many different measures of similarity, dissimilarity or distance. 

Many different measures can be used to quantify how much alike or how different 

two cases or variables are. Similarity measures are constructed so that large values 

indicate much similarity and small values indicate little similarity. Dissimilarity 

measures estimate the distance or unlikeness of two cases. A large dissimilarity value 

tells that two cases or variables are far apart. In order to decide which similarity or 

dissimilarity measure to use, one must consider characteristics of the data. Special 

measures are available for interval data, frequency counts, and binary data. If the 

cases are to be classified into groups based on similarity or dissimilarity measures, 

one of the Cluster procedures should be used. 

6.10 Scale 

This submenu provides reliability analysis and multidimensional scaling. 

Reliability analysis allows to study the properties of measurement scales and the 

items that compose the scales. The Reliability Analysis procedure calculates a number 

of commonly used measures of scale reliability and also provides information about 

the relationships between individual items in the scale. This provides several statistics 

like descriptives for each variable and for the scale, summary statistics across items, 

inter-item correlations and covariances, reliability estimates, ANOVA table, intraclass 

correlation coefficients, Hotelling's T2, and Tukey's test of additivity. 

6.11 Nonparametric Tests:  

This submenu provides nonparametric tests for one sample, or for two and more 

paired or independent samples. Legacy dialogs sub-submenu consists following tests 

Chi-Square is used to test hypotheses about the relative proportion of cases falling 

into several mutually exclusive groups. For example, if one wants to test the 

hypotheses that people are equally likely to buy six different brands of cereals, one 

can count the number buying each of the six brands. Based on the six observed counts 

Chi-Square procedure could be used to test the hypothesis that all six cereals are 
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equally likely to be bought. The expected proportions in each of the categories don't 

have to be equal. The hypothetical proportions to be tested should be specified. 

Binomial is used to test the hypothesis that a variable comes from a binomial 

population with a specified probability of an event occurring. The variable can have 

only two values. For example, to test that the probability of an item on the assembly 

line is defective is one out of ten (p=0.1), take a sample of 300 items and record 

whether each is defective or not. Then use the binomial procedure to test the 

hypothesis of interest. 

Runs is used to test whether the two values of a dichotomous variable occur in a 

random sequence. The runs test is appropriate only when the order of cases in the data 

file is meaningful. 

1-Sample K-S is used to compare the observed frequencies of the values of an ordinal 

variable, such as rated quality of work, against some specified theoretical distribution. 

It determines the statistical significance of the largest difference between them. In 

SPSS, the theoretical distribution can be Normal, Uniform or Poisson. Alternative 

tests for normality are available in the Explore procedure, in the Summarize submenu. 

The P-P and Q-Q plots in the Graphs menu can also be used to examine the 

assumption of normality. 

2-Independent Samples is used to compare the distribution of a variable between 

two non-related groups. Only limited assumptions are needed about the distributions 

from which the sample are selected. The Mann-Whitney U test is an alternative to the 

two sample t-test. The actual values of the data are replaced by ranks. The 

Kolmogorov-Smirnov test is based on the differences between the observed 

cumulative distributions of the two groups. The Wald-Woflowitz runs tests sorts the 

data values from smallest to largest and then performs a runs test on the group’s 

numbers. The Moses Test of Extreme Reaction is used to test for differences in range 

between two groups. 

K-Independent Samples is used to compare the distribution of a variable between 

two or more groups. Only limited assumptions are needed about the distributions from 

which the samples are selected. The Kruskal-Wallis test is an alternative to one-way 

analysis of variance, with the actual values of the data replaced by ranks. The Median 

tests counts the number of cases in each group that are above and below the combined 

median, and then performs a chi-square test. 
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2 Related Samples is used to compare the distribution of two related variables. Only 

limited assumptions are needed about the distributions from which the samples are 

selected. The Wilcoxon and Sign tests are nonparametric alternative to the paired 

samples t-test. The Wilcoxon test is more powerful than the Sign test. McNemar's 

testis used to determine changes in proportions for related samples. It is often used for 

"before and after" experimental designs when the dependent variable is dichotomous. 

For example, the effect of a campaign speech can be tested by analysing the number 

of people whose preference for a candidate changed based on the speech. Using 

McNemar's test you analyse the changes to see if change in both directions is equally 

likely. 

K Related Samples is used to compare the distribution of two or more related 

variables. Only limited assumptions are needed about the distributions from which the 

samples are selected. The Friedman test is a nonparametric alternative to a single-

factor repeated measures analysis of variance. You can use it when the same 

measurement is obtained on several occasions for a subject. For example, the 

Friedman test can be used to compare consumer satisfaction of 5 products when each 

person is asked to rate each of the products on a scale. Cochran's Q testcan be used to 

test whether several dichotomous variables have the same mean. For example, if 

instead of asking each subject to rate their satisfaction with five products, you asked 

them for a yes/no response about each, you could use Cochran's test to test the 

hypothesis that all five products have the same proportion of satisfied users. Kendall's 

W measuresthe agreement among raters. Each of your cases corresponds to a rater, 

each of the selected variables is an item being rated. For example, if you ask a sample 

of customers to rank 7 ice-cream flavours from least to most liked, you can use 

Kendall's W to see how closely the customers agree in their ratings. 

6.12 Forecasting 

This submenu provides create models, seasonal decomposition, spectral analysis, 

autocorrelations, cross-correlations etc. 

Autocorrelations calculates and plots the autocorrelation function (ACF) and partial 

autocorrelation function of one or more series to any specified number of lags, 

displaying the Box-Ljung statistic at each lag to test the overall hypothesis that the 

ACF is zero at all lags. 

Cross-correlations calculates and plots the cross-correlation function of two or more 

series for positive, negative, and zero lags. 
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Spectral analysis calculates and plots univariate or bivariate periodograms and 

spectral density functions, which express variation in a time series (or covariation in 

two time series) as the sum of a series of sinusoidal components. It can optionally 

save various components of the frequency analysis as new series. 

6.13 Survival: 

The submenu provides techniques for analyzing the time for some terminal event to 

occur, including Kaplan-Meier analysis and Cox regression. 

6.14Multiple Response: 

This submenu provides facilities to define and analyze multiple-response or multiple-

dichotomy sets. 

Quality Control submenu provides facilities to for obtaining control charts and 

Pareto charts. 

Complex Samples submenu provides procedures for Sampling from Complex 

Designs. The Sampling Wizard guides through the steps for creating, modifying, or 

executing a sampling plan file. Before using the Wizard, one should have a well-

defined target population, a list of sampling units, and an appropriate sample design in 

mind. 

Other than this Analyze menu there are several other important menus available in 

SPSS. 

6.15 Transform 

Compute calculates the values for either a new or an existing variable, for all cases or 

for cases satisfying a logical criterion. 

Random Number Seed sets the seed used by the pseudo-random number generator 

to a specific value, so that you can reproduce a sequence of pseudo-random numbers. 

Count creates a variable that counts the occurrences of the same value(s) in a list of 

variables for each case. 

Recode into Same Variables reassigns the values of existing variables or collapses 

ranges of existing values into new values. 

Recode into Different Variables reassigns the values of existing variables to new 

variables or collapses ranges of existing values into new variables. 

Rank Cases creates new variables containing ranks, normal scores, or similar ranking 

scores for numeric variables. 

Automatic Recode reassigns the values of existing variables to consecutive integers 

in new variables. 
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Create Time Series creates a time-series variable as a function of an existing series, 

for example, lagged or leading values, differences, cumulative sums. This command 

is in the Trends option. 

Replace Missing Values substitutes non-missing values for missing values, using the 

series mean or one of several time-series functions. This command is in the Trends 

option. 

Run Pending Transforms executes transformation commands that are pending due 

to the Transformation Options setting in the Preferences dialog. 

6.16 Utilities 

Command Index take you to the dialog box for a command if you know its name in 

the SPSS command language. 

Fonts lets you choose a font, style, and size for SPSS Data Editor, output, and syntax 

windows. 

Variable Information displays the Variables window, which shows information about 

the variables in your working data file, and allows you to scroll the data editor to a 

specific variable, or copy variable names to the designated syntax window. 

File Information displays information about the working data file in the output 

window. 

Output Page Titles lets you specify a title and subtitle for output from SPSS. They 

appear in the page header, if it is displayed. (Preferences in the Edit menu controls the 

page header.) 

Define Sets defines sets of variables for use in other dialog boxes. 

Use Sets lets you select which defined sets of variables should appear in the source-

variable lists of other dialog boxes. 

Grid Lines turns grid lines on and off in the Data Editor window. This command is 

available when the Data Editor is active. 

Value Labels turns on and off the display of Value Labels (instead of actual values) 

in the Data Editor window. When Value Labels are displayed you can edit data with a 

pop-up menu of labels. This command is available when the Data Editor is active. 

Auto New Case turns on and off the automatic creation of new cases by cursor 

movement below the last case in the Data Editor window. This command is available 

when the Data Editor is active. 

Designate Window designates the active window to receive output from SPSS 

commands (if it is an output window); or to receive commands pasted from dialog 
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boxes (if it is a syntax window). You can also designate a window by clicking the 

!button on its icon bar. This command is available when an output or syntax window 

is active. 

6.17 Graphs 

The Chart Builder available in Graph menu allows to build charts from predefined 

gallery charts or from the individual parts (for example, axes and bars). You build a 

chart by dragging and dropping the gallery charts or basic elements onto the canvas, 

which is the large area to the right of the Variables list in the Chart Builder dialog 

box.  

Legacy Dialogs submenu provides following graph submenus 

Bar generates a simple, clustered, or stacked bar chart of the data. 

3-D Bar Charts allows to generate bar graph in 3-dimensional axis. 

Line generates a simple or multiple line chart of the data. 

Area generates a simple or stacked area chart of the data. 

Pie generates a simple pie chart or a composite bar chart from the data. 

High-Low plots pairs or triples of values, for example high, low, and closing prices. 

Boxplot generates boxplots showing the median, interquartile range, outliers, and 

extreme cases of individual variables. 

Error Bar Charts plot the confidence intervals, standard errors, or standard 

deviations of individual variables. 

Scatter/dot generates a simple or overlay scatter plot, a scatter plot matrix, or a 3-D 

scatter plot from the data. 

Histogram generates a histogram showing the distribution of an individual variable. 

Practical exercise using SPSS. 

Exercise 1: The following data was collected through a pilot sample survey on 

Hybrid Jowar crop on yield and biometrical characters. The biometrical characters 

were average Plant Population (PP), average Plant Height (PH), average Number of 

Green Leaves (NGL) and Yield (kg/plot). 

S.No. PP PH NGL Yield S.No. PP PH NGL Yield 

1 142.00 0.525 8.2 2.470 24 55.55 0.265 5.0 0.430 

2 143.00 0.640 9.5 4.760 25 88.44 0.980 5.0 4.080 

3 107.00 0.660 9.3 3.310 26 99.55 0.645 9.6 2.830 

4 78.00 0.660 7.5 1.970 27 63.99 0.635 5.6 2.570 
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5 100.00 0.460 5.9 1.340 28 101.77 0.290 8.2 7.420 

6 86.50 0.345 6.4 1.140 29 138.66 0.720 9.9 2.620 

7 103.50 0.860 6.4 1.500 30 90.22 0.630 8.4 2.000 

8 155.99 0.330 7.5 2.030 31 76.92 1.250 7.3 1.990 

9 80.88 0.285 8.4 2.540 32 126.22 0.580 6.9 1.360 

10 109.77 0.590 10.6 4.900 33 80.36 0.605 6.8 0.680 

11 61.77 0.265 8.3 2.910 34 150.23 1.190 8.8 5.360 

12 79.11 0.660 11.6 2.760 35 56.50 0.355 9.7 2.120 

13 155.99 0.420 8.1 0.590 36 136.00 0.590 10.2 4.160 

14 61.81 0.340 9.4 0.840 37 144.50 0.610 9.8 3.120 

15 74.50 0.630 8.4 3.870 38 157.33 0.605 8.8 2.070 

16 97.00 0.705 7.2 4.470 39 91.99 0.380 7.7 1.170 

17 93.14 0.680 6.4 3.310 40 121.50 0.550 7.7 3.620 

18 37.43 0.665 8.4 1.570 41 64.50 0.320 5.7 0.670 

19 36.44 0.275 7.4 0.530 42 116.00 0.455 6.8 3.050 

20 51.00 0.280 7.4 1.150 43 77.50 0.720 11.8 1.700 

21 104.00 0.280 9.8 1.080 44 70.43 0.625 10.0 1.550 

22 49.00 0.490 4.8 1.830 45 133.77 0.535 9.3 3.280 

23 54.66 0.385 5.5 0.760 46 89.99 0.490 9.8 2.690 

Source: Design Resources Server. Indian Agricultural Statistics Research 

Institute(ICAR), New Delhi 110 012, India. www.iasri.res.in/design (accessed lastly 

on <05-05-2015>). 

1. Find mean, standard deviation, minimum and maximum values of all the 

characters. 

2. Find correlation coefficient between each pair of the variables. 

3. Give a scatter plot of the variable PP with dependent variable yield. 

4. Fit a multiple linear regression equation where yield is dependent variable 

whereas all other characters as independent variables. 

At first enter the entire data in the data editor as given below, 
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There are several ways to answer Q no. 1 in SPSS. Commands following first way is 

as follows, 

Analyze → Descriptive Statistics → Descriptives…→ Put PP, PH, NGL, YLD in 

the variables list→ Choose appropriate options from Options 

tab→PressContinue→Ok 

 

Output: 

 

Another way: 

Analyze → Descriptive Statistics → Explore…→ Put PP, PH, NGL, YLD in the 

Dependent list→ Choose both Statistics and plot→Press Ok 
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Output: 

 

To answer Q no 2 follow the following steps 

Analyze → Correlate → Bivariate→ Put PP, PH, NGL, YLD in the Valiables 

list→ Choose Pearson’s correlation coefficient→Press Ok 

 

Output: 
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To give the scatter plot of the variable PP with dependent variable yield use following 

steps: 

Graphs → Legacy dialogs→ Scatterplot→ Put PP at Y axis and YLD at X axis→ 

Press Ok 

 

 

Output: 

 

To fit a multiple linear regression equation taking yield as dependent variable and all 

other characters as independent variables perform following steps 

Analyze → Regression → Linear → Put Yld in Dependent variable and PP, PH, 

NGL in independent variable list → Press Ok 
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Output: 

 

Exercise 2. An experiment was conducted to study the hybrid seed production of ottle 

gourd under open field conditions. The main aim of the investigation was to compare 

natural pollination. The pollination is performed at noon (1-3pm)} under field 

conditions. The data were collected on 10 randomly selected plants from each of 

natural pollination and hand pollination. The data were collected on number of fruit 

set for the period of 45 days, fruit weight (kg), seed yield per plant (g) and seedling 

length (cm). The data obtained is as given below: 

Group No. of fruit 

Set(45days) 

Fruit weight 

(kg) 

Seed yield/plant (g) Seedling length (cm) 

1 8 2.0 148.6 17.0 

1 7 1.9 137.7 16.9 

1 6 1.8 150.9 16.4 

1 8 1.9 173.4 18.4 

1 7 1.8 145.3 18.0 

1 8 1.9 139.1 17.1 

1 7 1.9 151.5 18.3 

1 7 1.8 141.8 19.0 

1 6 1.9 141.4 18.5 

1 7 1.9 139.2 18.7 

2 6.3 2.6 225.6 18.3 

2 6.7 2.8 198.7 18.2 
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2 7.3 2.6 231.7 19.2 

2 8 2.6 218.4 19.1 

2 8 2.7 235.2 18.1 

2 8 2.6 217.8 18.6 

2 7.7 2.4 213.2 17.6 

2 7.7 2.7 211.6 19.1 

2 7 2.5 201.1 19.4 

2 8 2.5 215.6 19.5 

 

1. Test whether the mean of the population of Seed yield/plant (g) is 200 or not. 

2. Test whether the natural pollination and hand pollination under open field 

conditions are equally effective or are significantly different. 

Test Procedure in SPSS 

1. To test whether the mean of the population of Seed yield/plant (g) is 200 or not use 

the following steps. Select Analyze → Compare Means → One-Sample T Test 

 

This selection displays the following screen 
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Select syp and send it to the test variable(s): box and define the Test Value as 200. 

Click ok. 

2. To Test whether the natural pollination and hand pollination under open field 

conditions are equally effective or are significantly different. 

Steps: 

1. selectAnalyze → Compare Means → Independent-Samples T Test. 

2. Select group and send it to the Grouping Variables box. 

3. nfs45, fw, syp,  sl under Test Variables(s) box. 

4. Select Define Groups in the Independent-Samples T Test dialog box. 

5. Use Specified values→ Define Groups as 1 and 2. 

6. Click OK. 
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ARTIFICIAL INTELLIGENCE AND KNOWLEDGE 

MANAGEMENT IN AGRICULTURE 

Sudeep Marwaha 

ICAR- Indian Agricultural Statistics Research Institute, New Delhi- 110012 

sudeep@icar.gov.in 

1. Introduction 

The Artificial Intelligence is a very old field of study and has a rich history. Modern 

AI was formalized by John McCarthy, considered as father of AI. It is a branch of 

computer science, founded around early 1950’s. Primarily, the term Artificial 

Intelligence (or AI) refers to a group of technique that enables a computer or a 

machine to mimic the behavior of humans in problem solving tasks. Formally, AI is 

described as “the study of how to make the computers do things at which, at the 

moment, people are better” (Rich and Knight, 1991; Rich et al., 2009).”The main aim 

of AI is to program the computer for performing certain tasks in humanly manner 

such as knowledgebase, reasoning, learning, planning, problem solving etc. The 

Machine Learning (ML) techniques are the subset of AI which makes the 

computers/machines/programs the capable of learning and performing tasks without 

being explicitly programmed. The ML techniques are not just the way of mimicking 

human behaviour but the way of mimicking how humans learn things. The main 

characteristics of machine learning is ‘learning from experience’ for solving any kind 

of problem. The methods of learning can be categorized into three types: (a) 

supervised learning algorithm is given with labelled data and the desired output 

whereas (b) unsupervised learning algorithm is given with unlabelled data and 

identifies the patterns from the input data and (c) reinforcement learning algorithm 

allows the ML techniques to capture the learnable things on the basis of rewards or 

reinforcement. Now, the Deep Learning (DL) technique are the advanced version of 

machine learning algorithms gained much popularity in the area of image recognition 

and computer vision. The artificial neural networks (ANNs) clubbed with 

representation learning are the backbone of the deep learning concepts. These 

techniques allow a machine to learn patterns in the dataset with multiple levels of 

abstractions. The DL models are composed of a series of non-linear layers where each 

of the layer has the capability of transforming the low-level representations into 

higher-level representations i.e. into a more abstract representations (Le Cun et al., 

2015). There are several DL algorithms available now-a-days such as Deep 

mailto:sudeep@icar.gov.in
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Convolutional Neural Networks, Deep Recurrent Neural networks, Long Short-term 

Memory (LSTM)”networks that are being applied to different areas of engineering, 

bioinformatics, agriculture, medical science and many more (Fusco et al., 2021). 

2. Applications of Artificial Intelligence in Agriculture: 

In present scenario, AI techniques are being exponentially applied in the various areas 

of the agricultural domain. These areas can be categorized into the following groups: 

Soil and water management, Crop Health Management, Crop Phenotyping, 

Recommender-based systems for crops, Semantic web and Ontology driven expert 

systems for crops and Geo-AI. The application of AI, ML and DL based techniques 

on these areas are discussed in the following sections. 

2.1 Soil and Irrigation Management: 

Soil and irrigation are the most viable components of agriculture. The soil and 

irrigation are the determinant factors for the optimum crop yield. In order to obtain 

enhanced crop yield and to maintain the soil properties, there is a requirement of 

appropriate knowledge about the soil resources. The management of irrigation 

becomes crucial when there are scares of water availability. Therefore, the soil and 

irrigation related issues should be managed properly and cautiously to ensure a 

potential yield in crops. In this regards, AI and ML based techniques have shown 

potential ability to resolve soil and irrigation related issues in crops. A range of 

machine learning models such as linear regression, support vector machines (or 

regressors), Artificial neural networks, random forest algorithm and so on are being 

used. Many researchers have used remote-sensed data with the machine learning 

techniques for determining soil health parameters. In this section, few significant 

works in this field are highlighted below: 

A. Soil Management: 

Besalatpour et al., (2011), Aitkenhead et al., (2012) and Sirsat et al., (2017) used 

different machine learning techniques such as linear regression, support vector 

machine, random forests for the prediction of the physical and chemical properties of 

soil. Rivera et al. (2020) and Azizi et al., (2020) worked on estimation and 

classification of aggregate stability of the soils using conventional machine learning 

techniques as well as deep learning models. Jha et al., (2018) worked on prediction of 

microbial dynamics in soils using regression-based techniques. Patil and Dekha 

(2016) and Mehdizadeh et Al. (2017) worked on predicting the evapotranspiration rate 
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in crops using several machine learning techniques. Researchers worked on mapping 

the soil properties digitally using the remote sensing data with the help of machine 

learning and deep learning models (Taghizadeh-Mehrjardi et al. 2016; Kalambukattu 

et al., (2018; Padarian et al. 2019; Taghizadeh-Mehrjardi et al., 2020). 

B. Irrigation management: 

Zema et al. 2018 applied Data Envelopment Analysis (DEA) with Multiple 

Regression analysis to improve the irrigation performance Water Users Associations. 

Ramya et al. 2020 and Glória et al., 2021worked on IoT based smart irrigation 

systems with machine learning models. Agastya et al, 2021 and Zhang et al. 2018 

used deep learning-based CNN models for detection of irrigations using remote 

sensing data. Jimenez et al. 2021 worked on estimating the irrigation based on soil 

matric potential. 

2.2 Crop Health Management: 

Every year a significant amount of yield is damaged due to attack of disease causing 

pathogens and insect-pest infestation. In order to manage the spread of the diseases 

and insect-pests, proper management practices should be applied at the earliest. 

Therefore, there is requirement of automatic diseases, pest identification system. In 

this regard, image-based diagnosis of diseases and pests have become de facto 

standard of automatic stress identification. This kind of automated detection 

methodology use sophisticated deep learning-based AI techniques that reduces the 

intervention of the human experts. There are several attempts have been done to 

diagnose the diseases as well as insects-pests in crops using deep learning techniques. 

In this section, some of the significant works in this field have been discussed briefly.  

A. Disease identification: 

Mohanty et al. 2016 worked on disease diagnosis problem using deep CNN models. 

They used an open-source dataset named PlantVillage (Hughes and Salathe, 2016) 

containing 54,306 digital images of 26 diseases from 14 crops. Ferentinos, 2018 

worked on developing deep CNN-based models for recognising 56 diseases from 

different crops. Barbedo, 2019 applied transfer learning approach for diagnosis of 

diseases of 12 different crops. Too et al. 2019, applied pre-trained deep CNN models 

for identification of diseases of 18 crops using the PlantVillage data. Chen et al. 2020 

applied a pretrained VGGNet network for classifying the diseases of Rice and Maize 

crop. Chen et. al. 2020 and Rahman et al. 2020 worked on identifying the major 
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diseases of Rice crop. Lu et al., 2017; Johannes et al. 2017; Picon et al. 2019 and 

Nigam et al. 2021 applied deep CNN models for recognising the diseases of wheat 

crop. Priyadharshini et al. 2019; Sibiya & Sumbwanyambe, 2019; Haque et al. 2021 

used deep learning models for identifying diseases of maize crop. 

B. Pest Identification: 

Pest Identification problem is inherently different from disease detection. As 

compared to disease detection there are less number of work has found in the 

literature. Some of the research of pest identification has been discussed in the 

following section. 

Cheeti et al. (2021) developed a model for pest detection and classification of peat 

using YOLO (You look only once) and CNN. YOLO algorithm is used for detection 

of pest in an image and Alex net CNN is used for pest classification. Chen et al. 

(2021) propose an AI-based pest detection system for solving the specific issue of 

detection of scale pests based on pictures. Deep-learning-based object detection 

models, such as faster region-based convolutional networks (Faster R-CNNs), single-

shot multibox detectors (SSDs), and You Only Look Once v4 (YOLO v4), are 

employed to detect and localize scale pests in the picture. Taiwan Agricultural 

Research Institute, Council of Agriculture, has collected images of the three types of 

pests from the actual fields for decades. Fuentes et al. (2017) address disease and pest 

identification by introducing the application of deep meta-architectures and feature 

extractors. They proposed a robust deep-learning-based detector for real-time tomato 

diseases and pests recognition. The system introduces a practical and applicable 

solution for detecting the class and location of diseases in tomato plants, which in fact 

represents a main comparable difference with traditional methods for plant diseases 

classification. Karnik et al. (2021)  image pre-processing and data augmentation 

techniques has been performed to get better image.yolov3 classification for 

classifying plant leaf disease of pepper bell, potato and tomato. This proposed in 

divided into two stage part first classifier and second stage classifier where in first 

classifier it will preprocess of median filter and data augmentation is used and trained 

in yolov3 algorithm and in second stage classifier it will perform the extract plant leaf 

image output using Resnet50 based. So, it two step classification approach. Based on 

this research work we achieved 94% accuracy of detection lead diseases. Experiments 

showed [Li et al. (2020)] that our system with the custom backbone was more suitable 
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for detection of the untrained rice videos than VGG16, ResNet-50, ResNet-101 

backbone system and YOLOv3 with our experimental environment. Liu et al.2020 

used Yolo V3 model is a little inadequate in the scale when recognizing tomato 

disease spots and pests.  

2.3 Plant Phenomics: 

Non-destructive phenotypic measurement with high throughput imaging technique 

becoming extremely popular. High throughput imaging system produces a large 

number of images. Deduction of the phenotypic characteristics through image 

analysis is quick and accurate. A wide range of phenotypic study can be done using 

phenomics analysis. High throughput imaging system coupled with sophisticated AI 

technology like deep learning make this field more efficient and accurate. Phenomics 

is has been used for study of several phenotypic characters like spike detection and 

counting, yield forecasting, quantification of the senescence in the plant, leaf weight 

and count, plant volume, convex hull, water stress and many more. 

2.4 Recommender Systems:  

Recommender systems (RSs) help online users in decision making regarding products 

among a pile of alternatives. In general, these systems are software solutions which 

predict liking of a user for unseen items. RSs have been mainly designed to help users 

in decision making for areas where one is lacking enough personal experience to 

evaluate the overwhelming number of alternative items that a website has to offer 

[Resnick & Varian, 1997]. Recommender systems have proved its worth in many 

different applications like e-commerce, e-library, e-tourism, e-learning, e-business, e-

resource services etc. by suggesting suitable products to users [Lu et al., 2015]. RSs 

are used to introduce new/unseen items to users, to increase user satisfaction etc. 

Recommendations are generated by processing large amount of historical data on the 

users and the products to be suggested. Most popular way of gathering users liking on 

a particular product is in terms of rating either in numerical scale (1 to 5) or ordinal 

scale (strongly agree, agree, neutral, disagree, strongly disagree). Other techniques of 

more knowledge – based recommendation are the use of Ontologies [Middleton et al., 

2002] of user profiles or item descriptions etc. The core task of a recommendation 

system is to predict the usefulness of an item to an individual user based on the earlier 

history of that item or by evaluating the earlier choices of the user. Collaborative way 

of user modelling [Konstan et al., 1997] is where ratings are predicted for <user, 
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item> pair, R̅<u, i> based on a large number of ratings previously gathered by the 

system on individual <user, item> pairs. Another way of recommendation is to 

suggest items that are similar to the ones previously liked by the user, called Content 

based filtering [Wang et al., 2018; Smyth, 2007]. In a hybrid method of prediction, 

limitations by the earlier mentioned processes are tackled in various ways. 

Agriculture has used recommender systems since 2015 and continues to do so. RSs 

have been explored to develop crop recommendation strategies based on soil and 

weather parameters, crop rotation practices, water management, suggestion on 

suitable varieties, recommendations for management practices etc. It is absolutely 

essential for the farmers to receive recommendations on the best crop for cultivation. 

Kamatchi and parvati, 2019 proposed a hybrid RS in combination with Collaborative 

Filtering, Case-based Reasoning and Artificial Neural Networks (ANN) to predict 

future climatic conditions and recommendation of crops based on the predicted 

climate. Crop recommendations have been developed based on season and 

productivity [Vaishnavi et al., 2021], area and soil type [Pande et al., 2021] by using 

several machine learning algorithms like Support vector Machine (SVM), Random 

forest (RF), Multivariate Linear regression (MLR), K- Nearest neighbour (KNN), 

ANN etc. Ensemble techniques have been used to develop a collaborative system of 

crop rotation, crop yield prediction, forecasting and fertilizer recommendation 

[Archana et al., 2020]; to classify soil types into recommended crop types Kharif or 

Rabi based on specific physical and chemical characteristics, average rainfall and 

surface temperature [Kulkarni et al., 2018]. Naha and Marwaha, 2020 presented an 

Ontology driven context aware RS that can recommend land preparation methods, 

sowing time, seed rate, fertilizer management, irrigation scheduling and harvesting 

methods to Maize cultivators. Application of RSs has also penetrated in the e-

agriculture domain by suggesting   parts of agricultural machineries in online ordering 

[Ballesteros et al., 2021]. 

2.5 Semantic web, Knowledgebase and Natural Language processing: 

Agriculture is vast source of resources and so it is also a vast source of information. 

The problem with this information is most of the information are unstructured. That 

unstructured knowledge is merely understandable for machine. It is also has low 

accessibility for human too. The main objectives of the semantic web and knowledge 

base system are to make unstructured data into structured one. Semantic web and the 
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knowledgebase mainly facilitated by the ontology in the back end. Ontology is a 

formal, explicit specification of a shared conceptualization (Gruber, 1993). Making of 

Ontology that facilitated the semantic web and knowledge base can be made across 

the agricultural domain to make the unstructured data into structured one. Many 

ontology has already been developed in accordance with the Bedi and Marwaha, 2004 

in the agricultural domain. Saha et. al., (2011) developed an ontology on dynamic 

maize variety selection in different climatic condition, Sahiram et. al., (2012) 

developed a ontology on rapeseed and mustard for identification of the variety in 

multiple languages, Das et. al., (2011) developed a ontology for USDA soil taxonomy 

and ontology was extended by Deb et. al., (2012), Biswas et. al., (2012) developed a 

ontology on microbial taxonomy and was extended by Karn et. al. (2014).  

2.6 GIS and Remote sensing coupled with AI: 

GIS and Remote sensing is helping agricultural community since long. The land use 

planning, land cover analysis, forest distribution, water distribution, water use pattern, 

crop rotation and crop calendar analysis can be done by GIS and remote sensing. But 

when the AI and machine learning coupled with these technology it become more 

powerful. Machine learning and AI efficiently used for correct land classification and 

phonological change detection. From Digital soil mapping to yield forecasting, from 

phenology detection to leaf area index a vast range of the area in agriculture can be 

handled by GIS and Remote sensing. 
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INTRODUCTION TO R SOFTWARE 

Soumen Pal, B. N. Mandal 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

E-mail: Soumen.Pal@icar.gov.in 

 

R is a free software environment for statistical computing and graphics. It compiles 

and runs on a wide variety of UNIX platforms, Windows and MacOS.R is a vehicle 

for newly developing methods of interactive data analysis. It has developed rapidly, 

and has been extended by a large collection of packages. 

R environment 

The R environment provides an integrated suite of software facilities for data 

manipulation, calculation and graphical display. It has 

 a data handling and storage facility, 

 a suite of operators for calculations on arrays and matrices, 

 a large, integrated collection of intermediate tools for data analysis, 

 graphical facilities for data analysis and display, and 

 a well-developed, simple and effective programming language (called ‘S’) 

which includes conditionals, loops, user defined functions and input and 

output facilities. 

Origin 

R can be regarded as an implementation of the S language which was developed at 

Bell Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms 

the basis of the S-Plus systems. Robert Gentleman and Ross Ihaka of the Statistics 

Department of the University of Auckland started the project on R in 1995 and hence 

the name software has been named as ‘R’. 

R was introduced as an environment within which many classical and modern 

statistical techniques can be implemented. A few of these are built into the base R 

environment, but many are supplied as packages. There are a number of packages 

supplied with R (called “standard” and “recommended” packages) and many more are 

available through the CRAN family of Internet sites (via http://cran.r-project.org) and 

elsewhere. 

Availability 

Since R is an open source project, it can be obtained freely from the website www.r-

project.org. One can download R from any CRAN mirror out of several CRAN 

mailto:Soumen.Pal@icar.gov.in


  

 
 

12 

(Comprehensive R Archive Network) mirrors. Latest available version of R is R 

version 4.3.1 and it has been released on June 16 2023.  

Installation 

To install R in windows operating system, simply double click on the setup file. It 

will automatically install the software in the system. 

Usage 

R can work under Windows, UNIX and Mac OS. In this note, we consider usage of R 

in Windows set up only.  

Difference with other packages 

There is an important difference between R and the other statistical packages. In R, a 

statistical analysis is normally done as a series of steps, with intermediate results 

being stored in objects. Thus whereas SAS and SPSS will give large amount of output 

from a given analysis, R will give minimal output and store the results in an object for 

subsequent interrogation by further R functions. 

Invoking R 

If properly installed, usually R has a shortcut icon on the desktop screen and/or you 

can find it under Start| All Programs| R menu. 

 
 

To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask 

whether to save the objects you have created during the session so that they will 

become available next time when R will be invoked. 

 

Windows of R 

 

R has only one window and when R is started it looks like 
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R commands 

 

i. R commands are case sensitive, so X and x are different symbols and would 

refer to different variables.  

ii. Elementary commands consist of either expressions or assignments.  

iii. If an expression is given as a command, it is evaluated, printed and the value 

is lost. 

iv. An assignment also evaluates an expression and passes the value to a variable 

but the result is not automatically printed. 

v. Commands are separated either by a semi-colon (‘;’), or by a newline.  

vi. Elementary commands can be grouped together into one compound expression 

by braces ‘{‘ and ‘}’. 

vii. Comments can be put almost anywhere, starting with a hashmark (‘#’). 

Anything written after # marks to the end of the line is considered as a 

comment. 

viii. Window can be cleared of lines by pressing Ctrl + L keys. 
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Executing commands from or diverting output to a file 

 

If commands are stored in an external file, say ‘D:/commands.txt’ they may be 

executed at any time in an R session with the command 

>source("d:/commands.txt") 

 

For Windows Source is also available on the File menu.  

 

The function sink(),  

 
>sink("d:/record.txt") 

 

will divert all subsequent output from the console to an external file, ‘record.txt’ in D 

drive. The command 

>sink() 

restores it to the console once again. 

Simple manipulations of numbers and vectors 

R operates on named data structures. The simplest such structure is the numeric 

vector, which is a single entity consisting of an ordered collection of numbers. To set 

up a vector named x, say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 

21.7, use the R command 

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

The function c() assigns the five numbers to the vector x. The assignment operator (<-

) ‘points’ to the object receiving the value of the expression. Once can use the ‘=’ 

operator as an alternative. 

A single number is taken as a vector of length one.  

Assignments can also be made in the other direction, using the obvious change in the 

assignment operator. So the same assignment could be made using 

>c(10.4, 5.6, 3.1, 6.4, 21.7) -> x 

If an expression is used as a complete command, the value is printed. So now if we 

were to use the command 

> 1/x 

the reciprocals of the five values would be printed at the terminal. 

The elementary arithmetic operators  

+  addition 

– subtraction 
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*  multiplication 

/  division 

^  exponentiation 

Arithmetic functions 

log, exp, sin, cos, tan, sqrt,  

Other basic functions 

max(x) – maximum element of vector x,  

min(x)- minimum element of vector x,  

range (x) – range of the values of vector x ,   

length(x) - the number of elements in x,  

sum(x) - the total of the elements in x,  

prod(x) – product of the elements in x 

mean(x) – average of the elements of x 

var(x) – sample variance of the elements of (x) 

sort(x) – returns a vector with elements sorted in increasing order. 

Logical operators 

< - less than 

<= less than or equal to 

>greater than 

>= greater than or equal to 

 == equal to  

!= not equal to. 

Other objects in R 

Matrices or arrays - multi-dimensional generalizations of vectors. 

Lists - a general form of vector in which the various elements need not be of the same 

type, and are often themselves vectors or lists. 

Functions - objects in R which can be stored in the project’s workspace. This provides 

a simple and convenient way to extend R. 

Matrix facilities 

A matrix is just an array with two subscripts. R provides many operators and 

functions those are available only for matrices. Some of the important R functions for 

matrices are 

t(A) – transpose of the matrix A   

nrow(A) – number of rows in the matrix A 
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ncol(A) – number of columns in the matrix A 

A%*% B– Cross product of two matrices A and B 

A*B – element by element product of two matrices A and B 

diag (A) – gives a vector of diagonal elements of the square matrix A 

diag(a) – gives a matrix with diagonal elements as the elements of vector a 

eigen(A) – gives eigen values and eigen vectors of a symmetric matrix A 

rbind (A,B) – concatenates two matrix A and B by appending B matrix below A 

matrix (They should have same number of columns) 

cbind(A, B) - concatenates two matrix A and B by appending B matrix in the right of 

A matrix (They should have same number of rows) 

Data frame 

Data frame is an array consisting of columns of various mode (numeric, character, 

etc). Small to moderate size data frame can be constructed by data.frame() function. 

For example, following is an illustration how to construct a data frame from the car 

data*:  

  Make Model Cylinder Weight Mileage Type 

Honda Civic V4 2170 33 Sporty 

Chevrolet  Beretta V4 2655 26 Compact 

Ford Escort V4 2345 33 Small 

Eagle Summit V4 2560 33 Small 

Volkswagen Jetta V4 2330 26 Small 

Buick Le Sabre V6 3325 23 Large 

Mitsubishi Galant V4 2745 25 Compact 

Dodge Grand Caravan V6 3735 18 Van 

Chrysler New Yorker V6 3450 22 Medium 

Acura Legend V6 3265 20 Medium 

> Make<-

c("Honda","Chevrolet","Ford","Eagle","Volkswagen","Buick"

,"Mitsbusihi",  

+ "Dodge","Chrysler","Acura") 

> 

Model=c("Civic","Beretta","Escort","Summit","Jetta","LeSa

bre","Galant",  

+ "Grand Caravan","NewYorker","Legend")  
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Note that the plus sign (+) in the above commands are automatically inserted when 

the carriage return is pressed without completing the list. Save some typing by using 

rep() command. For example, rep("V4",5) instructs R to repeat V4 five times.  

> Cylinder<-c(rep("V4",5),"V6","V4",rep("V6",3)) 

> Cylinder 

 [1] "V4" "V4" "V4" "V4" "V4" "V6" "V4" "V6" "V6" "V6" 

> Weight<-

c(2170,2655,2345,2560,2330,3325,2745,3735,3450,3265)  

> Mileage<-c(33,26,33,33,26,23,25,18,22,20) 

> Type<-

c("Sporty","Compact",rep("Small",3),"Large","Compact","Va

n",rep("Medium",2)) 

Now data.frame() function combines the six vectors into a single data frame.  
> Car<-

data.frame(Make,Model,Cylinder,Weight,Mileage,Type)  

> Car 
         Make         Model Cylinder Weight 

Mileage    Type  

1       Honda         Civic       V4   2170   33  Sporty  

2   Chevrolet       Beretta       V4   2655   26 Compact  

3        Ford        Escort       V4   2345   33   Small  

4       Eagle        Summit       V4   2560   33   Small  

5  Volkswagen         Jetta       V4   2330   26   Small  

6       Buick      LeSabre        V6   3325   23   Large  

7  Mitsbusihi        Galant       V4   2745   25 Compact  

8  Dodge Grand    Caravan       V6   3735  18     Van 

9    Chrysler    New Yorker      V6   3450   22  Medium  

10      Acura        Legend       V6   3265   20  Medium  

> names(Car) 

[1] "Make"     "Model"    "Cylinder" 

"Weight"   "Mileage"  "Type" 

Just as in matrix objects, partial information can be easily extracted from the data 

frame:  

>Car[1,]  

   Make Model Cylinder Weight Mileage   Type 

1 Honda Civic       V4   2170      33 Sporty 

In addition, individual columns can be referenced by their labels:  

>Car$Mileage 

 [1] 33 26 33 33 26 23 25 18 22 20  

>Car[,5]        #equivalent expression 
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> mean(Car$Mileage)    #average mileage of the 10 

vehicles  

[1] 25.9  

> min(Car$Weight)  

[1] 2170  

table() command gives a frequency table:  

>table(Car$Type)  

Compact   Large  Medium   Small  Sporty     Van  

      2       1       2       3       1       1  

If the proportion is desired, type the following command instead:  

>table(Car$Type)/10  

Compact   Large  Medium   Small  Sporty     Van  

    0.2     0.1     0.2     0.3     0.1     0.1  

Note that the values were divided by 10 because there are that many vehicles in total. 

If you don't want to count them each time, the following does the trick:  

>table(Car$Type)/length(Car$Type)  

Cross tabulation is very easy, too:  

>table(Car$Make, Car$Type)  

             Compact Large Medium Small Sporty Van  

  Acura      0       0     1      0     0      0  

  Buick      0       1     0      0     0      0  

  Chevrolet  1       0     0      0     0      0  

  Chrysler   0       0     1      0     0      0  

  Dodge      0       0     0      0     0      1  

  Eagle      0       0     0      1     0      0  

  Ford       0       0     0      1     0      0  

  Honda      0       0     0      0     1      0  

  Mitsbusihi 1       0     0      0     0      0  

  Volkswagen 0       0     0      1     0      0  

What if you want to arrange the data set by vehicle weight? order() gets the job done.  

>i<-order(Car$Weight);i 

 [1]  1  5  3  4  2  7 10  6  9  8  

> Car[i,]  

         Make         Model Cylinder Weight 

Mileage    Type  

1       Honda         Civic    V4   2170      33  Sporty  

5  Volkswagen         Jetta    V4   2330      26   Small  

3        Ford        Escort    V4   2345      33   Small  

4       Eagle        Summit    V4   2560      33   Small  

2   Chevrolet       Beretta    V4   2655      26 Compact  

7  Mitsbusihi        Galant    V4   2745      25 Compact  
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10      Acura        Legend    V6   3265      20  Medium  

6       Buick        LeSabre   V6   3325      23   Large  

9    Chrysler      NewYorker   V6   3450      22  Medium  

8   Dodge Grand      Caravan   V6   3735      18     Van  

Creating/editing data objects 

>y<-c(1,2,3,4,5);y  

[1] 1 2 3 4 5  

If you want to modify the data object, use edit() function and assign it to an object. 

For example, the following command opens R Editor for editing.  

> y<-edit(y)  

If you prefer entering the data.frame in a spreadsheet style data editor, the following 

command invokes the built-in editor with an empty spreadsheet.  

> data1<-edit(data.frame())  

After entering a few data points, it looks like this:  

 

You can also change the variable name by clicking once on the cell containing it.  

Doing so opens a dialog box:  

When finished, click  in the upper right corner of the dialog box to return to the 
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Data Editor window. Close the Data Editor to return to the R command window (R 

Console). Check the result by typing:  

> data1  

Reading data from files 

When data files are large, it is better to read data from external files rather than 

entering data through the keyboard.  To read data from an external file directly, the 

external file should be arranged properly. 

The first line of the file should have a name for each variable. Each additional line of 

the file has the values for each variable.  

Input file form with names and row labels: 

Price  Floor  Area  Rooms Age  isNew 

52.00  111.0  830  5  6.2  no 

54.75  128.0  710  5  7.5  no 

57.50  101.0  1000  5  4.2  yes 

57.50  131.0  690  6  8.8  no 

59.75  93.0  900  5  1.9  yes 

... 

By default numeric items (except row labels) are read as numeric variables and non-

numeric variables, such as isNew in the example, as factors. This can be changed if 

necessary. 

The function read.table() can then be used to read the data frame directly 

>HousePrice<-read.table("d:/houses.data", header = TRUE) 

Reading comma delimited data  

The following commands can be used for reading comma delimited data into R. 

read.csv(filename) This command reads a .CSV file into R. You need to 

specify the exact filename with path.  

read.csv(file.choose()) This command reads a .CSV file but the file.choose() 

part opens up an explorer type window that allows you 

to select a file from your computer. By default, R will 

take the first row as the variable names.  

read.csv(file.choose(), header=T) 

This reads a .CSV file, allowing you to select the file, 

the header is set explicitly. If you change to header=F 

then the first row will be treated like the rest of the data 

and not as a label.  
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Storing variable names 

Through read.csv() or read.table() functions, data along with variable labels is read 

into R memory. However, to read the variables’ names directly into R, one should use 

attach(dataset) function. For example,  

>attach(HousePrice) 

causes R to directly read all the variables’ names eg. Price, Floor, Area etc. it is a 

good practice to use the attach (datafile) function immediately after reading the 

datafile into R. 

Packages 

All R functions and datasets are stored in packages. The contents of a package are 

available only when the package is loaded. This is done to run the codes efficiently 

without much memory usage. To see which packages are installed at your machine, 

use the command 

>library() 

To load a particular package, use a command like 

>library(forecast) 

Users connected to the Internet can use the install.packages() and update.packages() 

functions to install and update packages. Use search() to display the list of packages 

that are loaded.  

Standard package 

The standard (or base) packages are considered part of the R source code. They 

contain the basic functions those allow R to work with the datasets and standard 

statistical and graphical functions. They should be automatically available in any R 

installation.  

Contributed packages and CRAN 

There are a number of contributed packages for R, written by many authors. Various 

packages deal with various analyses. Most of the packages are available for download 

from CRAN (https://cran.r-project.org/web/packages/), and other repositories such as 

Bioconductor (http://www.bioconductor.org/). The collection of available packages 

changes frequently. As on June07, 2019, the CRAN package repository contains 

14346 available packages. 
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Getting Help 

Complete help files in HTML and PDF forms are available in R. To get help on a 

particular command/function etc., type help (command name). For example, to get 

help on function ‘mean’, type help(mean) as shown below 

>help(mean) 

This will open the help file with the page containing the description of the function 

mean.  

Another way to get help is to use “?” followed by function name. For example, 

>?mean 

will open the same window again. 

In this lecture note, all R commands and corresponding outputs are given in 

Courier New font to differentiate from the normal texts. Since R is case-sensitive, 

i.e. typing Help(mean), would generate an error message,  

>Help(mean) 

Error in Help(mean) : could not find function "Help" 

Further Readings 

Various documents are available in https://cran.r-project.org/manuals.html from 

beginners’ level to most advanced level. The following manuals are available in pdf 

form: 

1. An Introduction to R 

2. R Data Import/Export 

3. R Installation and Administration 

4. Writing R Extensions 

5. The R language definition 

6. R Internals 

7. The R Reference Index 

RStudio 

RStudio is an integrated development environment (IDE) that allows to interact with 

R more readily. RStudio is similar to the standard RGui, but is considerably more user 

friendly. It has more drop-down menus, windows with multiple tabs, and many 

customization options.  

Installation of RStudio 

RStudio requires R 3.0.1+ that means R software should be pre-installed before using 

RStudio.  
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RStudio requires a 64-bit operating system, and works exclusively with the 64 bit 

version of R. If you are on a 32 bit system or need the 32 bit version of R, you can use 

an older version of RStudio (https://www.rstudio.com/products/rstudio/older-

versions/).RStudio free desktop version can be downloaded from the following link: 

https://www.rstudio.com/products/rstudio/download/#download 

The first time RStudio is opened, three windows are seen. A forth window is hidden 

by default, but can be opened by clicking the File drop-down menu, then New File, 

and then R Script. 

 

 
 

Importing Data in R Studio 

1. Click on the import dataset button in the top-right section under the 

environment tab. Select the file you want to import and then click open. The 

Import Dataset dialog will appear as shown below 

2. After setting up the preferences of separator, name and other parameters, click 

on the Import button. The dataset will be imported in R Studio and assigned to 

the variable name as set before. 
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Installing Packages in RStudio 

Within the Packages tab, a list of all the packages currently installed on the working 

computer and 2 buttons labeled either “Install” or “Update” are seen. To install a new 

package simply select the Install button. It is possible to install one or more than one 

packages at a time by simply separating them with a comma. 
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Loading Packages in RStudio 

 

Once a package is installed, it must be loaded into the R session to be used. 

 

 
 

Writing Scripts in RStudio 

 

RStudio’s Source Tabs serve as a built-in text editor. Prior to executing R functions at 

the Console, commands are typically written down (or scripted).To write a script, 

simply open a new R script file by clicking File>New File>R Script.  
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Within the text editor type out a sequence of functions. 

 

 Place each function (e.g. read.csv()) on a separate line. 

 If a function has a long list of arguments, place each argument on a separate 

line. 

 A command can be executed from the text editor by placing the cursor on a 

line and typing Crtl + Enter, or by clicking the Run button. 

 An entire R script file can be executed by clicking the Source button. 

 

Saving R files in RStudio 

 

In R, several types of files can be saved to keep track of the work performed. The file 

types include: script, workspace, history and graphics. 

R script (.R) 

 

An R script is a text file of R commands that have beentyped. To save R scripts in 

RStudio, click the save button from R script tab. Save scripts with the .R extension. 

 

 
 

To open an R script, click the file icon. 

Workspace (.Rdata) 

The R workspace consists of all the data objects created or loaded during the R 

session. It is possible to save or load the workspace at any time during the R session 

from the menu by clicking Session>Save Workspace As.., or the save button on the 

Environment Tab. 

 
 

R history (.Rhistory) 

Rhistory file is a text file that lists all of the commands that have been executed. It 

does not keep a record of the results. To load or save R history from the History Tab 

click the Open File or Save button. 
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R Graphics 

Graphic outputs can be saved in various formats like pdf, png, jpeg, bmp etc.  

To save a graphic: (1) Click the Plots Tab window, (2) click the Export button,  

(3) Choose desired format, (4) Modify the export settings as desired and (4) click 

Save. 
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DESCRIPTIVE STATISTICS AND EXPLORATORY DATA 

ANALYSIS 
Md Yeasin 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

E-mail: yeasin.iasri@gmail.com 

1. Introduction  

The word ‘Statistics’ has been derived from the Latin word ‘Status’ or the Italian 

word ‘Statista’ or the German word ‘Statistik’ each of which means ‘political state’. 

Statistics is a broad concept featuring applications in a wide range of areas. Statistics, 

in general, can be defined as the process for collecting, analyzing, interpreting, and 

making conclusions from data. In other terms, statistics is the approach established by 

scientists and mathematicians for analyzing and deriving conclusions from acquired 

data. Everything that has anything to do with the collection, processing, interpretation, 

and presentation of data falls within the scope of statistics. 

Definition of statistics: Statistics is a branch of mathematics that deals with 

collecting, organizing, summarizing, presenting, and analyzing data as well as 

providing valid results and interpreting towards reasonable decisions. 

Statisticians, in other words, give methodologies for  

 Design: Planning and conducting out research projects.  

 Description: Data summarization and exploration.  

 Inference: Making predictions and inferences about the data 

Statistics can be divided into two sections; one is descriptive statistics and another is 

inferential statistics. 

 

 

Descriptive statistics helps describe, show or summarize data in a meaningful way. 

Descriptive statistics provides us with tools, tables, graphs, averages, ranges, 

correlations for organizing and summarizing data. Examples: measures of central 

tendency, measures of dispersion, skewness, kurtosis etc.  

Inferential statistics helps to understand the properties of the population by 

observing the sample values. Inferential statistics deals with the estimation of 

parameters and test of hypothesis. 

Statistics

Descriptive Statistics Inferential  Statistics

mailto:yeasin.iasri@gmail.com
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In this section we briefly discussed the descriptive statistics such as measures of 

central tendency, measures of dispersion, skewness, and kurtosis 

2. Measures of central tendency 

Central tendency is a statistical measure that determines a single value that accurately 

describes the center of the distribution.  The objective of central tendency is to 

identify the single value that is the best representative for the entire set of data. 

Different measure of central tendency are: 

 Mean 

o Arithmetic mean 

o Geometric mean 

o Harmonic mean   

 Median 

 Mode 

 Quartiles 

 Deciles  

 Percentiles  

1.1.Mean (Arithmetic mean: A.M.): 

The mean is the most commonly used measure of central tendency. For computation 

of the mean data should be numerical values measured on an interval or ratio scale. 

To compute the mean, we add the observation of data sets and then divide by the 

number of observation. 

𝑀𝑒𝑎𝑛 =
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑎
 

1.1.1. Simple mean: Let 𝑋1, 𝑋2, … , 𝑋𝑛 are the n observation of a data set. The 

arithmetic mean is given by  

�̅� =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 

Mean for frequency distribution: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with 

correspondingfrequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛  and  ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁 . The arithmetic mean is 

given by  

�̅� =
∑ 𝑓𝑖 𝑋𝑖

𝑛
𝑖=1

𝑁
 

Properties of mean:  

 It depends on change of origin as well as the change of scale. 

𝑈 = 𝑎 + ℎ𝑋 

Where a is origin and h is scale 
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Then  �̅� = 𝑎 + ℎ�̅�. 

 If are�̅�1and �̅�2 the means of two sets of values with 𝑛1and 𝑛2 observations 

respectively, then their combined mean is given by 

�̅� =
𝑛1�̅�1 + 𝑛2�̅�2

𝑛1 + 𝑛2
 

 Algebraic sum of deviations of set of values from their mean is zero. 

∑(𝑋𝑖 −

𝑛

𝑖=1

�̅�) = 0 

 The sum of squares of deviation of set of values about its mean is minimum 

∑ (𝑋𝑖 −𝑛
𝑖=1 𝐴)2 is minimum when  𝐴 = �̅� 

Merits of mean: 

 Easy to understand  

 Easy to calculate. 

 It is rigidly defined. 

 It is based on all observations. 

 It is least affected by sampling fluctuations. 

 It is capable of further mathematical treatment. 

Demerits of mean: 

 It is affected by extreme values. 

 It cannot be calculated for open end class frequency distribution. 

 It cannot be located graphically. 

 It cannot be calculated for qualitative characteristic. 

 It cannot be calculated if any observations are missing in the data series. 

 It is not suitable for highly skewed distribution. 

1.1.2. Geometric mean (G.M.): 

For n observations, Geometric mean is the nth root of their product.  

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observation of a data set. The 

geometric mean is defined as  

𝐺 = (𝑋1 ∗ 𝑋2 ∗ … ∗ 𝑋𝑛)1/𝑛 

For frequency distribution: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with 

correspondingfrequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛  and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁 . The geometric mean is 

defined as  

𝐺 = (𝑋1
𝑓1 ∗ 𝑋2

𝑓2 ∗ … ∗ 𝑋𝑛
𝑓𝑛)1/𝑁 
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Use of geometric mean: 

 Measure average relative changes, averaging ratios and percentages 

 Best average for construction of index number 

Merits of geometric mean: 

 It is based on all observations. 

 It is not affected by sampling fluctuations. 

 It is capable of further mathematical treatment. 

Demerits of geometric mean: 

 If any of the values is zero, it cannot be calculated. 

 It is affected by extreme values. 

 It cannot be calculated for open end class frequency distribution. 

 It cannot be located graphically. 

 It cannot be calculated for qualitative characteristic. 

 It cannot be calculated if any observations are missing in the data series. 

1.1.3. Harmonic mean (H.M.): 

Harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the 

observations of the sets.  

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observation of a data set. The 

harmonic mean is defined as  

𝐻 =
𝑛

∑ 1/𝑋𝑖
𝑛
𝑖=1

 

For frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with corresponding 

frequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛 and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁. The harmonic mean is defined as  

𝐻 =
𝑁

∑ 𝑓𝑖 /𝑋𝑖
𝑛
𝑖=1

 

Use of harmonic mean:  

 Measure the change where the values of a variable are compared with a 

constant quantity of another variable like time, distance travelled within a 

given time, quantities purchased or sold over a unit. 

Merits of harmonic mean: 

 It gives more weight to the small item and less weight to large values. 

 It is based on all observations. 

 It is not affected by sampling fluctuations. 
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 It is capable of further mathematical treatment. 

Demerits of harmonic mean: 

 If any of the values is zero, it cannot be calculated. 

 It is affected by extreme values. 

 It cannot be calculated for open end class frequency distribution. 

 It cannot be located graphically. 

 It cannot be calculated for qualitative characteristics. 

 It cannot be calculated if any observations are missing in the data series. 

Relation between A.M., G.M. and H.M.: 

 For given two observations, 𝐴. 𝑀. ≥ 𝐺. 𝑀. ≥ 𝐻. 𝑀. 

 𝐺. 𝑀. = √𝐴. 𝑀.∗ 𝐻. 𝑀. 

 𝐴. 𝑀. =
𝐺.𝑀.2

𝐻.𝑀.
 

 𝐻. 𝑀. =
𝐺.𝑀.2

𝐴.𝑀.
 

1.2.  Median:  

Median is the value situated in the middle position when all the observations are 

arranged in an ascending/descending order. The median is the central value of an 

ordered data series. It divides the data sets exactly into two parts. Fifty percent of 

observations are below the median and 50% are above the median. Median is also 

known as ‘positional average’. The Median is the 50th percentiles, 10th deciles, and 2nd 

quartiles. Median is also the intersect point of less than and more than ogive curve.  

Median for non-frequency data: 

Step 1Order the data from smallest to largest.  

Step2 If the number of observations is odd, then (n + 1)/2th observation (in the 

ordered set) is the median. When the total number of observations is even, the median 

is given by the mean of n/2th and (n/2 + 1)th observation. 

Median for group frequency data: 

Step 1 Obtain the cumulative frequencies for the data. 

Step 2Markthe class corresponding to which a cumulative frequency is greater than 

N/2. That class is the median class. 

Step 3Then median is evaluated by an interpolation formula 

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑙 +
ℎ

𝑓
(
𝑁

2
− 𝐶) 

Where, 𝑙 = lower limit of the median class 
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N= Number of observations 

C = cumulative frequency of the class proceeding to the median class 

𝑓 = frequency of the median class 

ℎ= magnitude of the median class 

Note: Graphically, we can find the median by histogram. 

Use of median: 

 Qualitative data can be arranged in ascending or descending order of 

magnitude. 

 Find average intelligence, honesty, etc.  

Merits of median: 

 It is rigidly defined. 

 It is not affected by extreme values. 

 It can be located graphically. 

 It can be calculated for open end class frequency distribution. 

 It can be calculated for data based on an ordinal scale. 

Demerits of median: 

 It is not based on all observations. 

 The calculation is more complex than the mean. 

 It is not capable of further mathematical treatment. 

 As compared to the mean, it is much affected by sampling fluctuations. 

1.3 Mode: 

Mode is defined as the value that occurs most frequently in the data. If in the data sets 

each observation occurs only once, then it does not have mode. When the data set has 

two or more values equal to the highest frequency than two or more mode are present 

in the datasets. 

Mode for ungroup frequency data: The observation which has the highest 

frequency in the data sets. 

Mode for group (equal width) frequency data: 

Step 1 Identify the modal class. Modal class is the class with the largest frequency.  

Step 2 Find mode by using interpolated formula. 

𝑚𝑜𝑑𝑒 = 𝑙 +
ℎ(𝑓0 − 𝑓−1)

(𝑓0 − 𝑓−1) − (𝑓1 − 𝑓0)
 

Where,  𝑙 = lower limit of the modal class 
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𝑓0 = frequency of the modal class 

𝑓−1=frequency of the preceding modal class 

𝑓1=frequency of the succeeding modal class 

ℎ= magnitude of the modal class 

Note: Graphically, we can find mode by histogram. 

Use of mode: 

 To find ideal consumer preferences for different kinds of products. 

 The best measure for the average size of shoes or shirts. 

Merits of mode: 

 It is not affected by extreme values. 

 It can be located graphically. 

 It can be calculated for open end class frequency distribution. 

 It can be calculated for data based on a nominal scale. 

Demerits of mode: 

 It is ill-defined. 

 It is not based on all observations. 

 The calculation is more complex than the mean. 

 It is not capable of further mathematical treatment. 

 As compare to the mean, it is much affected by sampling fluctuations. 

Quartiles: Quartiles are the three points that divide the whole data into four equal 

parts. 

𝑄𝑖 = 𝑙 +
ℎ

𝑓
(
𝑖𝑁

4
− 𝐶) 

Deciles: Deciles are the nine points that divide the whole data into ten equal parts. 

𝐷𝑖 = 𝑙 +
ℎ

𝑓
(
𝑖𝑁

10
− 𝐶) 

Percentiles: Percentiles are the ninety-nine point that divides the whole data into 

hundreds of equal parts. 

𝑃𝑖 = 𝑙 +
ℎ

𝑓
(

𝑖𝑁

100
− 𝐶) 

Note: 𝑴𝒆𝒅𝒊𝒂𝒏 = 𝟐𝒏𝒅 𝑸𝒖𝒂𝒓𝒕𝒍𝒆𝒔 = 𝟓𝒕𝒉 𝑫𝒆𝒄𝒊𝒍𝒆𝒔 = 𝟓𝟎𝒕𝒉 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆𝒔 

Empirical formula between mean median and mode: If the data sets area 

symmetric in nature, then 

𝑴𝒆𝒂𝒏 −  𝑴𝒐𝒅𝒆 = 𝟑(𝑴𝒆𝒂𝒏 −  𝑴𝒆𝒅𝒊𝒂𝒏) 
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The best measure of central tendency:  

According to proof. Yule, Mean is the best measure of central tendency. But there are 

some situations where the other measures of central tendency are preferred.  

Scale Use measure Best measure 

Interval Mean, Median, Mode 
Symmetrical data: Mean 

Asymmetrical data: Median 

Ratio Mean, Median, Mode 
Symmetrical data: Mean 

Asymmetrical data: Median 

Ordinal Median, Mode Median 

Nominal Mode Mode 

2. Measure of Dispersion 

The measure of central tendency such as mean, median, and mode only locate the 

center of the data. It does not infer anything about the spread of the data. Two data 

sets can have the same mean but they can be entirely different. 

Data 1 38 42 41 44 45 

Data 2 50 53 41 35 31 

In the above example, two datasets have the same mean. So measures of central 

tendency are not adequate to describe data. Thus to describe data, one needs to know 

the measure of scatterness of observations. Dispersion is defined as deviation or 

scatterness of observations from their central values. 

Various measure of dispersion are: 

 

1.2 Range (R): 

Range is the simplest measure of dispersion. It is defined as the difference between 

the highest value and lowest value of the variable. It is a crude measure of dispersion. 

𝑹𝒂𝒏𝒈𝒆 = 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝒗𝒂𝒍𝒖𝒆 (𝑯) − 𝒍𝒐𝒘𝒆𝒔𝒕 𝒗𝒂𝒍𝒖𝒆 (𝑳) 

 

Measure of 
dispersion

Absolute

Range Quartile 
deviation

Mean  
absoluted
eviation

Variance Standard 
deviation Relative

Co-efficient of 
range

Co-efficient of 
interquartile range

Coefficient of 
mean 

deviation

Coefficient of 
variance
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Merits of range:  

 It is easy to understand and calculate. 

 It is not affected by frequency of the data. 

Demerits of range: 

 It does not depend on all observations. 

 It is very much affected by the extreme items. 

 It cannot be calculated from open-end class intervals. 

 It is not suitable for further mathematical treatment. 

 It is the most unreliable measure of dispersion.  

1.3 Quartile deviation (Q.D.): 

Interquartile range is the difference between the first and third quartile. Hence the 

interquartile range describes the middle 50% of observations. 

𝑰𝒏𝒕𝒆𝒓 𝒒𝒖𝒂𝒓𝒕𝒊𝒍𝒆 𝒓𝒂𝒏𝒈𝒆 =  𝑸𝟑 −  𝑸𝟏 

 Where,  

 Q3=first quartile of the data 

 Q1=third quartile of the data 

Quartile deviation (Q.D.) is the half of the inter quartile range.  

𝑸𝒖𝒂𝒓𝒕𝒊𝒍𝒆 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 (𝑸. 𝑫. )  =  
𝑸𝟑 −  𝑸𝟏

𝟐
 

Merits of Quartile deviation:  

 It is easy to understand and calculate. 

 It is not affected by extreme values 

 It can be calculated for open end frequency data 

Demerits of Quartile deviation: 

 It does not depend on all observations. 

 It is not suitable for further mathematical treatment. 

 It is very much affected by sampling fluctuations. 

1.4 Mean absolute deviation (MAD): 

The absolute deviation of each value from the central value (mean is preferable) is 

calculated and the arithmetic mean of these deviations is called mean absolute 

deviation.  

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observations of a data set. The 

mean absolute deviation (MAD) about A is given by  
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𝑀𝐴𝐷𝐴 =
∑ |𝑋𝑖 − 𝐴|𝑛

𝑖=1

𝑛
 

The mean absolute deviation (MAD) about mean is given by  

𝑀𝐴𝐷�̅� =
∑ |𝑋𝑖 − �̅�|𝑛

𝑖=1

𝑛
 

For frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with corresponding 

frequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛  and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁 . The mean absolute deviation (MAD) 

about A is given by  

𝑀𝐴𝐷𝐴 =
∑ 𝑓𝑖|𝑋𝑖 − 𝐴|𝑛

𝑖=1

𝑁
 

The mean absolute deviation (MAD) about mean is given by  

𝑀𝐴𝐷�̅� =
∑ 𝑓𝑖|𝑋𝑖 − �̅�|𝑛

𝑖=1

𝑁
 

Merits of mean absolute deviation about mean:  

 It is easy to understand and calculate. 

 It is based on all observations. 

Demerits of mean absolute deviation about mean: 

 It is not suitable for further mathematical treatment. 

 It does not take the sign of deviation under consideration.  

 It is affected by extreme values. 

1.5 Standard deviation (S.D.): 

It is the best measure and the most commonly used measure of dispersion. It is 

defined as the positive square-root of the arithmetic mean of the square of the 

deviations of the given observation from their arithmetic mean. It takes into 

consideration the magnitude of all the observations and gives the minimum value of 

dispersion possible.  It is also known as Root Mean Square Deviation about mean. 

For non-frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are the n observation of a data set. The 

standard deviation A is given by  

𝑆𝐷 = √
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑛
 

For frequency data: Let 𝑋1, 𝑋2, … , 𝑋𝑛  are observations with corresponding 

frequencies are 𝑓1 , 𝑓2, … , 𝑓𝑛 and ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑁. The standard deviation is given by  

𝑆𝐷 = √
∑ 𝑓𝑖 (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑁
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Properties of standard deviation: 

 It is the independent of the change of origin but dependent on the change of 

scale 

Let 𝑈 = 𝑎 + ℎ𝑋, then 𝑠𝑑(𝑈) = |ℎ| ∗ 𝑠𝑑(𝑥) 

 If all observations are equal standard deviation is zero. 

 It is never less than the quartile deviation and mean absolute deviation.  

Merits of standard deviation:  

 It is based on all observations. 

 It is less affected by extreme values. 

 It is suitable for further mathematical treatment. 

Demerits of standard deviation: 

 It is suitable for further mathematical treatment. 

 It does not take the sign of deviation under consideration.  

 It is affected by extreme values. 

 It cannot be computed for open-end class data. 

1.6 Variance 

It is defined as the square of the standard deviation. Unit of the variance is the 

square of the actual observations, whereas unit of the standard deviation is same 

as actual observations. 

Relations between R, Q.D., M.D. and S.D. 

𝟗𝐐𝐃 =
𝟏𝟓

𝟐
𝐌𝐃 = 𝟔𝐒𝐃 = 𝐑 

1.7 Coefficient of Variation (CV): 

The Coefficient of variation for a data set defined as the ratio of the standard 

deviation to the mean and expressed in percentage. 

𝑪𝑽 =
𝑺𝑫

𝒎𝒆𝒂𝒏
∗ 𝟏𝟎𝟎% 

C.V is the relative measure of dispersion. It is the best measure among all the relative 

measure of dispersion. C.V is used to compare variability or consistency between two 

or more data series. If C.V. is greater indicate that the group is more variable, less 

stable, less uniform and less consistent. If the C.V. is less, it indicates that the group is 

less variable or more stable or more uniform and more consistent. 

Example: Consider the data on score of Kohli and Smith in ODI cricket. The mean 

and standard deviation for Kohli are 55 and 5 respectively. The mean and standard 
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deviation for Smith are 50 and 10 respectively.  Find C.V. value for both the data and 

make compare them. 

Solution: 

For Kohli, 𝐶𝑉 =
5

55
∗ 100 = 9% 

For Smith, 𝐶𝑉 =
10

50
∗ 100 = 20% 

The Smith is subject to more variation in score than Kohli. So Kohli is more 

consistent than Smith. 

𝟑. 𝟔. 𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐫𝐚𝐧𝐠𝐞 =
𝑯 − 𝑳

𝑯 + 𝑳
∗ 𝟏𝟎𝟎% 

𝟑. 𝟕.  𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐢𝐧𝐭𝐞𝐫 𝐪𝐮𝐚𝐫𝐭𝐢𝐥𝐞 𝐫𝐚𝐧𝐠𝐞 =
𝑸𝟑 − 𝑸𝟏

𝑸𝟑 + 𝑸𝟏
∗ 𝟏𝟎𝟎% 

𝟑. 𝟖. 𝐂𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝐦𝐞𝐚𝐧 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧

=
𝑴𝑨𝑫

𝒂𝒗𝒆𝒓𝒂𝒗𝒆 𝒇𝒓𝒐𝒎 𝒘𝒉𝒊𝒄𝒉 𝒊𝒕 𝒊𝒔 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅
∗ 𝟏𝟎𝟎% 

Numerical Examples: The marks of 10 students in statistics examination are as 

follows: 

10,12,15,12,16, 20, 13,17,15,15 

Find mean, median, mode, range and standard deviation. 

Solution: 

Xi fi fi Xi fi(Xi − X̅) (Xi − X̅)2 fi(Xi − X̅)2 

10 1 10 -4.5 20.25 20.25 

12 2 24 -5 6.25 12.5 

13 1 13 -1.5 2.25 2.25 

15 3 45 1.5 0.25 0.75 

16 1 16 1.5 2.25 2.25 

17 1 17 2.5 6.25 6.25 

20 1 20 5.5 30.25 30.25 

Total 10 145  67.75 74.5 

𝑚𝑒𝑎𝑛 =
145

10
= 14.5 

𝑚𝑒𝑑𝑖𝑎𝑛 = 15 

𝑚𝑜𝑑𝑒 = 15 

𝑟𝑎𝑛𝑔𝑒 = 20 − 10 = 10 

𝑆𝐷 =
74.5

10
= 7.45 

2 Skewness and kurtosis: 
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We have discussed measures of central tendency and measure of dispersion which 

describe the location and scale parameter of the data sets. They do not give any idea 

about the shape of the data structure. The measure of skewness and kurtosis illustrate 

the shape of the data sets. The measure of skewness gives the direction and the 

magnitude of the lack of symmetry and the measure of kurtosis gives the idea of the 

flatness of the curve. 

2.2 Skewness 

Skewness measures the degree of asymmetry of the data. Skewness refers to the lack 

of symmetry. 

Skewness is mainly three types: Positive skewness, Negative skewness, and 

Symmetric data.  

Positive Skewness: 

A data is said to be positive skew if the long tail is on the right side of the peak. The 

mean is on the right of the peak value. Here Mean > Median > Mode.  

Negative Skewness: 

A data is said to be negative skew if the long tail is on the left side of the peak. The 

mean is on the left of the peak value. Here Mean < Median < Mode.  

Symmetric 

The symmetrical distribution has zero skewness as all measures of a central tendency 

lies in the middle. When data is symmetrically distributed, the left-hand side and 

right-hand side, contain the same number of observations. Here Mean = Median = 

Mode. 

 

Figure 1. Skewness 
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The measure of Skewness: 

 
Interpretation: 

1. If Sk = 0, then the frequency distribution is normal and symmetrical. 

2. If Sk> 0, then the frequency distribution is positively skewed. 

3. If Sk<0, then the frequency distribution is negatively skewed. 

2.3 Kurtosis 

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a 

normal distribution. That is, data sets with high kurtosis tend to have heavy tails or 

outliers. Data sets with low kurtosis tend to have light tails or lack of outliers. A 

uniform distribution would be the extreme case. 

Types of kurtosis: Leptokurtic or heavy-tailed distribution, Mesokurtic, Platykurtic 

or short-tailed distribution 

Leptokurtic 

Leptokurtic indicates that distribution is peaked and possesses thick tails. 

Platykurtic 

Platykurtic having a lower tail and stretched around center tails means most of the 

data points are present in high proximity with mean. A platykurtic distribution is a 

flatter (less peaked) when compared with the normal distribution. 

Mesokurtic  

Mesokurtic is the same as the normal distribution. In Mesokurtic, distributions are 

moderate in breadth, and curves are a medium peaked height. 

 

Figure 2. Kurtosis 
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Measurement of Kurtosis (𝛽2) =  
1

𝑁−1

∑(𝑦𝑖−�̅�)4

𝑠4  

𝛾2 =  𝛽2 − 3 

Data presentation 

Non dimensional diagram      Pictograms 

Two dimensional diagram       Bar diagram, Pie diagrams, Histograms, Box Plot 

Three dimensional diagram     Cubes, Cylinders diagrams 

There are three broad ways of presenting data. These are Textual presentation, 

Tabular presentation, and Graphic or diagrammatic presentation. We discussed only a 

few important diagrammatic presentations of data.   

2.4 Bar Diagram 

2.4.1 Simple Bar Diagram 

If the classification is based on attributes and if the attributes are to be compared with 

respect to a single character we use a simple bar diagram. Simple bar diagrams consist 

of vertical bars of equal width. The heights of these bars are proportional to the 

volume or magnitude of the attribute. All bars stand on the same baseline. The bars 

are separated from each other by equal intervals. The bars may be colored or marked.   

2.4.2 Multiple bar diagram 

If the data is classified by attributes and if two or more characters or groups are to be 

compared within each attribute we use multiple bar diagrams. If only two characters 

are to be compared within each attribute, then the resultant bar diagram used is known 

as the double bar diagram. The multiple bar diagram is simply the extension of a 

simple bar diagram. For each attribute, two or more bars representing separate 

characters or groups are to be placed side by side. Each bar within an attribute will be 

marked or colored differently in order to distinguish them. The same type of marking 

or coloring should be done under each attribute. A footnote has to be given explaining 

the markings or colorings. 

2.4.3 Component bar diagram 

This is also called a subdivided bar diagram. Instead of placing the bars for each 

component side by side, we may place this one on top of the other. This will result in 

a component bar diagram. 

2.5 Histogram 

Histograms is suitable for continuous class frequency distribution. We mark off class 

intervals along the x-axis and frequencies (frequency density for unequal frequency 

data)along the y-axis.  
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 For equal class intervals, the heights of the rectangles will be proportional to 

the frequencies, while for unequal class intervals, the heights will be equal (or 

proportional) to the frequency densities. 

 A frequency polygon is a line graph obtained by connecting the midpoints of 

the tops of the rectangles in the histogram.  

Table 1.Differences between bar diagrams and histograms 

Characteristics Bar Diagrams  Histograms 

Frequency is measured by Height of the bar Area of the bar 

Gaps between the bars Yes No 

Width of the bar Equal May not be equal 

Data types  Discrete and Continuous  Continuous only 

2.6 Pie diagrams  

When we are interested in the relative importance of the different components of a 

single factor, we use pie diagrams. For the pie diagram, one circle is used and the area 

enclosed by it being taken as 100. Itis then divided into a number of sectors by 

drawing angles at the center, the area of each sector representing the corresponding 

percentage. 

2.7 Box Plot 

Minimum, maximum, and quartiles (Q1, Median, Q3) together provide information on 

the center and variation of the variable in a nice compact way. Written in increasing 

order, they comprise what is called the five-number summary of the variable. A box 

plot is based on the five-number summary and can be used to provide a graphical 

display of the center and variation of the observed values of the variable in a data set. 

It can tell you about your outliers and what their values are. It can also tell you if your 

data is symmetrical, how tightly your data is grouped, and if and how your data is 

skewed. 

N.B: Examples of graphical presentation have been given in our basic statistics 

with excel manual.  

 

3 Robust Estimate of Mean and Standard Deviation 

The mean and standard deviation provides a correct estimation only if the variable is 

normally distributed and without outliers. If the variable is skewed and/or has outliers, 

the mean and standard deviation will be excessively influenced by the extreme 

observations and provide faulty statistics of data. There are many alternatives to the 
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mean and standard deviation. Alternatives to the mean include the well-known median 

and trimmed mean, Winsorized mean, and M-estimators and for standard deviation, 

the alternatives include the Inter-Quartile Range (IQR) and the Median Absolute 

Deviation (MAD), Trimmed standard deviation, the Winsorized standard deviation, 

and M-estimators. Median, IQR, MAD are already discussed in the previous section in 

detail. Here we only discussed the trimmed, Winsorized, and M estimators for mean 

and standard deviation.  

3.2 Trimmed Mean and Standard Deviation 

A trimmed mean and standard deviation is similar to a “regular” mean but it trims 

any outliers from both the side. To obtain the 20% trimmed mean, the 20% lowest and 

20 % highest values are removed and the mean is computed on the remaining 

observations. In our example, these values will be: 4, 4, 5, 5, 6, 6, and the 20% 

trimmed mean will be equal to 5. 

3.3 Winsorized Mean and Standard Deviation 

The Winsorized technique is similar to the trimmed technique but the lowest (resp. 

highest) values are not removed but replaced by the lowest (resp. highest) untrimmed 

score. In our example, the values of the variables, also called Winsorized scores, will 

then be: 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, and the 20% Winsorized mean will be equal to 5. 

3.4 M estimators  

The trimmed mean all either take or drop observations. As for the Winsorized mean, 

it replaces values with less extreme values. In contrast, the M-estimators, weight each 

observation according to a function selected for its special properties. The weights 

depend on a constant that can be chosen by the researcher. The M-estimator solves 

this problem of assigning a zero value to many observations by down weighting the 

observations progressively. The only aspect of the M-estimator that could worry 

substantive researchers is that one must choose the degree of down weighting of the 

observations. 

 

 

 

 

 

 

 

https://www.statisticshowto.com/statistics-basics/find-outliers/
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STATISTICAL DATA ANALYSIS USING MICROSOFT EXCEL 

Sanchita Naha 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-12 

Sanchita.naha@icar.gov.in 

Statistics is the study of collection, analysis, interpretation, presentation, and 

organization of data. Broadly, two statistical methodologies are used for data analysis, 

descriptive statistics, and inferential statistics. Statistical analysis can be done using 

software like MS Excel, SPSS, R but this tutorial is restricted to major statistical 

analysis methods using Microsoft Excel. Statistical analysis mainly encompasses 

descriptive statistics and inferential statistics. 

1. Descriptive Statistics: Descriptive statistics is used to describe or summarize data 

in a meaningful way. Descriptive statistics provides us with tools, tables, graphs, 

averages, ranges, correlations for organizing and summarizing data. In descriptive 

statistics data is summarized with the following major numerical descriptors like 

 Arithmetic Mean: It is defined as the average of the data values. For mean 

computation, data must be in numeric form.  

𝑀𝑒𝑎𝑛 =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

n = number of observations 

Steps to compute mean in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > 

mailto:Sanchita.naha@icar.gov.in
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select Average > Enter. 

 Geometric Mean: It is the nth root of the product of individual data points. Let 

𝑋1, 𝑋2, ... , 𝑋𝑛 be the nth observation of a data set. The geometric mean is 

defined as 

𝐺𝑀 =  (𝑥1 ∗ 𝑥2 ∗ … ∗ 𝑥𝑛 )1/𝑛 

Steps to compute geometric mean in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘GEOMEAN’ > click ‘Insert Function’ > Enter. 

e.g., GEOMEAN (B2:B11) 

The geometric mean is used in finance to calculate average growth rates and is 

referred to as the compounded annual growth rate. 

 Harmonic Mean: Harmonic mean is the reciprocal of the arithmetic mean of 

the reciprocals of the observations of the datasets. 

𝐻𝑀 =  
𝑛

∑ 1
𝑥𝑖

⁄𝑛
𝑖=1

 

Steps to compute harmonic mean in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘HARMEAN’ > click ‘Insert Function’ > Enter. 

e.g., HARMEAN (B2:B11) 
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 Median: Median is the value in the middlemost position of all the observations 

when arranged in an ascending/descending order. The median is the central 

value of an ordered data series. It divides the data sets exactly into two parts. 

Fifty percent of observations are below the median value and 50% are above the 

median. Median is also known as 'positional average'.  

Steps to compute median in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MEDIAN’ > click ‘Insert Function’ > Enter. 

 Mode: Mode is defined as the value that occurs most frequently in the data. If 

in the data sets each observation occurs only once, then it does not have mode. 

When the data set has two or more values equal to the highest frequency than 

two or more mode are present in the datasets. 

    Steps to compute median in Excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MODE’ > click ‘Insert Function’ > Enter. 

 Range: It is defined as the difference between the highest value and lowest 

value of the variable. 

𝑅𝑎𝑛𝑔𝑒 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 

Steps to compute range in Excel: 

Compute the maximum and minimum value among the data values. Then 

compute the difference between them to get the range of observations. 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MAX’ > click ‘Insert Function’ > Enter. 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘MIN’ > click ‘Insert Function’ > Enter. 

Select a cell > write “=(specify the cell where maximum value is stored - 

specify the cell where minimum value is stored)” in the formula bar > Enter. 
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 Standard Deviation: It is defined as the positive square-root of the arithmetic 

mean of the square of the deviations of the given observations from their 

arithmetic mean. It takes into consideration the magnitude of all the 

observations and gives the minimum value of dispersion possible. It is also 

known as Root Mean Square Deviation about mean.  

Let x1, x2, …, xn are the n observations in a data set. The standard deviation 

S.D. is given by, 

𝑆𝐷 =  √
∑ (𝑋𝑖 −  �̅�)2𝑛

𝑖=1

𝑛
 

 Variance: It is defined as the square of the standard deviation. Unit of the 

variance is the square of the actual observations, whereas unit of the standard 

deviation is same as the actual observations. 

Steps to calculate Standard Deviation in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘STDEV’ > click ‘Insert Function’ > Enter. 
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There are 6 versions of standard deviation formula available which are as 

following: 

STDEV.S: This formula calculates the sample standard deviation based on 

numeric information alone. It ignores text and logical (TRUE or FALSE) values 

in the spreadsheet. The denominator in this case is (n-1). 

STDEV.P: This formula calculates the standard deviation for an entire 

population based on numeric information alone. It ignores text and logical 

values in the spreadsheet. The denominator in this case is n. 

STDEVA: This formula calculates the sample standard deviation of a dataset 

but includes text and logical values in the calculation. All FALSE values are 

represented by 0, and TRUE values are represented by 1. 

STDEVPA: This formula calculates the standard deviation for an entire 

population and includes text and logical values in the calculation. Like 

STDEVA, all FALSE values are represented by 0, and TRUE values are 

represented by 1. 

STDEV: This is an older version of the STDEV.S formula that Excel used to 

calculate sample standard deviation before 2007. It still exists for compatibility 

purposes. This formula acts as the same as STDEV.S 

STDEVP: This is an older version of the STDEV.P formula that still exists for 

compatibility. 
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Steps to calculate Variance in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘STDEV’ > click ‘Insert Function’ > Enter. 

 Coefficient of Variation (CV):The Coefficient of Variation (CV) is defined as 

the ratio of the standard deviation to the mean, and expressed in percentages, 

𝐶𝑉 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
∗ 100 

CV is calculated to have an idea about the consistency/ variability of the series. 

Higher the CV means the series is more variable, less stable, less uniform, and 

less consistent. Lesser CV indicates that the series is less variable or more stable 

or more uniform and more consistent. 

 Skewness and Kurtosis: Skewness is used to detect outliers in a data set. It 

characterizes the degree of asymmetry of a distribution around its mean. 

Positive skewness indicates a distribution with an asymmetric tail extending 

toward more positive values. Negative skewness indicates a distribution with an 

asymmetric tail extending toward more negative values.A data series is said to 

be positively skewed if the Mean of the data series is greater than Median and is 

greater than Mode. On the other hand data is said to be negatively skewed if 

Mean < Median < Mode. Data series is said to be symmetric if Mean = Median 

= Mode.  

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
(𝑀𝑒𝑎𝑛 − 𝑀𝑜𝑑𝑒)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Alternate formula for computing Skewness Coefficient, 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
3 (𝑀𝑒𝑎𝑛 − 𝑀𝑒𝑑𝑖𝑎𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

If Skewness coefficient = 0, then the distribution is normal and symmetrical. 

If Skewness coefficient > 0, then the frequency distribution is positively 

skewed. 

If Skewness coefficient < 0, then the frequency distribution is negatively 

skewed. 

Steps to calculate Skewness Coefficient in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘SKEW’ > click ‘Insert Function’ > Enter. 



  

 
 

51 

 

 Kurtosis: Kurtosis is a measure of the “tailedness” of the probability 

distribution of a real-valued random variable. It is the tailedness of a 

distribution relative to a normal distribution. Distributions with medium kurtosis 

(medium tails) are mesokurtic, with low kurtosis are called platykurtic, and 

distributions with high kurtosis are leptokurtic. 

Measure of kurtosis, 𝛾2 =  
𝜇4

𝜎4 – 3 

Kurtosis value equals to 3.0 indicates, the data distribution is mesokurtic, for 

kurtosis value greater than 3.0, it is called leptokurtic and for a lesser value than 

3.0 the distribution is called platykurtic. 

Steps to calculate Kurtosis in excel: 

Select data points > Click formulas > Expand auto-sum drop down menu > Find 

function ‘KURT’ > click ‘Insert Function’ > Enter. 

Excel provides an “Analysis Tool Pak” add-in under the Data tab to generate a 

report of the Descriptive Statistics on the desired data.  

https://www.scribbr.com/statistics/kurtosis/#mesokurtic
https://www.scribbr.com/statistics/kurtosis/#platykurtic
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For example, we have examination scores of 10 students in a class like the 

following. To generate descriptive statistics for these scores, follow the steps 

below. 

Step 1: On the Data tab, in the Analysis group, click Data Analysis. 

Step 2: Select Descriptive Statistics and click OK. 

Step 3: Select the range B2:B11 as the Input Range. 

Step 4: Select cell C1 as the Output Range. 

Step 5: Make sure Summary statistics is checked. 

Step 6: Click ok. 

2. Correlation and Regression Analysis: Correlation is the measurement of linear 

association between two variables. It is a measure that describes the strength and 

direction of a relationship between two variables. It is a commonly used measure 

in statistics, economics and social sciences for budgets, business plans etc. The 

correlation coefficient is used to measure the correlation between bivariate data 

which basically denotes the degree of linear association between two random 

variables. 

In statistics, there are several types of correlation measures depending on the type 

of data you are working with. Here, we will focus on the most common one. 

Pearson Product Moment Correlation (PPMC), popularly called as Pearson 

Correlation is used to evaluate linear relationships between data when a change in 

one variable is associated with a proportional change in the other variable.  

Pearson Correlation Coefficient, 𝒓 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑(𝑥𝑖−�̅�)2∗∑(𝑦𝑖−�̅�)2
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The correlation coefficient value always lies between -1 and 1 and it measures both 

the strength and direction of the linear relationship between the variables. 

Correlation coefficient of +1 means a perfect positive relationship, as value of one 

variable increases, value of other variable increases proportionally. Correlation 

coefficient value of -1 means a perfect negative relationship, with increase in the 

value of one variable, the other one decreases proportionally. A coefficient of 0 

means no linear relationship between the two variables the data points are scattered 

all over the graph. 

Steps to calculate Pearson Correlation Coefficient in Excel: 

Select ‘Data’ tab > click ‘Data Analysis’ > Find Correlation from the given menus 

> Click ok > Select the input range > select output cell > Grouped by columns > 

click ok. 

 

Regression analysis is used to estimate the relationship between two or more 

variables. Dependent variable is the main factor you want to study, understand, or 

predict. Independent variables are the factors that might influence the dependent 

variable. Regression analysis helps to understand how the dependent variable 

changes when one of the independent variables vary. Regression analysis can make 

it easier to predict future variable trends by analyzing the trajectory of the 

regression line. Simple linear regression model tries to establish a linear 

association between the dependent and the independent variable so that the 

outcome of the dependent variable can be predicted using the independent 

variables. The simple linear regression model uses the following equation: 
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Y = a + bX + ϵ 

where, Y = value of the dependent variable 

X = value of the independent variable 

a = intercept 

b = slope (regression line steepness) 

ϵ = error component 

Steps to perform Regression Analysis in Excel: 

Step1: Let us consider the data values for the following two variables, COVID 

cases and masks sold and perform a simple linear regression analysis in Excel 

considering number of Masks sold as the Y variable and number of COVID cases 

as X variable on which Y is dependent.  

 

Step2: Click on the ‘Data’ tab > Data Analysis > Select ‘Regression’ >click ‘Ok’. 
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Step3: In the Regression dialog box select the Input Y Range, which is our 

dependent variable. In this case it is (C2:C13). Then select the Input X Range, 

independent variable. In this example, it is the number of COVID cases (B2:B13). 

Select the desired output range, here E2. 

Click ok. 

You get the following Output: 

 

 Interpreting the Out putof Regression Analysis:  

SUMMARY STATISTICS 

Multiple R is the value of the Correlation Coefficient that measures the strength 

of a linear relationship between two variables. The larger the absolute value, the 

stronger the relationship. 

R Square gives the Coefficient of Determination, which is used as an indicator 

of the goodness of fit. It shows how many points fall on the regression line. The 

R2 value is calculated from the total sum of squares, more precisely, it is the 

sum of the squared deviations of the original data from the mean. In this 

example, R2 is 0.96, which is very good. It means that 96% of our values fit the 

regression analysis model. In other words, 96% of the dependent variables (y-
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values) are explained by the independent variables (x-values). Generally, R 

Squared of 95% or more is considered a good fit. 

Adjusted R Square gives the R square adjusted for the number of independent 

variables in the model. For multiple regression analysis, adjusted R square value 

is used instead of R square. 

Standard Error is another goodness-of-fit measure that shows the precision of 

the fitted regression model. The smaller the number, the more certain one can 

be about the regression equation. It is an absolute measure that shows the 

average distance that the data points fall from the regression line. 

Observations simply provides the total number of observations used to fir the 

model. 

COEFFICIENTS 

 

Linear regression equation fitted was, Y = b*X + a 

Here, Y = Mask sold; X = COVID cases; b = 0.99; a = -245.63 

Therefore, 0.99 * 190 – 245.63 = -57.53 
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3. Create Charts/ Graphs in MS Excel: 

Line Diagram: Select the data for which you want to plot the graph. Click ‘Insert’ 

tab > go to insert column chart > pick any chart of your preference. Excel will 

create the graphical representation as following. 

 

Pie chart: Pie chart represents the data in slices of a circle. Each slice represents 

the percentage contribution of each data section among the sum of individual data 

values. 

Select the data for which you want to plot the pie chart. Click insert tab > go to 

insert pie or doughnut chart > pick any chart of your preference. Excel will create 

the graphical representation as following: 
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Scatter Diagram: Scatter charts are specifically used to show how one variable is 

related to another. There are seven scatter chart options: scatter, scatter with 

smooth lines and markers, scatter with smooth lines, scatter with straight lines and 

markers, scatter with straight lines, bubble, and 3-D bubble. For plotting a scatter 

chart, one needs data points for two or more variables. 

Select the data> click insert tab > go to X Y Scatter chart > pick any chart of your 

preference. Excel will create the graphical representation as following: 

 

Histogram: Select data >click on data tab > select data Analysis >click histogram 

> select  
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input range (B2:B16)> select bin (class intervals, here it is C4:C8) > check Chart 

Output > click ok. Excel will produce the frequency table against the specified bin 

value and also will create a histogram diagram like following. 

4. Inferential Statistics:  

Inferential statistics is used for estimating the population data by analysing the 

samples obtained from it. It helps in making generalizations about the population 

by using different analytical tests and tools. Various sampling techniques are 

usedto select random samples that will represent the population accurately. Some 

of the important methods are simple random sampling, stratified sampling, cluster 

sampling, and systematic sampling techniques. 

Inferential statistics can be defined as a field of statistics that uses analytical tools 

for drawing conclusions about a population by examining random samples. In 

inferential statistics, a statistic is taken from the sample data (e.g., sample mean) 

that used to make inferences about the population parameter (e.g., the population 

mean). One sample t-test is the most commonly used one and sets a basic 

understanding of all other kinds of hypothesis testing methods. 

One sample t-test: 

The one-sample t test compares a given sample mean �̅�  to a known or 

hypothesized value of the population mean 𝜇0 provided the population standard 

deviation σ is unknown. Excel does not have a built-in one-sample t test. However, 

the use of Excel functions and formulas makes the computations quite simple. The 

value of t-statistic can be calculated from the given formula: 

𝑡 =  
�̅� − 𝜇0

𝑠�̅�
 

where, �̅� is the sample mean, 𝜇0 is the known or hypothesized population mean 

and 𝑠�̅� isthe standard error of mean.To calculate the t-statistic in excel we need to 

first find the following values.  

Consider a sample of 12 young female adults, we have the measurement of their 

heights in inches. Let us assume the national average height of 18-year-old girls is 

66.5 inches. We want to perform a one-sample T-test in Excel to determine if there 

is any significant difference between the heights of the sample data compared with 

the national average height (66.5 inches).  
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The null hypothesis and alternative hypothesis for this test are: 

Null hypothesis: There is no significant difference between the heights of the 

sample, compared with the national average. 

Alternative hypothesis: There is significant difference between the heights of the 

sample, compared with the national average. 

First of all, compute mean, standard deviation, standard error, degrees of freedom 

to calculate the value of the t-statistic as shown in the above screenshot then in an 

empty cell, enter =TDIST (t, df, tails) to compute the p-value. 

t – the cell containing the t-statistic 

df – The cell containing the degrees of freedom. 

tails –1if you want to perform a one-tailed analysis, or 2 if you want to do a two-

tailed analysis.p-value for this example is 0.127. 

Let us assume alpha level is set at 0.05, then since the p-value is above the alpha 

level, we will accept the null hypothesis and reject the alternative hypothesis.In 

other words, there is no significant difference between the heights of the sample, 

compared with the national average. 
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TESTS OF SIGNIFICANCE AND NON-PARAMETRIC TEST 

Rajeev Ranjan Kumar 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

Rajeev.kumar4@icar.gov.in 

 

In the realm of statistics, the test of significance, also known as hypothesis testing, is 

a powerful tool used to make informed decisions about population parameters based 

on sample data. It enables researchers and analysts to assess the validity of 

assumptions, draw conclusions, and determine the level of confidence in their 

findings. 

The fundamental idea behind the test of significance is to evaluate whether the 

observed data is strong enough to support or reject a particular hypothesis about a 

population characteristic. This hypothesis is typically formulated in terms of a null 

hypothesis (H0), which assumes no significant difference or relationship, and an 

alternative hypothesis (H1), which posits the existence of a meaningful difference or 

relationship. 

To conduct a test of significance, a sample is collected from the population of interest, 

and relevant statistical techniques are employed to analyze the data. The results are 

then used to evaluate the likelihood of observing the sample data under the 

assumption that the null hypothesis is true. If the observed data is highly improbable 

under this assumption, it provides evidence to reject the null hypothesis in favour of 

the alternative hypothesis. 

The test of significance involves determining a test statistic, which summarizes the 

data and allows for comparison against a theoretical distribution. The choice of the 

appropriate test statistic depends on the nature of the research question and the type of 

data being analyzed. Commonly used test statistics include the z-score, t-statistic, chi-

square statistic, and F-statistic, among others. 

1.Types of Hypotheses 

In scientific research, a hypothesis is a proposed explanation or prediction about a 

phenomenon or relationship between variables. Hypotheses play a crucial role in 

guiding research and formulating testable statements that can be supported or refuted 

by empirical evidence. Depending on the nature of the research question and the 

specific objectives of the study, different types of hypotheses can be formulated. Here 

are some common types of hypotheses: 
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Null Hypothesis (H0): The null hypothesis represents the absence of an effect, 

relationship, or difference between variables. It assumes that there is no statistically 

significant relationship or change in the population being studied. Researchers 

generally aim to reject the null hypothesis in favour of an alternative hypothesis. For 

example, the null hypothesis could state that there is no difference in test scores 

between two groups of students. 

Alternative Hypothesis (H1): The alternative hypothesis is the opposite of the null 

hypothesis. It suggests that there is a significant effect, relationship, or difference 

between variables in the population. Researchers seek to gather evidence to support 

the alternative hypothesis. Building upon the previous example, the alternative 

hypothesis could state that there is a difference in test scores between the two groups 

of students. 

Directional Hypothesis: A directional hypothesis predicts the specific direction of 

the relationship or difference between variables. It specifies whether the effect will be 

positive or negative. For instance, a directional hypothesis may state that Group A 

will have higher test scores than Group B or that an increase in temperature will lead 

to a decrease in plant growth. Directional hypotheses are often used when previous 

research or theoretical considerations provide a basis for predicting the direction of 

the effect. 

Non-Directional Hypothesis: Also known as a two-tailed hypothesis, a non-

directional hypothesis does not predict a specific direction of the relationship or 

difference. It simply states that there is a significant difference or relationship 

between variables without specifying the direction. Researchers use non-directional 

hypotheses when they do not have a clear theoretical basis or prior evidence to 

suggest a specific direction. For example, a non-directional hypothesis may state that 

there is a difference in test scores between two groups of students, without specifying 

which group will perform better. 

Composite Hypothesis: A composite hypothesis consists of multiple statements or 

conditions. It encompasses more than one possibility and allows for different 

outcomes. Composite hypotheses are often used when there are multiple factors or 

variables involved in the research question. For instance, a composite hypothesis 

could state that the effect of a particular treatment on patient outcomes varies 

depending on age, gender, and socioeconomic status. 
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Simple Hypothesis: In contrast to composite hypotheses, simple hypotheses involve 

a single statement or condition. They are straightforward and make specific 

predictions about a single variable or relationship. Simple hypotheses are commonly 

used when the research question focuses on a single factor or variable. For example, a 

simple hypothesis could state that there is a positive correlation between study time 

and exam scores. 

2. Types of Errors 

Errors can occur due to various sources of uncertainty and can impact the validity and 

reliability of research findings. Understanding the types of errors is essential for 

researchers and analysts to properly interpret and draw accurate conclusions from 

their data. Here are the two primary types of errors in statistics: 

(A) Type I Error 

Type I error, also known as a false positive, occurs when the null hypothesis (H0) is 

mistakenly rejected, indicating the presence of a significant effect or relationship 

when, in fact, none exists in the population. It represents the probability of observing 

a statistically significant result due to random chance alone. Type I error is typically 

denoted by the symbol α (alpha) and is related to the significance level chosen for the 

hypothesis test. 

For example, let's say a researcher conducts a study to determine if a new drug is 

effective in reducing blood pressure. The null hypothesis states that the drug has no 

effect. If the researcher rejects the null hypothesis and concludes that the drug is 

effective when it is actually not, it would be a Type I error. The researcher would 

have falsely claimed a significant effect. 

The significance level chosen for the hypothesis test determines the threshold at 

which a Type I error is considered acceptable. A lower significance level (e.g., α = 

0.05) reduces the risk of Type I error but increases the chance of Type II error. 

(B) Type II Error: 

Type II error, also known as a false negative, occurs when the null hypothesis (H0) is 

incorrectly accepted, implying no significant effect or relationship, even when there is 

one in the population. It represents the failure to detect a true effect or relationship. 

Type II error is denoted by the symbol β (beta) and is related to the statistical power 

of the test. 
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Building upon the previous example, if the researcher fails to reject the null 

hypothesis and concludes that the drug is not effective, even though it is, it would be a 

Type II error. The researcher would have missed detecting a real effect. 

Type II error is influenced by factors such as the sample size, effect size, variability in 

the data, and the chosen significance level. To minimize the risk of Type II error, 

researchers often aim to maximize the statistical power of their study by using larger 

sample sizes, employing more sensitive measurement techniques, or increasing the 

significance level. 

It's important to note that Type I and Type II errors are inversely related: reducing one 

type of error increases the likelihood of the other. Researchers need to strike a balance 

between these two types of errors based on the consequences of each in the specific 

research context. 

(3)Level of Significance in Statistics: 

In statistical hypothesis testing, the level of significance, often denoted by the symbol 

α (alpha), is a predetermined threshold that helps researchers make decisions about 

the validity of their results. It represents the maximum allowable probability of 

making a Type I error (rejecting the null hypothesis when it is actually true). The 

level of significance plays a crucial role in determining the critical region and the 

acceptance or rejection of the null hypothesis. 

The most commonly used level of significance in many fields of research is 0.05 (or 

5%). This means that if the calculated probability (p-value) of obtaining the observed 

data under the null hypothesis is equal to or less than 0.05, the null hypothesis is 

rejected in favour of the alternative hypothesis. In other words, researchers conclude 

that there is sufficient evidence to suggest that a relationship, effect, or difference 

exists in the population being studied. However, the choice of the level of significance 

is not arbitrary and should be determined based on the specific research question, the 

consequences of Type I and Type II errors, and the desired level of confidence. 

Commonly used levels of significance include 0.01 (1%) and 0.10 (10%), depending 

on the context and the stringency of the decision-making process. 

A lower level of significance (e.g., 0.01) reduces the risk of Type I error, providing a 

more conservative approach to hypothesis testing. It requires stronger evidence to 

reject the null hypothesis and provides a higher level of confidence in the conclusions 

drawn from the data. On the other hand, a higher level of significance (e.g., 0.10) 

increases the risk of Type I error, making it easier to reject the null hypothesis. This 
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approach is less conservative and may be appropriate when the consequences of Type 

II error are more severe or when exploratory analysis is conducted. It's important to 

note that the level of significance does not directly indicate the magnitude or practical 

importance of the observed effect. It solely reflects the strength of evidence against 

the null hypothesis. Therefore, researchers need to carefully interpret the results in the 

context of the specific research question and consider the practical implications of 

their findings. 

(4) P-value  

In statistical hypothesis testing, the p-value is a measure that helps researchers assess 

the strength of evidence against the null hypothesis (H0) and make informed decisions 

about its rejection or acceptance. The p-value represents the probability of obtaining 

the observed data, or more extreme data, if the null hypothesis were true. The 

calculation of the p-value involves comparing the observed test statistic (e.g., t-

statistic, z-score, chi-square statistic) with the distribution of the test statistic under 

the assumption that the null hypothesis is true. The p-value provides a quantitative 

measure of the likelihood of observing the data under the null hypothesis.  

Interpreting the p-value is based on a chosen level of significance (α) that represents 

the threshold for rejecting the null hypothesis. If the p-value is smaller than the 

chosen level of significance, typically 0.05 (or 5%), it is considered statistically 

significant, and the null hypothesis is rejected. This indicates that the observed data is 

unlikely to occur by random chance alone and provides evidence in favour of the 

alternative hypothesis (H1).On the other hand, if the p-value is larger than the chosen 

level of significance, the null hypothesis is not rejected. This suggests that the 

observed data is reasonably likely to occur by random chance, and there is insufficient 

evidence to support the alternative hypothesis. It's important to note that failing to 

reject the null hypothesis does not prove its truthfulness; it simply suggests that there 

is not enough evidence to support the alternative hypothesis. 

(5) Critical Region 

The critical region, also known as the rejection region, is a defined range of values or 

outcomes of a test statistic that leads to the rejection of the null hypothesis (H0). The 

critical region is determined based on the chosen level of significance (α) and the 

distribution of the test statistic under the assumption that the null hypothesis is true. 

The critical region represents the extreme or unlikely values of the test statistic that 

would cast doubt on the validity of the null hypothesis. If the observed test statistic 
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falls within the critical region, it provides evidence against the null hypothesis and 

leads to its rejection in favour of the alternative hypothesis (H1). 

To determine the critical region, researchers specify the desired level of significance 

(α) before conducting the hypothesis test. The level of significance represents the 

maximum allowable probability of making a Type I error (rejecting the null 

hypothesis when it is actually true). The critical region is then defined such that the 

probability of observing a test statistic within that region, assuming the null 

hypothesis is true, is equal to or less than the chosen level of significance (α).The 

critical region is determined based on the specific distribution associated with the test 

statistic being used and the nature of the research question. For example, in a t-test, 

the critical region is defined by critical values obtained from the t-distribution, while 

in a z-test, it is determined by the critical values of the standard normal distribution. 

The critical region is often represented graphically on a probability distribution, 

showing the area in the tail(s) of the distribution associated with rejection of the null 

hypothesis. The critical values divide the distribution into the critical region (rejection 

region) and the non-critical region (non-rejection region). 

When the calculated test statistic falls within the critical region, the null hypothesis is 

rejected, indicating that the observed data is unlikely to occur by random chance 

alone and supports the alternative hypothesis. Conversely, if the test statistic falls 

within the non-critical region, the null hypothesis is not rejected, suggesting that the 

observed data is reasonably likely to occur by random chance, and there is insufficient 

evidence to support the alternative hypothesis.It's important to note that the size and 

location of the critical region are influenced by the chosen level of significance. A 

smaller level of significance (e.g., α = 0.01) results in a more stringent critical region, 

making it more difficult to reject the null hypothesis. On the other hand, a larger level 

of significance (e.g., α = 0.10) widens the critical region, making it easier to reject the 

null hypothesis. 

(6)One-Tailed and Two-Tailed Tests in Statistics: 

In statistical hypothesis testing, researchers can choose between one-tailed and two-

tailed tests based on the specific research question and the directionality of the effect 

being investigated. These tests differ in the way they assess the evidence against the 

null hypothesis (H0) and the corresponding critical region. 
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One-Tailed Test 

In a one-tailed (or one-sided) test, the alternative hypothesis (H1) specifies the 

direction of the effect or difference between variables. It predicts that the observed 

data will be either significantly greater or significantly less than what would be 

expected under the null hypothesis. Therefore, the critical region is located entirely in 

one tail of the distribution of the test statistic. 

The one-tailed test is appropriate when there is a clear theoretical or practical basis for 

predicting the direction of the effect. It allows researchers to focus their analysis on 

that specific direction and increases the power to detect the effect in that direction. 

One-tailed tests are often used in situations where previous research or knowledge 

suggests a particular directionality. For example, in a study investigating whether a 

new treatment improves test scores, the one-tailed test would focus on determining if 

the treatment leads to significantly higher test scores, neglecting the possibility of 

significantly lower scores. 

Two-Tailed Test 

In a two-tailed (or two-sided) test, the alternative hypothesis does not specify a 

particular direction of the effect. It predicts that the observed data will be significantly 

different from what would be expected under the null hypothesis, without specifying 

whether it will be greater or smaller. Therefore, the critical region is divided into two 

equal tails, one in each direction of the distribution of the test statistic. 

The two-tailed test is appropriate when there is no prior expectation or theoretical 

basis to predict the direction of the effect. It provides a more conservative approach to 

hypothesis testing, as it requires stronger evidence to reject the null hypothesis 

compared to a one-tailed test. For example, in a study investigating whether a new 

teaching method affects test scores, the two-tailed test would examine if the teaching 

method leads to significantly different test scores, without specifying whether the 

scores will be higher or lower. The choice between one-tailed and two-tailed tests 

should be based on careful consideration of the research question, previous 

knowledge, and theoretical expectations. While a one-tailed test increases the power 

to detect an effect in a specific direction, it may miss effects in the opposite direction. 

A two-tailed test is more conservative but captures effects in both directions. 
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7. Non-parametric Test 

In statistics, non-parametric tests, also known as distribution-free tests, are statistical 

methods used to make inferences and draw conclusions about populations or samples 

without assuming a specific probability distribution. Unlike parametric tests, which 

rely on assumptions about the underlying data distribution, non-parametric tests make 

fewer assumptions and are more robust to violations of distributional assumptions. 

Non-parametric tests are often used when the data does not meet the assumptions 

required for parametric tests, such as when the data is skewed, have outliers, or when 

the sample size is small. These tests are also useful when dealing with ordinal or 

nominal data, as they do not require interval or ratio level measurements. Some 

common non-parametric tests include: 

1. Mann-Whitney U test: This test is used to compare the medians of two 

independent groups. It is a non-parametric alternative to the independent samples t-

test. 

2. Wilcoxon signed-rank test: This test is used to compare the medians of two 

related or paired samples. It is a non-parametric alternative to the paired samples t-

test. 

3. Kruskal-Wallis test: This test is used to compare the medians of three or more 

independent groups. It is a non-parametric alternative to the one-way analysis of 

variance (ANOVA). 

4. Friedman test: This test is used to compare the medians of three or more related 

groups. It is a non-parametric alternative to the repeated measures ANOVA. 

5. Spearman's rank correlation coefficient: This test is used to assess the strength 

and direction of the monotonic relationship between two variables. It is a non-

parametric alternative to Pearson's correlation coefficient. 

Non-parametric tests rely on ranks or other orderings of the data rather than the actual 

numerical values. They use statistical techniques that compare the distributions of the 

data or evaluate the degree of association between variables without assuming a 

specific probability distribution. Advantages of non-parametric tests include their 

robustness to outliers and their ability to handle data that does not meet the 

assumptions of parametric tests. However, they generally have less statistical power 

than parametric tests when the data does conform to the assumptions of the parametric 

tests. Non-parametric tests are widely used in various fields, including psychology, 

sociology, biology, medicine, and environmental science, where the assumptions of 

parametric tests may not be met or when dealing with categorical or ranked data. 
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Multivariate data consist of observations on several different variables for a number 

of individuals or subjects. Data of this type arise in all the branches of science, 

ranging from psychology to biology, and methods of analyzing multivariate data 

constitute an increasingly important area of statistics.  Indeed, the vast majority of 

data in forestry is multivariate and proper handling of such data is highly essential. 

Principal components analysis (PCA) and Factor analysis (FA) are multivariate 

techniques applied to a single set of variables to discover which sets of variables in 

the set form coherent subsets that are relatively independent of one another.  The 

details of PCA and FA are discussed as below. 

Principal Components Analysis 

Most of the times the variables under study are highly correlated and as such they are 

effectively “saying the same thing”.  To examine the relationships among a set of p 

correlated variables, it may be useful to transform the original set of variables to a 

new set of uncorrelated variables called principal components.  These new variables 

are linear combinations of original variables and are derived in decreasing order of 

importance so that, for example, the first principal component accounts for as much as 

possible of the variation in the original data.   

Let x1, x2, x3, . . . , xp are variables under study, then first principal component may be 

defined as  

 z1 = a11 x1 + a12 x2 + ...... + a1p xp 

such that  variance of z1 is as large as possible subject to the condition that  

 a11
2 + a12

2 + ..... + a1p
2  =   1 

This constraint is introduced because if this is not done, then Var(z1) can be increased 

simply by multiplying any a1js by a constant factor 

The second principal component is defined as  

  z2  = a21 x1 + a22 x2 + ....... + a2p xp  

 

Such that Var(z2) is as large as possible next to Var( z1 )subject to the constraint that  

mailto:Prabina.Meher@icar.gov.in
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 a21
2 + a22

2 + ....... + a2p
2   =   1   and   cov(z1, z2) = 0 and so on. 

It is quite likely that first few principal components account for most of the variability 

in the original data.  If so, these few principal components can then replace the initial 

p variables in subsequent analysis, thus, reducing the effective dimensionality of the 

problem.  An analysis of principal components often reveals relationships that were 

not previously suspected and thereby allows interpretation that would not ordinarily 

result.  However, Principal Component Analysis is more of a means to an end rather 

than an end in itself because this frequently serves as intermediate steps in much 

larger investigations by reducing the dimensionality of the problem and providing 

easier interpretation. It is a mathematical technique which does not require user to 

specify the statistical model or assumption about distribution of original varieties.  It 

may also be mentioned that principal components are artificial variables and often it is 

not possible to assign physical meaning to them. Further, since Principal Component 

Analysis transforms original set of variables to new set of uncorrelated variables, it is 

worth stressing that if original variables are uncorrelated, then there is no point in 

carrying out principal component analysis. 

Computation of principal component 

Let us consider the following data on average minimum temperature (x1), 

average relative humidity at 8 hrs. (x2), average relative humidity at 14 hrs. (x3) and 

total rainfall in cm. (x4) pertaining to Raipur district from 1970 to 1986 for kharif 

season from 21st May to 7th Oct. 

X1 x2 x3 x4 

 
25.0 

 
86 

 
66 

 
186.49 

24.9 84 66 124.34 
25.4 77 55  98.79 
24.4 82 62 118.88 
22.9 79 53  71.88 

7.7 86 60 111.96 
25.1 82 58  99.74 
24.9 83 63 115.20 
24.9 82 63 100.16 
24.9 78 56   62.38 
24.3 85 67 154.40 
24.6 79 61 112.71 
24.3 81 58  79.63 
24.6 81 61 125.59 
24.1 85 64   99.87 
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24.5 84 63 143.56 
24.0 81 61 114.97 

 
Mean     23.56 

 
82.06 

 
61.00 

 
112.97 

S.D.      4.13     2.75   3.97   30.06 
with the variance co-variance matrix. 

       =  

17 02 4 12 154 514

7 56 8 50 54 82

15 75 92 95

90387

. . . .

. . .

. .

.



















 

Find the eigen values and eigen vectors of the above matrix.  Arrange the eigen values 

in decreasing order.  Let the eigen values in decreasing order and corresponding eigen 

vectors are  

1  =  916.902     a1  =  (0.006,     0.061,     0.103,     0.993) 

2  =    18.375     a2  =  (0.955,    -0.296,     0.011,     0.012) 

3  =      7.87       a3  =  (0.141,     0.485,     0.855,    -0.119) 

4  =      1.056     a4  =  (0.260,     0.820,    -0.509,     0.001) 

The principal components for this data will be 

 z1  =   0.006  x1 +  0.061 x2  +  0.103 x3 +  0.993 x4 

 z2  =   0.955 x1  -   0.296 x2 +  0.011 x3 +  0.012 x4 

 z3  =   0.141 x1 +   0.485 x2 +  0.855 x3  -  0.119 x4 

 z4  =   0.26   x1 +   0.82   x2  -  0.509 x3 +  0.001 x4 

The variance of principal components will be eigen values i.e.  

Var( z1 ) =   916.902,  Var( z2 )  =  18.375,  Var (z3 )  = 7.87, Var(z4 )  = 1.056 

The total variation explained by original variables is  

   = Var(x1) + Var(x2) + Var(x3) + Var(x4) 

   = 17.02 + 7.56 + 15.75 + 903.87  =  944.20 

The total variation explained by principal components is 

 1 + 2 + 3 + 4 = 916.902 + 18.375 + 7.87 + 1.056 = 944.20 
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As such, it can be seen that the total variation explained by principal components is 

same as that explained by original variables.  It could also be proved mathematically 

as well as empirically that the principal components are uncorrelated. 

The proportion of total variation accounted for by the first principal component is 

   1                            916.902 

 -------------------------    =     ------------   =   .97 

 1  +  2  + 3  +  4              944.203 

Continuing, the first two components account for a proportion  

         1 + 2                      935.277 

 -------------------------    =     ------------   =   .99 

 1  +  2  + 3  +  4              944.203 

of the total variance.    

Hence, in further analysis, the first or first two principal components z1 and z2 could 

replace four variables by sacrificing negligible information about the total variation in 

the system.  The scores of principal components can be obtained by substituting the 

values of xi s in equations of zi s.  For above data, the first two principal components 

for first observation i.e. for year 1970 can be worked out as  

 z1 = 0.006 x 25.0 + 0.061 x 86 + 0.103 x 66 + 0.993 x 186.49 = 197.380 

 z2 = 0.955 x 25.0  - 0.296 x 86 + 0.011 x 66 + 0.012 x 186.49 = 1.383 

Similarly for the year 1971 

 z1  = 0.006 x 24.9 + 0.061 x 84 + 0.103 x 66 + 0.993 x 124.34 = 135.54 

 z2  = 0.955 x 24.9 - 0.296 x 84 + 0.011 x 66 + 0.012 x 124.34 =     1.134 

Thus the whole data with four variables can be converted to a new data set with two 

principal components. 

Note: The principal components depend on the scale of measurement, for example, if 

in the above example X1 is measured in 0F instead of  0C and X4 in mm in place of 

cm, the data gives different principal components when transformed to original x’s.  

In very specific situations results are same.  The conventional way of getting around 

this problem is to use standardized variables with unit variances, i.e., correlation 

matrix in place of dispersion matrix. But the principal components obtained from 

original variables as such and from correlation matrix will not be same and they may 

not explain the same proportion of variance in the system.  Further more, one set of 

principal components is not simple function of the other. When the variables are 
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standardized, the resulting variables contribute almost equally to the principal 

components determined from correlation matrix. Variables should probably be 

standardized if they are measured on scales with widely differing ranges or if 

measured units are not commensurate.  Often population dispersion matrix or 

correlation matrix are not available.  In such situations sample dispersion matrix or 

correlation matrix can be used. 

Applications of principal components: 

 The most important use of principal component analysis is reduction of data.  It 

provides the effective dimensionality of the data.  If first few components account 

for most of the variation in the original data, then first few components’ scores 

can be utilized in subsequent analysis in place of original variables. 

 Plotting of data becomes difficult with more than three variables.  Through 

principal component analysis, it is often possible to account for most of the 

variability in the data by first two components, and it is possible to plot the values 

of first two components scores for each individual.  Thus, principal component 

analysis enables us to plot the data in two dimensions. Particularly detection of 

outliers or clustering of individuals will be easier through this technique.  Often, 

use of principal component analysis reveals grouping of variables which would 

not be found by other means. 

 Reduction in dimensionality can also help in analysis where no. of variables is 

more than the number of observations, for example, in discriminant analysis and 

regression analysis.  In such cases, principal component analysis is helpful by 

reducing the dimensionality of data. 

 Multiple regression can be dangerous if independent variables are highly 

correlated.  Principal component analysis is the most practical technique to solve 

the problem.  Regression analysis can be carried out using principal components 

as regressors in place of original variables.  This is known as principal component 

regression.  

Discriminant Analysis 

Discriminant analysis and classification are multivariate techniques concerned with 

separating distinct sets of objects (or observations) and with allocating new objects 

(observations) to previously defined groups. Discriminant analysis is rather 

exploratory in nature.  As a separatory procedure, it is often employed on a one - time 
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basis in order to investigate observed differences when causal relationships are not 

well understood.  Classification procedures are less explanatory in the sense that they 

lead to well- defined rules, which can be used for assigning new objects.  

Classification ordinarily requires more problem structure than discrimination. 

Thus, the immediate goals of discrimination and classification, respectively, are as 

follows. 

Goal 1. To describe either graphically (in three or lower dimensions) or algebraically, 

the differential features of objects (observations) from several known collections 

(populations).  We try to find “discriminants” whose numerical values are such that 

the collections are separated as much as possible. 

Goal 2.  To sort objects (observations) into two or more labeled classes.  The 

emphasis is on deriving a rule that can be used to optimally assign a new object to the 

labeled classes. 

We shall follow convention and use the term discrimination to refer to Goal 1.  This 

terminology was introduced by R.A. Fisher in the first modern treatment of separatory 

problems.  A more descriptive term for this goal, however, is separation; we shall 

refer to the second goal as classification, or allocation. 

A function that separates may sometimes serve as an allocation, and conversely, an 

allocatory rule may suggest a discriminatory procedure.  In practice, Goals 1 and 2 

frequently overlap and the distinction between separation and allocation becomes 

blurred.   

Here we discuss Fisher’s linear discriminant function for two multivariate populations 

having same dispersion matrix.  For more general cases readers are requested to go 

through the references cited at the end. 

Fisher’s Discriminant Function 

Here Fisher’s idea was to transform the multivariate observations x to univariate 

observations y such that the y’s derived from populations 1 and 2 were separated as 

much as possible.  Fisher’s approach assumes that the populations are normal and also 

assumes the population covariances matrices are equal because a pooled estimate of 

common covariance matrix is used. 

A fixed linear combination of the x’s takes the values y11, y12, ..., y1n1, for the 

observations from the first population and the values y21, y22, ..., y2n2, for the 

observations from the second population.  The separation of these two sets of 
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univariate y’s is assessed in terms of the differences between y1 and y2  expressed in 

standard deviation units.  That is, 

separation = 
y y

sy

1 2
, where s

y y y y
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is the pooled estimate of the variance.  The objective is to select the linear 

combination of the x to achieve maximum separation of the sample means y1 and 

y2 . 
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overall possible coefficient vectors l  where d x x1 2 ( ) .  The maximum of the 

above ratio is D s2    ( ) ( )x x x x1 2 pooled
1

1 2 , the Mahalanobis distance. 

Fisher’s solution to the separation problem can also be used to classify new 

observations.  An allocation rule is as follows. 

Allocate x0 to 1 if 

 y0 =  ( )x x x1 2 pooled
1

0 
s   ( ) ( )m s   1

2
x x x x1 2 pooled

1
1 2  

and to 2 if  

 y0  m  

If we assume the populations 1  and 2 are multivariate normal with a common 

covariance matrix, then a test of H0: 1 = 2 versus H1: 1  2 are accomplished by 

referring  

 
( )

( )

n n p

n n p

n n

n n

1 2

1 2

1 2

1 2

1

2

  

  









D2   

to an F-distribution with 1 = p and 2 = n n p1 2 1    d.f.   If H0 is rejected, we can 

conclude the separation between the two populations is significant. 
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Example: 

To construct a procedure for detecting potential hemophilia ‘A’ carriers, blood 

samples were analyzed for two groups of women and measurements on the two 

variables, x1 = log10(AHF activity) and x2 = loh10(AHF-like antigens) recorded.  The 

first group of n1 = 30 women were selected from a population who do not carry 

hemophilia gene (normal group).  The second group of n2 = 22 women were selected 

from known hemophilia ‘A’ carriers (obligatory group).  The mean vectors and 

sample covariance matrix are given as  

 x x S1 2 pooled
1













 









 















0 0065

0 0390

0 2483

0 0262

131158 90 423

90 423 108147

.

.
,

.

.

. .

. .
    and  

Now the linear discriminant function is 

 y0 = l x0 = ( )x x S x1 2 pooled
1

0 
  

     =  . .2418 0 0652
131158 90 423

90 423 108147

. .

. .















x

x

1

2









  

     = 37.61x1 - 28.92 x2 

Moreover  

 y1 = l x1=  37 61 28 92
0 0065

0 0390
. .

.

.














  = 0.88 

 y2 = l x2 =  37 61 28 92
0 2483

0 0262
. .

.

.














  = -10.10 

and the mid-point between these means is  

  ( ) ( )m s   1

2
x x x x1 2 pooled

1
1 2 = 

1

2
( y1 + y2 ) = -4.61 

Now to classify a women who may be a hemophilia ‘A’ carrier with x1 = -.210 and x2 = 

-0.044, we calculate 

y0 = l x0 = 37.61x1 - 28.92 x2 = -6.62 

Since y0  m  we classify the women in 2 population, i.e., to obligatory carrier 

group. 
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Factor Analysis 

Some Basics 

Factor analysis is a data reduction technique, which often requires large sample size 

to have a valid interpretation. The basic idea in factor analysis is that a large number 

of explanatory variables having similar type of responses can be captured with a 

single latent variable that cannot be measured directly. For example, the latent 

variable (or factor) socioeconomic status is associated with the observed variables 

income, education, health status, occupation, on which the peoples’ responses are of 

similar type.  

In factor analysis, the number of factors is same as the number of variables, where 

each factor captures a certain amount of variation of all the variations present in the 

observed variables. The factors are always arranged in the decreasing order of their 

variances. In factor analysis, one expects three outputs viz., common factor variances, 

factor loadings and factor scores. The common factor variance is the measure of the 

amount variation explained by a factor present in the observed variables. Factor 

loading measures the underlying relationship that an observed variable have with a 

factor. The factor scores are the transformed data, commonly the weighted sum/mean 

of the observed variables (or manifest variables). 

The factor scores are not the penultimate output rather than act as an intermediate step 

(dimensionality reduction) for carrying out further statistical analysis, a much 

important one.  In other words, factor scores enable user to use a single variable, 

instead of set of variables, as a measure of the factor in the other statistical 

investigation. For example, in case of linear model or mixed model, the factor scores 

can be used as variable (fixed factors or random factors), but here it refers to the 

categorical independent variable. Further, technically the factor scores are continuous 

and hence can be used as covariates in the model rather than as factors.  

Type of Factor Analysis 

There are two types of factor analysis, one is Exploratory Factor Analysis (EFA) and 

other is Confirmatory Factor Analysis (CFA). In CFA, one assumption is that there 

should be prior information about the number of factors likely to be encountered as 

well as which variables will be loaded onto which factors. On the other hand, CFA 

allows the researchers to test the hypothesis that whether the relationship between a 

variable and the underlying factor exits or not. Initially, the researcher postulates a 

certain a priori relationship pattern based on existing knowledge i.e., published 
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research (empirical and/or theoretical) and then test the hypothesis statistically. In 

EFA, the researcher tries to find out the number of underlying constructs (factors) 

without having any a priori information about the number of factors. In other words, 

in EFA, the number of factors is determined on the basis of the dataset supplied by the 

user, and also depends upon user interpretation. Linking these two approaches, one 

can use EFA first to explore the underlying factors and then perform CFA to validate 

the structure of factors in a new dataset that has not been used for performing EFA. 

For example, a factor “depression” can be obtained with underlying variables 

depressed mood, fatigue, exhaustion and social dysfunction through EFA for a sample 

of rural women, and then the CFA can be used to validate this factor using a sample 

of urban women. In EFA, the cut-off of loading are much relaxed than that of CFA. In 

other words, a variable having loading value <|0.7| is disqualified from its loading 

onto a certain factor (Thumb rule). Generally, the EFA is most commonly used in 

day-to-day life than that of CFA. So, in this study material we only focused on EFA. 

Exploratory Factor Analysis (EFA) 

Before carrying out factor analysis, some important points need to be considered. At 

first, the reliability of the dataset should be checked for factor analysis. In other 

words, for factor analysis, the values of the variables should be in interval scale, each 

variable should be normally distributed, pairs of variables should follow bi-variate 

normal distribution and the dataset as a whole should follow multivariate normal 

distribution. Further, the sample size should be large. Field (2000) suggested 10-15 

observations per variable. Habing (2003) state that there should be at least 50 

observations and the number of observations should be at least 5 times as many 

variables. Comrey (1973) categorized the sample size for its suitability to factor 

analysis i.e., 100 as poor, 200 as fair, 300 as good, 500 as very good, and 1000 or 

more as excellent. Also, one can conduct Kaiser-Meyer-Olkin (KMO) test to check 

the sample adequacy. The sample is said to be adequate if KMO value is more than 

0.5.  

As far as correlation matrix is concerned, the observed variables should be linearly 

related but not highly correlated that may lead to the matrix as singular and create 

difficulty in determining the unique contribution of the variables to the factors. To 

check the correlation among variables, one can use Bartlett’s test of spherity to test 

the null hypothesis that the correlation matrix is a identity matrix and the result should 

come out as significant. After rejecting the null hypothesis, one can validate the 
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presence of multi-collinearity via the determinant of the correlation matrix ie., if the 

determinant is greater than 0.00001, then there is no multi-collinearity (Field, 2000).  

After getting correlation matrix, it is essential to determine whether factor analysis 

(FA) or principal component analysis (PCA) is to be performed. The main difference 

between these two lies on the way the eigen values are used. In PCA, all the diagonal 

elements of the correlation matrix are 1 and all the variance present in the dataset are 

accounted by the components. However, in FA, the diagonal of the correlation matrix 

are squared multiple correlation coefficient, which is further used to get the eigen 

values and thereby the factor scores. Also, all the variances are not accounted by the 

factors as there is also an error variance. Further, in PCA the sum of square of the 

factor loadings of a variable provided the variance accounted for by that variable, 

which is not same in FA as it is assumed that the variables do not account for 100% of 

the variance. Theoretically, FA is more correct than PCA (Field, 2000) but practically 

there is little difference and is further decreased with decrease in the number of 

variables and increase in the value of factor loadings (Rietveld and Van Hout, 1993). 

In conducting FA, one of the most important questions is the number of factors to be 

retained in the model. In PCA, the number of components is same as the number of 

positive eigen value. However eigen values are sometime positive and close to zero, 

and in that situation deciding the number of factor is difficult. In literature certain 

thumb rules are there to take decision about the number of factors. Guttman-Kaiser 

rule state that the factor with eigen value >1 should be retained in the model. Hair et 

al, (1995) stated that in the natural sciences the number factors retained in the model 

should explain at least 95% of the total variance present in the observed variables. In 

humanities, the number factors that can explain up to 60-70% variation may be 

retained in the model (Hair et al, 1995; Pett et al, 2003). Besides, another option is 

that first draw a scree plot (Cattell, 1966) and retained all those factors appeared 

before reaching the point of inflection.   

After extracting the factors, the next task is to name the factors and interpret them. 

Since, most variable have higher value of loading on the most important factors and 

less amount of loadings on the remaining factors, it is always a difficult task to 

interpret about the factors. However, the factor rotation can help in this respect to a 

large extent. Factor rotation transforms the original loadings and thereby the 

interpretation becomes easier. Rotation maximizes the high loading items and 

minimizes the less loading items. There are two rotation techniques viz., orthogonal/ 
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varimax and oblique/promax that are commonly used in factor analysis. Varimax 

rotation (Thomson, 2004) is the most common rotational technique used in factor 

analysis that produces uncorrelated factors. On the other hand, in oblique rotation, the 

factors are correlated. Often, the oblique rotation provides more accurate results when 

the data does not meet the prior assumptions. Further, to decide the type of rotation 

technique is almost difficult and therefore first carryout the analysis with oblique 

rotaions, and if the oblique rotation demonstrates a negligible correlation between the 

extracted factors then it is reasonable to use orthogonally rotated factors (Field, 2000). 

Regardless of the rotation techniques uses, the objective is to provide easier 

interpretation of the results. 

Interpretation of EFA is nothing but to determine which variables are attributed to a 

factor and labeling of that factor. However, the labeling of a factor is a subjective 

process (Henson and Roberts, 2006), where the meaningful of the factor is dependent 

on the researchers definition. Moreover, through and systematic factor analysis is 

nothing but to find those factors that together explain the majority of the responses. 

Mathematical aspects of EFA 

Consider a dataset with n observations and p standardized variables 1 2, ,..., px x x . Then, 

in EFA the observed variables are expressed as the linear combination of the common 

factors and unique factor i.e., 1 1 2 2 3 3 ...i i i i ik k ix a F a F a F a F e      , where i=1,2,…, p, 

k<p and aik is the factor loading of ith variable on kth factor which is not same as that 

of eigen vector. The assumptions of this model are ( ) 0iE e  , ( )i iV e  , ( ) 0i jE e e  , 

( ) 0i jE e F   and ( ) 0i jE F F  . In matrix notation we can write p n p k k n p n    X L F E , 

where 
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E . 

Also, it is assumed that ( ) 0E E , ( ) 0E F , cov( , ) 0F E , 

1 2( ) ( , ,..., ) ( )pV Diag say   E ψ and var( ) F I . The correlation matrix is generally 
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used for performing the factor analysis. Here the diagonal elements are 1 (often 

described as the variance of the observed variable). In PCA, this matrix is used as 

such but factor analysis involves the replacing of diagonal element with communality 

estimate. The communality estimate is the estimated proportion of variance of the 

variable that is free of error variance and is shared with other variables in the matrix. 

These estimates reflect the variance of a variable in common with all others 

together. The initial estimate of the communality is taken as the squared multiple 

correlation coefficients and then the communalities of the variables are estimated as 

the sum of the square of the loadings onto different factors. Once the correlation 

matrix of the observed variables are obtained, the factor analysis can be written as

 Σ LL ψ , which nothing but var( ) var( )p n p k k n p n    X L F E . So, for the ith variable, 

one can write 2 2 2

1 21 ( ... )i i ip ia a a       or 21 i ih    or Total variance=Variance 

explained by the common factors + Error variance. Here 2

ih is the communality and 1-

2

ih is the variance accounted for by the ith unique factor. In this model, there is a 

need to estimate the common factor loadings (L) as well as the factor scores (F). For 

estimating L, there are two methods available one is Principal Axis Factor (PAF) 

method and other is Maximum Likelihood (ML) method. PAF makes no assumption 

about the error and minimizes the sum of squares of the residual matrix i.e., 

2 21
( ) ( )

2
ij ij

i j

tr S s       , where ijs and ij are the observed correlation matrix 

and implied correlation matrix, respectively (Jöreskog, 2007). The maximum 

likelihood (ML) estimation is derived from the theory of normal distribution. The ML 

value is obtained by minimizing 1ln ln [ ]S tr S p     , which similar to minimizing 

the discrepancy function 
2

2 2

( )ij ij

i j i j

s 

 

 
 
  

  (MacCallum et al, 2007). 

For estimation of factor scores, generally three types of methods are used viz., 

ordinary least squares, weighted least squares and regression method. Let xi be the 

ith observation vector and fi is the corresponding vector of factor scores, then we can 

write i i i x Lf e , where i=1,2,.., n, and the estimates of factor scores for this model 

by different methods are provided as follows: 



  

 
 

82 

(I) Ordinary Least Square 

The estimate of if can be obtained by minimizing the error sum of squares 

i.e., 2 2

1 1 2 2

1 1

( ... ) ( ) ( )
p p

ij ij i i ik i i i i

j j

e x a f a f a f
 

         x Lf x Lf . This is like 

a least squares regression, except in this case we already have estimates of 

the parameters (the factor loadings). In matrix notations, it can be written 

as 1ˆ ( )i i

 f L L L x . Using the principal component method with the 

unrotated factor loadings, the results can be obtained as 

1

1

2

2

1 ˆ
ˆ

1 ˆ
ˆ ˆ

...

1 ˆ
ˆ

i

i

i

k i

k







 
 
 
 
 
 
 
 
 
 
 
 

ζ x

ζ x
f

ζ x

, 

where 1ζ̂ , 2ζ̂ ,…, ˆ
kζ are the eigen vectors and 1̂ , 2̂ ,…, ˆ

k are the estimate 

of eigen values. 

(II) Weighted Least Squares 

In this method, larger weights are given to the variables having low 

specific variances. Variables with low specific variances are those for 

which the model fits the data best. In other words, the variable with the 

low specific variance provides more information regarding the true values 

for the specific factors. For the above considered model, we wish to 

minimize 

2 2

1 1 2 2 1

1 1

( ... )
( ) ( )

p p
ij ij i i ik

i i i i

j jj j

e x a f a f a f

 



 

   
     x Lf ψ x Lf , that 

resulted in the estimate as 1 1 1ˆ ( )i i

   f Lψ L Lψ x . Both OLS and WLS 

methods are used for estimating the factor scores, while PAF method is 

used to estimate the factor loadings. 

(III) Regression method 

This method is used when maximum likelihood is used for estimating the 

factor loadings. Now, for standardized variables the joint distribution of ix
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and if can be writes as
0

~ ,
0

i

i

N
      

      
      

x LL ψ L

f L I
. Then, we can 

calculate the conditional expectation of the factor score if given the 

observed data ix as 1( ) ( )i i iE   f x L LL ψ x , which is nothing but the 

estimate of if . 

Step by step procedure for performing exploratory factor analysis using R 

Step 1: Set the working directory. Let my directory is “meher” present in “D” drive. 

Then, set the directory as 

setwd(“C:/Documents and Settings/Prabin/Desktop/meher”) 

Step 2: Read the data from the specified directory. Let my data file is fact.txt present 

in the directory. Then data file can be imported to R as 

x <- read.table (file= “fact.txt”)  

Step 3: Check the normality assumption of each variable using Shapiro-Wilk’s test. 

shapiro.test (x[,i])      # This is for ith variable. If P-value is >level of 

significance, the variable is normally distributed. 

Step 4: Check the adequacy of the each variable and sample as a whole for factor 

analysis using KSA and KMO and test. The desired value of KMO is > 0.5.  

Variables with MSA being below 0.5 indicate that item does not belong to a 

group and may be removed from the factor analysis. 

kmo <- function(x) 

{ 

x <- subset(x, complete.cases(x)) # Omit missing values 

r <- cor(x)                                                 # Correlation matrix 

r2 <- r^2                          # Squared correlation coefficients 

i <- solve(r)                      # Inverse matrix of correlation matrix 

d <- diag(i)                       # Diagonal elements of inverse matrix 

p2 <- (-i/sqrt(outer(d, d)))^2     # Squared partial correlation 

coefficients 

diag(r2) <- diag(p2) <- 0          # Delete diagonal elements 

KMO <- sum(r2)/(sum(r2)+sum(p2)) 

MSA <- colSums(r2)/(colSums(r2)+colSums(p2)) 

return(list(KMO=KMO, MSA=MSA)) 

} 

kmo (x) 
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Step 5: Check that the correlation matrix is not an identity matrix using Bartlett’s 

sphericity test. The test should come out significant. 

bst <- function(x) 

{ 

method <- "Bartlett's test of sphericity" 

data.name <- deparse(substitute(x)) 

x <- subset(x, complete.cases(x)) # Omit missing values 

n <- nrow(x) 

p <- ncol(x) 

chisq <- (1-n+(2*p+5)/6)*log(det(cor(x))) 

df <- p*(p-1)/2 

p.value <- pchisq(chisq, df, lower.tail=FALSE) 

names(chisq) <- "X-squared" 

names(df) <- "df" 

return(structure(list(statistic=chisq, parameter=df, 

p.value=p.value, 

method=method, data.name=data.name), class="htest")) 

} 

bst (x) 

Step 6: Test that there is no presence of high degree of multicollinearity. The 

determinant of the matrix should come out > 0.0001 to pass the test. 

det(cor(x)) 

Step 7: Carryout factor analysis to extract the factor loadings (by ML estimate 

method), common variances and specific variances. 

factanal (x=swiss, factors=2, rotation= “varimax or 

promax”) 

or 

factanal (~., factors=2, data=swiss, rotation= “varimax 

or promax”) 

# In the result one cannot see the complete factor loadings but it is possible with the 

following commands. 

factanal (~., factors=2, rotation= “varimax or 

promax”)$loadings[,i] # for complete ith factor loading. 

 Step 8: Estimate the factor scores either by Bartlett’s WLS method or Johnson’s 

regression method. 

factanal (~., factors=2, rotation= “varimax or promax”, 

scores=”Bartlett or regression”)$scores 
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Step 9: The factor loadings, common variances, specific variances can also be 
computed by supplying the covariance matrix and number of observations. 
However, the scores can only be obtained when full data set is available. 

factanal (factors=2, covmat=cor(swiss),rotation= “varimax 

or promax”, n.obs=47) 

Step 10: Interpretation of the result and conclusion 
_____________________________________________________________________
________ 
Note: One can use the “psych” package of R-software for KMO test and Barlett’s test 
of sphericity using single line code as provided below.  
KMO(r) # r is the correlation matrix. This will provide the values of both KMO and 
KSA 
cortest.bartlett(r, n) # r is the correlation matrix and n is the number of 
observation in the dataset. 
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1. Introduction 

Correlation is a powerful statistical concept that enables us to explore the 

relationships between variables and uncover hidden patterns in complex data. By 

measuring the extent to which two variables move together, correlation helps us gain 

insights into the interconnectedness of phenomena. In statistical modelling, regression 

analysis is a set of statistical processes for estimating the relationships between a 

dependent variable (often called the ‘outcome variable’) and one or more independent 

variables (often called ‘predictors’, ‘covariates’, or ‘features’). Regression analysis is 

primarily used for two distinct purposes. First, it is widely used for prediction and 

forecasting, which overlaps with the field of machine learning. Second, it is also used 

to infer causal relationships between independent and dependent variables. This 

methodology is widely used in business, social and behavioral sciences, biological 

sciences including agriculture. For example, yield of a crop can be predicted by 

utilizing the relationship between yield and other factors like water temperature, 

rainfall, quantity of fertilizer, quantity of seeds, irrigation level and relative humidity, 

etc. 

A functional relationship between two variables can be expressed by a mathematical 

formula. If 𝑥 denotes the independent variable and 𝑦 the dependent variable, then 𝑦 

can be related 𝑥  through a functional relation of the form 𝑦 =  𝑓(𝑥) . Given a 

particular value of 𝑥 , the function 𝑓  indicates the corresponding value of 𝑦 . In 

regression analysis, the variable 𝑥 is known as input variable, explanatory variable or 

predictor variable. This is an exact mathematical relationship. In statistical relation, 

may not be perfect owing to sampling. The above functional form is made a statistical 

model by adding an error term as 𝑦 = 𝑓(𝑥) + 𝜀, where 𝜀 denotes the error term. 

Depending on the nature of the relationships between 𝑥 and 𝑦, regression approach 

may be classified into two broad categories viz., linear regression models and 

nonlinear regression models. The response variable is generally related to other causal 

variables through some parameters. The models that are linear in these parameters are 

known as linear models; whereas in nonlinear models parameters appear nonlinearly. 
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2. The Concept of Correlation 

2.1 Defining Correlation: Correlation refers to the statistical association between two 

or more variables, indicating the degree to which they tend to change together. It 

measures the direction (positive or negative) and strength (weak or strong) of the 

relationship. 

2.2Significance of Correlation 

Identifying Associations: Correlation helps us identify relationships between 

variables, providing a foundation for further analysis. 

Prediction: Correlated variables can be used to make predictions about one variable 

based on the other(s). 

Variable Selection: Correlation assists in selecting relevant variables for analysis, 

weeding out redundant or irrelevant ones. 

2.3 Measuring Correlation 

2.3.1 Pearson's Correlation Coefficient 

The Pearson correlation coefficient (𝑟) quantifies the linear relationship between 

two continuous variables and can be expressed as: 

𝑟 =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

√∑ (𝑥𝑖−𝑥)
2

∑ (𝑦𝑖−𝑦)
2

                                                                                                        

Where, 𝑟 is the correlation coefficient 

𝑥𝑖 are the values of the 𝑥-variable. 

𝑦𝑖 are the values of the 𝑦-variable. 

𝑥 is the mean of the values of 𝑥-variable. 

𝑦 is the mean of the values of 𝑦-variable. 

Range and Interpretation: 𝑟 ranges from -1 to 1, where -1 denotes a perfect negative 

correlation, 1 signifies a perfect positive correlation, and 0 indicates no linear 

relationship. 

Strength of Correlation: Various criteria, such as effect size or correlation coefficient 

magnitude, determine the strength of the relationship. 

2.3.2 Spearman's Rank Correlation Coefficient 

Spearman's rho (ρ) measures the monotonic relationship (increasing or decreasing) 

between variables, especially when the relationship is not strictly linear and can be 

expressed as: 

𝜌 = 1 −
6 ∑𝑛

𝑖=1 𝑑𝑖
2

𝑛(𝑛2−1)
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where, 𝜌 is the Spearman's Rank Correlation Coefficient. 

𝑑𝑖 is the difference between the two ranks of each observation. 

𝑛 is the number of observations. 

Advantages: It is robust to outliers and can handle ordinal or non-normal data. 

Interpretation: Similar to Pearson's r, ρ ranges from -1 to 1, with the same 

interpretations. 

2.4 Types of Correlation 

2.4.1 Positive Correlation 

Definition: Positive correlation exists when an increase in one variable corresponds 

to an increase in the other, and vice versa. 

Examples: Height and weight, income and education level. 

2.4.2 Negative Correlation 

Definition: Negative correlation occurs when an increase in one variable corresponds 

to a decrease in the other, and vice versa. 

Examples: Temperature and heating costs, exercise duration and body weight. 

2.4.3 Zero Correlation 

Definition: Zero correlation indicates no discernible relationship between variables. 

Examples: Shoe size and IQ, number of siblings and favourite colour. 

2.4.4 Interpreting Correlation 

2.4.4.1 Causation vs. Correlation 

Correlation does not imply causation; a strong relationship between two variables 

does not necessarily mean one variable causes the other. 

Spurious Correlation: Be cautious of coincidental associations without a meaningful 

underlying connection. 

2.4.4.2 Scatterplots 

Visualizing Correlation: Scatter plots are graphical representations that help us assess 

the relationship between variables. 

Patterns: Scatterplots can exhibit various patterns, such as linear, nonlinear, or 

clusters, aiding in understanding the correlation visually. 

2.4.4.3 Applications of Correlation 

Finance and Economics 

Analyzing stock market trends and investment portfolios. 
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Examining relationships between economic indicators, such as GDP and 

unemployment rates. 

Social Sciences 

Investigating relationships between variables like crime rates and income levels. 

Studying the impact of education on health outcomes. 

Medicine and Health 

Exploring the correlation between risk factors and disease prevalence. 

Assessing the effectiveness of treatments or interventions. 

Agriculture 

Crop Yield and Environmental Factors 

Pest and Disease Management 

Crop Nutrient Requirements 

Crop-Livestock Interactions 

Climate Change Impact Assessment 

Water Management 

Market Analysis and Price Forecasting, etc. 

3. Simple Linear Regression (SLR) Model 

Simple linear regression is useful for finding relationship between two continuous 

variables. One is predictor or independent variable and other is response or dependent 

variable. It looks for statistical relationship but not deterministic relationship. 

Relationship between two variables is said to be deterministic if one variable can be 

accurately expressed by the other. For example, using temperature in degree Celsius it 

is possible to accurately predict Fahrenheit. Statistical relationship is not accurate in 

determining relationship between two variables. For example, relationship between 

height and weight. The core idea is to obtain a line that best fits the data. The best fit 

line is the one for which total prediction error (all data points) are as small as possible. 

Error is the distance between the point to the regression line. 

The simple linear regression model is usually written as 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖(3) 

where the 𝜀𝑖’s are normal random variables with mean 0 and variance 𝜎2. The model 

implies (i) The average 𝑦-value at a given 𝑥−value is linearly related to 𝑥. 

(ii) The variation in responses 𝑦 at a given 𝑥 value is constant. 
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(iii) The population of responses 𝑦 at a given 𝑥 is normally distributed. 

(iv) The observed data are a random sample. 

Regression model (3) is said to be simple and linear regression model. It is “simple” 

in the sense that there is only one predictor variable and “linear” in the sense that all 

parameters appeared linearly with the predictor variables. The parameters 𝛽0and 𝛽1 in 

regression model (3) are called regression coefficients, 𝛽1  is the slope of the 

regression line. It indicates the change in the mean of the probability distribution of 𝑦 

per unit increase in 𝑥. The parameter 𝛽0 is the 𝑦 intercept of the regression line. 

3.1 Estimation of Parameters in a Simple Linear Regression Model 

In the above models the variables 𝑦 and 𝑥 are known, these are observed. The only 

unknown quantities are the parameters 𝛽’s. In regression analysis, our main concern 

is how precisely we can estimate these parameters. Once these parameters are 

estimated, our model becomes known and we can use it for further analysis. The 

method of least squares is generally used to estimate these parameters. For each 

observations (𝑥𝑖, 𝑦𝑖 ),  the method of least squares considers the error of each 

observation, i.e, for a simple model 𝜀𝑖 = 𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖. The method of least squares 

requires the sum of the 𝑛 squared errors. This criterion is denoted by 𝑆: 

𝑆 = ∑𝑛
𝑖=1 (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

2                                                                                                        

According to the method of least squares, the estimators of 𝛽0 and 𝛽1 are those values 

of �̂�0  and �̂�1, respectively, that minimize the criterion 𝑆 for the given observations. 

To minimize 𝑆, we differentiate 𝑆 with respect to each parameter and equate to zero. 

We get as many equations as the number of parameters. Solving these equations 

simultaneously, we get the estimates of parameters. For example, for the regression 

model (3) the values of  �̂�0  and �̂�1that minimizes 𝑆 for any particular set of sample 

data are given by the following simultaneous equations: 

∑𝑛
𝑖=1 𝑦𝑖 = 𝑛�̂�0 + �̂�1 ∑𝑛

𝑖=1 𝑥𝑖                                                                                                         

∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 = �̂�0 ∑𝑛

𝑖=1 𝑥𝑖 + �̂�1 ∑𝑛
𝑖=1 𝑥𝑖

2                              (6) 

These two equations are called normal equations and can be solved for �̂�0  and �̂�1 as 

follows 
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�̂�1 =
∑𝑛

𝑖=1 (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

∑𝑛
𝑖=1 (𝑥𝑖−𝑥)

2                               (7) 

�̂�0 =
1

𝑛
(∑𝑛

𝑖=1 𝑦𝑖 − 𝛽1 ∑𝑛
𝑖=1 𝑥𝑖) = 𝑦 − 𝛽1𝑥 (8) 

where,𝑦 and 𝑥 are the means of the 𝑦𝑖 and 𝑥𝑖 observations, respectively. 

3. Multiple Linear Regression Model (MLR) Model 

A regression model that involves more than one regressor variable is called a multiple 

regression model i.e., the multiple linear regression model is used to study the 

relationship between a dependent variable and one or more independent variables. 

The generic form of the linear regression model is 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) + 𝜀 = 𝛽0+𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀                              (9) 

where,𝑦is the dependent or explained variable and 𝑥1, 𝑥2, … , 𝑥𝑝are the independent or 

explanatory variables. The regression model in the equation describes above is linear 

in the sense, it is a linear function of the unknown parameters 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝 . In 

general, any regression model that is linear in the parameters (𝛽 ’s) is a linear 

regression model, regardless of the shape of the surface that it generates. We have 

also assumed that the expected value of the error term 𝜀 is zero. The parameter 𝛽0 is 

the intercept of the regression model. If the range of the data includes 𝑥1 = 𝑥2 = ⋯ =

𝑥𝑝 = 0, then 𝛽0 is the mean of 𝑦 when 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑝 = 0. Otherwise 𝛽0 has no 

physical interpretation. The parameter 𝛽1 indicates the expected change in response 

(𝑦) per unit change in 𝑥1 when 𝑥2, … , 𝑥𝑝 are held constant. Similarly 𝛽2measures the 

expected change in response (𝑦) per unit change in 𝑥2  when 𝑥1, … , 𝑥𝑝  are held 

constant. For this reason the parameters 𝛽𝑖 , ∀ 𝑖 = 1,2, … , 𝑝 are often called as partial 

regression coefficients. 

A. Assumptions of the Multiple Linear Regression Model 

1. Linearity 

The model defined by the following equation 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) + 𝜀 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀 specifies a linear 

relationship between 𝑦 and 𝑥and our primary interest is in estimation and inference 

about the parameter vector 𝛽. For the regression to be linear in the sense described 
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here, it must be of the form in the original variables or after some suitable 

transformation. 

i. Full rank 

There are no exact linear relationships among the variables in the model. 𝑥 is an 𝑛 ×

𝑝 matrix with rank 𝑝. Hence 𝑥 has full column rank; the columns of 𝑥 are linearly 

independent and there are at least 𝑝 observations (𝑛 ≥ 𝑝). 

i. Exogeneity of the independent variables: 

The disturbance is assumed to have conditional expected value zero at every 

observation, which we can write as 𝐸[𝑥] = 0. 

In this equation, the left hand side states, in principle, that the mean of each 𝜀𝑖 

conditioned on all observations 𝑥is zero. This strict exogeneity assumption states, in 

words, that no observations on 𝑥 convey information about the expected value of the 

disturbance. 

i. Homoscedasticity: 

The fourth assumption concerns the variances and covariance of the disturbances: 

𝑉𝑎𝑟(𝑥) = 𝜎2, ∀ 𝑖 = 1, … , 𝑛 

𝐶𝑜𝑣(𝑥) = 0 ∀ 𝑖 ≠ 𝑗                                                               (10) 

Constant variance is labelled homoscedasticity. Consider a model that describes the 

profits of firms in an industry as a function of, say, size. Even accounting for size, 

measured in dollar terms, the profits of large firms will exhibit greater variation than 

those of smaller firms. The homoscedasticity assumption would be inappropriate here. 

Survey data on household expenditure patterns often display marked 

heteroscedasticity, even after accounting for income and household size. The two 

assumptions imply that 

𝐸[𝑥] = [𝜎2 0 ⋯  0 0 𝜎2  ⋯  0 ⋮ ⋮ ⋱ ⋮  0 0 ⋯ 𝜎2 ] = 𝜎2𝐼 (11) 

i. Data generating process for the regressors 

It is common to assume that 𝑥𝑖is nonstochastic, as it would be in an experimental 

situation. Here the analyst chooses the values of the regressors and then observes 𝑦𝑖. 

This process might apply, for example, in an agricultural experiment in which 𝑦𝑖 is 

yield and 𝑥𝑖is fertilizer concentration and water applied. 
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i. Normality 

It is convenient to assume that the disturbances are normally distributed with zero 

mean and constant variance. This is a convenience that we will dispense with after 

some analysis of its implications. The normality assumption is useful for defining the 

computations behind statistical inference about the regression, such as confidence 

intervals and hypothesis tests. For practical purposes, it will be useful then to extend 

those results and in the process develop a more flexible approach that does not rely on 

this specific assumption. 

𝜀|𝑥~𝑁(0, 𝜎2𝐼)(12) 

The validity of these assumptions is needed for the results to be meaningful. If these 

assumptions are violated, the result can be incorrect and may have serious 

consequences. If these departures are small, the final result may not be changed 

significantly. But if the deviations are large, the model obtained may become unstable 

in the sense that a different sample could lead to an entirely different model with 

opposite conclusions. So such underlying assumptions have to be verified before 

attempting to regression modeling. One crucial point to keep in mind is that these 

assumptions are for the population, and we work only with a sample. So the main 

issue is to make a decision about the population on the basis of a sample of data. 

Several diagnostic methods to check the violation of regression assumption are based 

on the study of model residuals and also with the help of various types of graphics. 

4.1Estimation of Parameters in a Multiple Linear Regression (MLR) Model 

The method of least squares can be used to estimate the regression coefficients in Eq. 

(9). Suppose that 𝑛 > 𝑝 observations are available, and let 𝑦𝑖 denote the 𝑖th observed 

response and 𝑥𝑖𝑗 denote 𝑖th observation or level of regressor 𝑥𝑗. The data will appear 

in the following table 1. We also assume that the error term 𝜀  in the model has 

𝐸(𝜀) = 0 and 𝑉𝑎𝑟(𝜀) = 𝜎2, and the errors are uncorrelated. 

Table 1: Data for Multiple Linear Regression 

   Regressors  

Observation, 𝑖 Response, 𝑦 𝑥1 𝑥2 𝑥𝑝 

1 𝑦1 𝑥11 𝑥12 𝑥1𝑝 

2 𝑦2 𝑥21 𝑥22 𝑥2𝑝 
. . . . . 

. . . . . 

. . . . . 

𝑛 𝑦𝑛 𝑥𝑛1 𝑥𝑛2 𝑥𝑛𝑝 
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We may write the sample regression model corresponding to (9) as 

𝑦 = 𝛽0+𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀 

= 𝛽0 + ∑𝑝
𝑗=1 𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖 , ∀ 𝑖 = 1,2, … , 𝑛                                                                                                        

The least - squares function is then used to estimate the model parameters, which are 

obtained by minimizing the error sum of squares with respect to the parameters 

𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝. 

It is more convenient to deal with multiple regression models if they are expressed in 

matrix notation. This allows a very compact display of the model, data, and results. In 

matrix notation, we can express the multiple regression model as 

𝑦 = 𝑋𝛽 + 𝜀(14) 

Where 

𝑦 = [𝑦1 𝑦2 .  . . 𝑦𝑛   ]𝑋 = [1 𝑥11  ⋯ 𝑥1𝑝 1 𝑥21  ⋯ 𝑥2𝑝  ⋮ ⋮ ⋱ ⋮  1 𝑥𝑛1  ⋯ 𝑥𝑛𝑝 ]𝛽

= [𝛽0 𝛽1 .  . . 𝛽𝑝  ]𝜀 = [𝜀1 𝜀2 .  . . 𝜀𝑛  ] 

𝑦is a 𝑛 × 1 vector of responses 

𝑋is a 𝑛 × 𝑝 matrix of the regressor variables 

𝛽is a 𝑛 × 1 vector of unknown constants, and 

𝜀is a 𝑛 × 1 vector of random errors with 𝜀𝑖~𝑁𝐼𝐷(0, 𝜎2) 

We wish to find the vector of least-squares estimators, �̂�that minimizes 

𝑆(𝛽) = ∑𝑛
𝑖=1 𝜀𝑖

2 = 𝜀′𝜀 = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)                                                                           

Note that 𝑆(𝛽) may be expressed as 

𝑆(𝛽) = 𝑦′𝑦 − 𝛽′𝑋′𝑦 − 𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽 

= 𝑦′𝑦 − 2𝛽′𝑋′𝑦 + 𝛽′𝑋′𝑋𝛽(16) 

Since𝛽′𝑋′𝑦is a1 × 1matrix, or a scalar, and its transpose (𝛽′𝑋′𝑦)′ = 𝑦′𝑋𝛽is the same 

scalar. The least square estimators must satisfy 

𝜕𝑆

𝜕𝛽
= −2𝑋′𝑦 + 2𝑋′𝑋�̂� = 0 

Which simplifies  

𝑋′𝑋�̂� = 𝑋′𝑦 (17) 
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To solve the normal equations, multiply both sides of (iv) by the inverse of 𝑋′𝑋. Thus 

the least squares estimator of  

�̂� = (𝑋′𝑋)−1𝑋′𝑦(18) 

So, the vector of fitted values �̂�𝑖 corresponding to the observed value 𝑦𝑖 is 

�̂� = 𝑋�̂� = 𝑋(𝑋′𝑋)−1𝑋′𝑦(19) 

The difference between the observed value 𝑦𝑖 and the corresponding fitted values �̂�𝑖 

is the residual i.e., 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖. The 𝑛residuals may be conveniently written in matrix 

notation as 

𝑒 = 𝑦 − �̂�(20) 

3. Estimation of Error Term Variance (𝜎2) 

The variance 𝜎2 of the error terms 𝜀𝑖  in regression model needs to be estimated to 

know the variability of the probability distribution of 𝑦 . In addition, a variety of 

inferences concerning the regression function and the prediction of 𝑦  require an 

estimate of 𝜎2 . Denote by 𝑆𝑆𝐸 = ∑𝑛
𝑖=1 (𝑦𝑖 − �̂�𝑖)2 = ∑𝑛

𝑖=1 𝑟𝑖
2  , is  the residual 

sum of squares. Then an estimate of 𝜎2  is given by, 

�̂�2 =
𝑆𝑆𝐸

𝑛−𝑝
   (21) 

where 𝑝  is the total number of parameters involved in the model including the 

intercept term, if the model contains it. We also denote this quantity by MSE. 

3. Inferences in Linear Regression Models 

In multiple linear regression model, all variables may not be contributing significantly 

to the model. In other word, each of the parameters may not be significant. Therefore, 

these parameters must be tested whether they are significantly different from zero or 

not. That is, we test the null hypothesis (𝐻0)  against the alternative hypothesis 

(𝐻1)for a parameter 𝛽𝑖 (say) as follows: 

     𝐻0: 𝛽𝑖 = 0                                                                                                                      

𝐻1 : ≠ 0 

when 𝐻0: 𝛽𝑖 = 0is accepted we infer that there is no linear association between 𝑦 and 

𝑥𝑖. For normal error regression model, the condition 𝛽𝑖  implies even more than no 

linear association between 𝑦 and 𝑥𝑖 .  𝛽𝑖 = 0 for the normal error regression model 

implies not only that there is no linear association between 𝑦 and 𝑥𝑖 but also that there 

is no relation of any kind between 𝑦 and 𝑥𝑖, since the probability distribution of 𝑦are 

then identical at all levels of 𝑥𝑖. The test is based on 𝑡 test   
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𝑡 =
𝛽𝑖

𝑠(𝛽𝑖)
                             (23) 

where 𝑠(𝛽𝑖)  is the standard error of 𝛽𝑖and calculated as 𝑠(𝛽𝑖) = √
𝑀𝑆𝐸

∑𝑛
𝑖=1 (𝑥𝑖−𝑥)

2 

The decision rule with this test statistic when controlling level of significance at 𝛼  is  

 if |𝑡| ≤ 𝑡 (1 −
𝛼

2
; 𝑛 − 𝑝)   conclude 𝐻0,  

 if |𝑡| > 𝑡 (1 −
𝛼

2
; 𝑛 − 𝑝)  conclude 𝐻1. 

Similarly testing for other parameters can be carried out. 

3. Measures of Fitting (𝑅2) 

The overall fitting of a regression line can be judged by the 𝐹-statistic by carrying out 

an analysis of variance. If the 𝐹-statistic is significant, we say that our model is fitted 

well. However, there are times when the degree of linear association is of interest. A 

frequently used statistic is 𝑅2. We describe this descriptive measure to describe the 

degree of linear association between 𝑦 and 𝑥.  

Denote by 𝑇𝑆𝑆 = ∑𝑛
𝑖 (𝑦𝑖 − 𝑦)

2

, total sum of squares which measures the variation 

in the observation 𝑦𝑖 , or the uncertainty in predicting 𝑦 , when no account of the 

predictor variable 𝑥 is taken. Thus 𝑇𝑆𝑆 is a measure of uncertainty in predicting 𝑦 

when 𝑥  is not considered. Similarly, 𝑆𝑆𝐸  measures the variation in the 𝑦𝑖 when a 

regression model utilizing the predictor variable 𝑥 is employed. A natural measure of 

the effect of 𝑥 in reducing the variation in 𝑦, i.e., in reducing the uncertaintity in 

predicting 𝑦 , is to express the reduction in variation ( 𝑇𝑆𝑆 − 𝑆𝑆𝐸 = 𝑆𝑆𝑅  as a 

proportion of the total variation and it is denoted by   

  𝑅2 =
𝑆𝑆𝑅

𝑇𝑆𝑆
= 1 −

𝑆𝑆𝐸

𝑇𝑆𝑆
  (24) 

The measure 𝑅2  is called coefficient of determination and 0 ≤ 𝑅2 ≤ 1 . In practice 

𝑅2 is not likely to be 0 or 1 but somewhere between these limits. The closer it is to 1, 

the greater is said to be the degree of linear association between 𝑥 and 𝑦. Remember 

that 𝑅2 statistic should be used only when in the model an intercept term is involved. 

For the model with no intercept, 𝑅2is not a good statistic. In case of “no intercept” 

model, sum of all residuals may not be equal to 0, making 𝑅2 inflated.                                                                                                                                                                                                                                                                                                                                                                                                

3. An Illustration of a MLR model 

Consider the following data: 
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Table 2: 𝑦 as a response variable and 𝑥’s as explanatory variables 

Case 

No. 
𝑥1 𝑥2 𝑥3 𝑦  Case 

No. 
𝑥1 𝑥2 𝑥3 Y 

1 12.98 0.317 9.99 57.70 14 14.23 10.40 1.04 41.89 

2 14.29 2.028 6.77 59.29 15 15.22 1.220 6.14 63.26 

3 15.53 5.305 2.94 56.16 16 15.74 10.61 -1.91 45.79 

4 15.13 4.738 4.20 55.76 17 14.95 4.815 4.11 58.69 

5 15.3 7.038 2.05 51.72 18 14.12 3.153 8.45 50.08 

6 17.14 5.982 -0.0 60.44 19 16.39 9.698 -1.7 48.89 

7 15.46 2.737 4.65 60.71 20 16.45 3.912 2.14 62.21 

8 12.80 10.66 3.04 37.44 21 13.53 7.625 3.85 45.62 

9 17.03 5.132 0.25 60.97 22 14.19 4.474 5.11 53.92 

10 13.17 2.039 8.73 55.27 23 15.83 5.753 2.08 55.79 

11 16.12 2.271 2.10 59.28 24 16.56 8.546 8.97 56.74 

12 14.34 4.077 5.54 54.02 25 13.32 8.589 4.01 43.14 

13 12.92 2.643 9.33 53.19 26 15.94 8.290 -0.2 50.70 

In the present example, we have 3 three predictor variables 𝑥1, 𝑥2 and 𝑥3 and there 

are 26 observations. The response variable denoted by 𝑦 . Applying least square 

method we obtain the parameter estimates as follows:  

Table 3: ANOVA of a MLR model 

Source Degrees of 

freedom 

Sum of 

Square 

Mean 

Square 

 F-value Prob. > F 

Model 3 1062.34  354.11  109.69 <0.0001 

Error 22 71.02  3.22      

Corrected 

Total 

25 1133.37        
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Table 4: Parameter Estimates of a MLR model 

Variable Degrees of 

freedom 

Parameter 

Estimates 

Standard 

Error 

t-value Prob. > |t| 

Intercept 1 8.19  6.29  1.30 0.2060 

𝑥1 1 3.56  0.36  9.86 <.0001 

𝑥2 1 -1.64  0.15  -10.28 <.0001 

𝑥3 1 0.33  0.17  1.88 0.0741 

The value of 𝑅2of this model is 0.93. From Table 3, we see that 𝐹-statistic is highly 

significant, indicating that overall model fitting is good. 𝑅2 is also very high. The 

fitted regression line is   �̂� = 8.19 + 3.56𝑥1 − 1.64𝑥2 + 0.33𝑥3. The corresponding 

standard errors are given in the 4th column of Table 3. However, while testing the 

significance of the parameter estimates, we find that the intercept and the parameter 

for the variable 𝑥3, i.e.,  are not significant  at 5% level of significance (probability 

values for these parameters are greater than 0.05). 

3. Practical Applications of regression analysis 

Economics and Finance 

Predicting stock market returns based on various economic indicators. 

Analyzing the impact of interest rates on housing prices. 

Marketing and Consumer Behavior 

Understanding the factors influencing consumer purchasing decisions. 

Predicting sales based on advertising expenditure and market demographics. 

Healthcare and Medicine 

Assessing the relationship between risk factors and disease outcomes. 

Predicting patient outcomes based on treatment protocols and patient characteristics. 

Agriculture 

Crop Yield Prediction 

Soil Fertility Assessment 

Pest and Disease Management 

Livestock Production 

Economic Analysis and Market Forecasting, etc. 
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3. Conclusion 

Correlation serves as a fundamental tool for analyzing relationships and unveiling 

hidden associations in data. By understanding the concept, measuring techniques, 

types, and interpretation of correlation, we can gain valuable insights and make 

informed decisions across a wide range of fields. Embracing correlation empowers us 

to unlock the intricate connections underlying the phenomena we observe, fostering a 

deeper understanding of the complex world around us. 

Regression analysis serves as a versatile tool for understanding and predicting the 

relationship between variables. By comprehending the principles, assumptions, and 

types of regression analysis, we can harness its power to uncover patterns, make 

predictions, and inform decision-making across diverse fields. Embracing regression 

analysis empowers us to unravel the dynamics of complex systems, enabling us to 

navigate the intricacies of the world we inhabit with greater clarity and confidence. 
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OVERVIEW OF SURVEY SAMPLING  

Ankur Biswas 
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1. Introduction 

The need to gather information arises in almost every conceivable sphere of human 

activity. Many of the questions that are subject to common conservation and 

controversy require numerical data for their resolution. The data collected and 

analyzed in an objective manner and presented suitably serve as a basis for taking 

policy decisions in different fields of daily life. 

The important users of statistical data, among others, include government, industry, 

business, research institutions, public organizations and international agencies and 

organizations. To discharge its various responsibilities, the government needs variety 

of information regarding different sectors of economy, trade, industrial production, 

health and mortality, population, livestock, agriculture, forestry, environment and 

available resources. The inferences drawn from the data help in determining future 

needs of the nation and also in tackling social and economic problems of people. For 

instance, the information on cost of living for different categories of people, living in 

various parts of the country is of importance in shaping its policies in respect of 

wages and price levels. Data on agricultural production are of immense use to the 

state for planning to feed the nation. In case of industry and business, the information 

is to be collected on labour, cost and quality of production, stock and demand and 

supply positions for proper planning of production levels and sales campaigns. 

1.1 Complete enumeration 

One way of obtaining the required information at regional and country level is to 

collect the data for each and every unit (person, household, field, factory, shop etc. as 

the case may be) belonging to the population which is the aggregate of all units of a 

given type under consideration and this procedure of obtaining information is termed 

as complete enumeration. The effort, money and time required for the carrying out 

complete enumeration to obtain the different types of data will, generally, be 

extremely large. However, if the information is required for each and every unit in the 

domain of study, a complete enumeration is clearly necessary. Examples of such 

situations are preparation of “voter list” for election purposes and recruitment of 
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personnel in an establishment, etc. But there are many situations, where only 

summary figures are required for the domain of study as a whole or for group of units. 

1.2 Need for sampling  

An effective alternative to a complete enumeration can be sample survey where only 

some of the units selected in a suitable manner from the population are surveyed and 

an inference is drawn about the population on the basis of observations made on the 

selected units. It can be easily seen that compared to sample survey, a complete 

enumeration is time-consuming, expensive, has less scope in the sense of restricted 

subject coverage and is subject to greater coverage, observational and tabulation 

errors. In certain investigations, it may be essential to use specialized equipment or 

highly trained field staff for data collection making it almost impossible to carry out 

such investigations. It is of interest to note that if a sample survey is carried out 

according to certain specified statistical principles, it is possible not only to estimate 

the value of the characteristic of the population as a whole on the basis of the sample 

data, but also to get a valid estimate of the sampling error of the estimate. There are 

various steps involved in the planning and execution of the sample survey. One of the 

principal steps in a sample survey relates to methods of data collection. 

1.3. Various concepts and definitions 

i. Element: 

An element is a unit about which we require information. For example, a field 

growing a particular crop is an element for collecting information on the yield of a 

crop. 

ii. Population  

The collection of all units of a specified type in a given region at a particular point or 

period of time is termed as a population or universe. Thus, we may consider a 

population of persons, families, farms, cattle in a region or a population of trees or 

birds in a forest or a population of fish in a tank etc. depending on the nature of data 

required. 

iii. Sampling unit  

Elementary units or group of such units which besides being clearly defined, 

identifiable and observable, are convenient for the purpose of sampling are called 

sampling units. For instance, in a family budget enquiry, usually a family is 

considered as the sampling unit since it is found to be convenient for sampling and for 
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ascertaining the required information. In a crop survey, a farm or a group of farms 

owned or operated by a household may be considered as the sampling unit. 

iv. Sampling frame  

A list of all the sampling units belonging to the population to be studied with their 

identification particulars or a map showing the boundaries of the sampling units is 

known as sampling frame. Examples of a frame are a list of farms and a list of 

suitable area segments like villages in India or counties in the United States. The 

frame should be up to date and free from errors of omission and duplication of 

sampling units.  

v. Random sample  

One or more sampling units selected from a population according to some specified 

procedures are said to constitute a sample. The sample will be considered as random 

or probability sample, if its selection is governed by ascertainable laws of chance. In 

other words, a random or probability sample is a sample drawn in such a manner that 

each unit in the population has a predetermined probability of selection. For example, 

if a population consists of the N sampling unitsU1,U2,…,Ui,…,UN then, we may select 

a sample of n units by selecting them unit by unit with equal probability for every unit 

at each draw with or without replacing the sampling units selected in the previous 

draws. 

vi. Non-random sample  

A sample selected by a non-random process is termed as non-random sample. A non-

random sample, which is drawn using certain amount of judgment with a view to get 

a representative sample, is termed as judgment or purposive sample. In purposive 

sampling units are selected by considering the available auxiliary information more or 

less subjectively with a view to ensuring a reflection of the population in the sample. 

This type of sampling is seldom used in large-scale surveys mainly because it is not 

generally possible to get strictly valid estimates of the population parameters under 

consideration and of their sampling errors due to the risk of bias in subjective 

selection and the lack of information on the probabilities of selection of the units. 

vii. Population parameters  

Suppose a finite population consists of the N units U1,U2,…,UN and let Yi be the 

value of the variable y, the characteristic under study, for the ith unit Ui, (i=1,2,…,N). 

For instance, the unit may be a farm and the characteristic under study may be the 

area under a particular crop. Any function of the values of all the population units is 
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known as a population parameter or simply a parameter. Some of the important 

parameters usually required to be estimated in surveys are population total and 

population mean.  

viii. Statistic, estimator and estimate 

Suppose, a sample of n units is selected from a population of N units, according to 

some probability scheme and let, the sample observations be denoted by y1,y2,…,yn. 

Any function of these values which is free from unknown population parameters is 

called a statistic.An estimator is a statistic obtained by a specified procedure for 

estimating a population parameter. The estimator is a random variable and its value 

differs from sample to sample and the samples are selected with specified 

probabilities. The particular value, which the estimator takes for a given sample, is 

known as an estimate. 

ix. Sampling and non-sampling error 

The error arises due to drawing inferences about the population on the basis of 

observations on a part (sample) of it, is termed sampling error. The sampling error is 

non-existent in a complete enumeration survey since the whole population is 

surveyed. On the contrary, the errors other than sampling errors such as those arising 

through non-response, in- completeness and inaccuracy of response are termed non-

sampling errors and are likely to be more wide-spread and important in a complete 

enumeration survey than in a sample survey. Non-sampling errors arise due to various 

causes right from the beginning stage when the survey is planned and designed to the 

final stage when the data are processed and analyzed. 

The sampling error usually decreases with increase in sample size (number of units 

selected in the sample) while the non-sampling error is likely to increase with increase 

in sample size. 

As regards the non-sampling error, it is likely to be more in the case of a complete 

enumeration survey than in the case of a sample survey since it is possible to reduce 

the non-sampling error to a great extent by using better organization and suitably 

trained personnel at the field and tabulation stages in the latter than in the former. 

2. Simple Random Sampling 

Simple random sampling (SRS) can be regarded as the basic form of probability 

sampling applicable to situations where there is no previous information available on 

the population structure. Simple random sampling is a method of selecting n units out 
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of the N such that every one of the 








n

N
 distinct samples has an equal chance of 

being drawn. In practice a simple random sample is drawn unit by unit. The units in 

the population are numbered from 1 to N. A series of random numbers between 1 and 

N is then drawn, either by means of a table of random numbers or by means of a 

computer program that produces such a table. At any draw the process used must give 

an equal chance of selection to any number in the population not already drawn. The 

units that bear these numbers constitute the sample. Since a number that has been 

drawn is removed from the population for all subsequent draws, this method is also 

called random sampling without replacement. In case of a random sampling with 

replacement, at any draw all N members of the population are given an equal chance 

of being drawn, no matter how often they have already been drawn. The with-

replacement assumption simplifies the estimation under complex sampling designs 

and is often adopted, although in practice sampling is usually carried out under a 

without replacement type scheme. Obviously, the difference between with 

replacement and without replacement sampling becomes less important when the 

population size is large and the sample size is noticeably smaller than it. 

2.1 Procedure of selecting a random sample 

Since probability sampling theory is based on the assumption of random sampling, the 

technique of random sampling is of basic significance. Some of the procedures used 

for selecting a random sample are as follows: 

i) Lottery method 

ii) Use of random number tables 

i) Lottery Method:  

Each unit in the population may be associated with a chit/ticket such that each 

sampling unit has its identification mark from 1 to N. All the chits are placed in a 

container, drum or metallic spherical device, in which a thorough mixing is possible 

before each draw. Chits may be drawn one by one and may be continued until a 

sample of the required size is obtained. When the size of population is large, this 

procedure of numbering units on chits and selecting one after reshuffling becomes 

cumbersome. In practice, it may be too difficult to achieve a thorough shuffling. 

Human bias and prejudice may also creep in this method. 
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ii) Use of Random Number Tables: 

A random number table is an arrangement of digits 0 to 9, in either a linear or 

rectangular pattern where each position is filled with one of these digits. A Table of 

random numbers is so constructed that all numbers 0, 1, 2,…,9 appear independent of 

each other. Some random number tables in common use are: 

 Tippett's  random number Tables 

 Fisher and Yates Tables 

 Kendall and Smith Tables 

 A million random digits Table 

A practical method of selecting a random sample is to choose units one-by-one with 

the help of a Table of random numbers. By considering two-digit numbers, we can 

obtain numbers from 00 to 99, all having the same frequency. Similarly, three or more 

digit numbers may be obtained by combining three or more rows or columns of these 

Tables. The simplest way of selecting a sample of the required size is to select a 

random number from 1 to N and then taking the unit bearing that number. This 

procedure involves a number of rejections since all numbers greater than N appearing 

in the Table are not considered for selection. The procedure of selection of sample 

through the use of random numbers is, therefore, modified and one of these modified 

procedures is: 

 Remainder Approach:  

Let N be an r-digit number and let its r-digit highest multiple be N'. A random number 

k is chosen from 1 to N' and the unit with serial number equal to the remainder 

obtained on dividing k by N is selected, i.e. the selected number is reduced mod (N). 

If the remainder is zero, the last unit is selected. As an illustration, let N = 123, then 

highest three-digit multiple of 123 is 984. For selecting a unit, one random number 

from 001 to 984 has to be selected. Let the random number selected be 287. Dividing 

287 by 123 gives the remainder as 41. Hence, the unit with serial number 41 is 

selected in the sample. Suppose that another random number selected is 245. Dividing 

245 by 123 leaves 122 as remainder. So the unit bearing the serial number 122 is 

selected. Similarly, if the random number selected is 369, then dividing 369 by 123 

leaves remainder as 0. So the unit bearing serial number 123 is selected in the sample.  
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2.2 Estimation of Population Total 

Let Y be the character of interest and 1 2 i NY ,Y , ,Y , ,Y  be the values of the 

character fromN units of the population. Further, let  be the sample 

of size n selected by simple random sampling without replacement. For the total 

 we have an estimator 

 

i.e., the sample mean  multiplied by the population size N. 

The estimator can be expressed as 

 

, where 
 

 

The constant  is the sampling weight and is the inverse of the sampling fraction 

 

The estimator has the statistical property of unbiasedness in relation to the sampling 

design. Variance of the estimator of the population total is given by 

  

where  is the population mean and  is the 

population mean square. 

An unbiased estimator of variance of the estimator  of the total, VSRS( ) is given 

by  

 

where  is the sample mean and s2 is an unbiased estimator of the 

population mean square S2. 

3. Use of Auxiliary Information 

In sampling theory if the auxiliary information, related to the character under study, is 

available on all the population units, then it may be advantageous to make use of this 
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additional information in survey sampling. One way of using this additional 

information is in the sample selection with unequal probabilities of selection of units. 

The knowledge of auxiliary information may also be exploited at the estimation stage. 

The estimator can be developed in such a way that it makes use of this additional 

information. Ratio estimator, difference estimator, regression estimator, generalized 

difference estimators are the examples of such estimators. Obviously, it is assumed 

that the auxiliary information is available on all the sampling units. In case the 

auxiliary information is not available then it can be obtained easily without much 

burden on the cost. 

Another way the auxiliary information can be used is at the stage of planning of 

survey. An example of this is the stratification of the population units by making use 

of the auxiliary information. 

4. Sampling with Varying Probability 

Under certain circumstances, selection of units with unequal probabilities provides 

more efficient estimators than equal probability sampling, and this type of sampling is 

known as unequal or varying probability sampling. In the most commonly used 

varying probability sampling scheme, the units are selected with probability 

proportional to a given measure of size (PPS) where the size measure is the value of 

an auxiliary variable x related to the characteristic y under study and this sampling 

scheme is termed as probability proportional to size sampling. For instance, the 

number of persons in some previous period may be taken as a measure of the size in 

sampling area units for a survey of socio-economic characters, which are likely to be 

related to population. Similarly, in estimating crop characteristics the geographical 

area or cultivated area for a previous period, if available, may be considered as a 

measure of size, or in an industrial survey, the number of workers may be taken as the 

size of an industrial establishment. 

Since a large unit, that is, a unit with a large value for the study variable y, contributes 

more to the population total than smaller units, it is natural to expect that a scheme of 

selection which gives more chance of inclusion in a sample to larger units than to 

smaller units would provide estimators more efficient than equal probability 

sampling. Such a scheme is provided by pps sampling, size being the value of an 

auxiliary variable x directly related to y. It may appear that such a selection procedure 

would give biased estimators as the larger units are over-represented and the smaller 

units are under-represented in the sample. This would be so, if the sample means is 
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used as an estimator of population mean. Instead, if the sample observations are 

suitably weighted at the estimation stage taking into consideration their probabilities 

of selection, it is possible to obtain unbiased estimators. Mahalanobis (1938) has 

referred to this procedure in the context of sampling plots for a crop survey and this 

procedure has been discussed in detail by Hansen and Hurwitz (1943). 

5. Stratified Random Sampling 

The basic idea in stratified random sampling is to divide a heterogeneous population 

into sub-populations, usually known as strata, each of which is internally 

homogeneous in which case a precise estimate of any stratum mean can be obtained 

based on a small sample from that stratum and by combining such estimates, a precise 

estimate for the whole population can be obtained. Stratified sampling provides a 

better cross section of the population than the procedure of simple random sampling. 

It may also simplify the organization of the field work. Geographical proximity is 

sometimes taken as the basis of stratification. The assumption here is that 

geographically contiguous areas are often more alike than areas that are far apart. 

Administrative convenience may also dictate the basis on which the stratification is 

made. For example, the staff already available in each range of a forest division may 

have to supervise the survey in the area under their jurisdiction. Thus, compact 

geographical regions may form the strata. If the characteristic under study is known to 

be correlated with a supplementary variable for which actual data or at least good 

estimates are available for the units in the population, the stratification may be done 

using the information on the supplementary variable. For instance, the volume 

estimates obtained at a previous inventory of the forest area may be used for 

stratification of the population. 

In stratified sampling, the variance of the estimator consists of only the ‘within strata’ 

variation. Thus the larger the number of strata into which a population is divided, the 

higher, in general, the precision, since it is likely that, in this case, the units within a 

stratum will be more homogeneous. For estimating the variance within stratum, there 

should be a minimum of 2 units in each stratum. The larger the number of strata the 

higher will, in general, be the cost of enumeration. So, depending on administrative 

convenience, cost of the survey and variability of the characteristic under study in the 

area, a decision on the number of strata will have to be arrived at.  
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6. Cluster Sampling 

A sampling procedure presupposes division of the population into a finite number of 

distinct and identifiable units called the sampling units. The smallest units into which 

the population can be divided are called the elements of the population, and group of 

elements the clusters. A cluster may be a class of students or cultivators’ fields in a 

village. When the sampling unit is a cluster, the procedure of sampling is called 

cluster sampling.  

For many types of population a list of elements is not available and the use of an 

element as the sampling unit is, therefore, not feasible. The method of cluster or area 

sampling is available in such cases. Thus, in a city a list of all the houses may be 

available, but that of persons is rarely so. Again, list of farms are not available, but 

those of villages or enumeration districts prepared for the census are. Cluster 

sampling is, therefore, widely practiced in sample surveys. 

For a given number of sampling units cluster sampling is more convenient and less 

costly than simple random sampling due to the saving time in journeys, identification 

and contacts etc., but cluster sampling is generally less efficient than simple random 

sampling due to the tendency of the units in a cluster to be similar. In most practical 

situations, the loss in efficiency may be balanced by the reduction in the cost and the 

efficiency per unit cost may be more in cluster sampling as compares to simple 

random sampling. 

7. Multistage Sampling 

Cluster sampling is a sampling procedure in which clusters are considered as 

sampling units and all the elements of the selected clusters are enumerated. One of the 

main considerations of adopting cluster sampling is the reduction of travel cost 

because of the nearness of elements in the clusters. However, this method restricts the 

spread of the sample over population which results generally in increasing the 

variance of the estimator. In order to increase the efficiency of the estimator with the 

given cost it is natural to think of further sampling the clusters and selecting more 

number of clusters so as to increase the spread of the sample over population. This 

type of sampling which consists of first selecting clusters and then selecting a 

specified number of elements from each selected cluster is known as sub-sampling or 

two stage sampling, since the units are selected in two stages. In such sampling 

designs, clusters are generally termed as first stage units (fsu’s) or primary stage units 

(psu’s) and the elements within clusters or ultimate observational units are termed as 
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second stage units (ssu’s) or ultimate stage units (usu’s). It may be noted that this 

procedure can be easily generalized to give rise to multistage sampling, where the 

sampling units at each stage are clusters of units of the next stage and the ultimate 

observational units are selected in stages, sampling at each stage being done from 

each of the sampling units or clusters selected in the previous stage. This procedure, 

being a compromise between uni-stage or direct sampling of units and cluster 

sampling, can be expected to be (i) more efficient than uni-stage sampling and less 

efficient than cluster sampling from considerations of operational convenience and 

cost, and (ii) less efficient than uni-stage sampling and more efficient than cluster 

sampling from the view point of sampling variability, when the sample size in terms 

of number of ultimate units is fixed. 

It may be mentioned that multistage sampling may be the only feasible procedure in a 

number of practical situations, where a satisfactory sampling frame of ultimate 

observational units is not readily available and the cost of obtaining such a frame is 

prohibitive or where the cost of locating and physically identifying the usu’s is 

considerable. For instance, for conducting a socio-economic survey in a region, where 

generally household is taken as the usu, a complete and up-to-date list of all the 

households in the region may not be available, whereas a list of villages and urban 

blocks which are group of households may be readily available. In such a case, a 

sample of villages or urban blocks may be selected first and then a sample of 

households may be drawn from each selected village and urban block after making a 

complete list of households. It may happen that even a list of villages is not available, 

but only a list of all tehsils (group of villages) is available. In this case a sample of 

households may be selected in three stages by selecting first a sample of tehsils, then 

a sample of villages from each selected tehsil after making a list of all the villages in 

the tehsil and finally a sample of households from each selected village after listing 

all the households in it. Since the selection is done in three stages, this procedure is 

termed as three stage sampling. Here, tehsils are taken as first stage units (fsu’s), 

villages as second stage units (ssu’s) and households as third or ultimate stage units 

(tsu’s).  

8. Systematic Sampling 

In all other sampling methods, the successive units (whether elements or clusters) are 

selected with the help of random numbers. But a method of sampling in which only 

the first unit is selected with the help of random number while the rest of the units are 
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selected according to a pre-determined pattern, is known as systematic sampling. The 

systematic sampling has been found very useful in forest surveys for estimating the 

volume of timber, in fisheries surveys for estimating the total catch of fish, in milk 

yield surveys for estimating the lactation yield etc.   

9. Conclusion 

Simple random sampling and probability proportional size designs are most important 

uni-stage design. In most of the practical situations, complex sampling designs are 

utilized on the basis of these uni-stage sampling designs. Stratified random sampling, 

multistage sampling, multiphase sampling, etc. are efficient complex designs widely used 

in agricultural and socio-economic surveys. 
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1. Introduction 

Growth is defined as "an irreversible increase in size and volume that occurs as a 

result of differentiation and distribution in the plant/animal." A model is a schematic 

representation of a system's conception, an act of mimicry, or a set of equations that 

represents a system's behaviour. A model is also defined as "a representation of an 

object, system, or idea in a form other than that of the entity itself." Its purpose is 

typically to aid in the explanation, comprehension, or improvement of a system's 

performance. 

TYPES OF MODELS 

Models are classified into different groups or types based on the purpose for which 

they are designed. Among them are a few: 

a. Statistical models: These models describe the relationship between. Relationships 

are measured in a system using statistical techniques in these models. Example: 

regression model, Time series model, etc. 

b. Mechanistic models: These models explain not only the relationship between 

variables, but also how these models work (explains the relationship of influencing 

dependent variables). Physical selection is the basis for these models. 

c. Deterministic models: The exact value of the dependent variable is estimated using 

these models. These models have defined coefficients as well. 

d. Stochastic models: Each output has a probability element attached to it. Different 

outputs, along with probabilities, are provided for each set of inputs. At a given rate, 

these models define the state of the dependent variable. 

e. Dynamic models: Time is accounted for as a variable. Both dependent and 

independent variables have values that remain constant over a given time period. 

f. Static: Time is not considered a variable. Dependent and independent variables with 

values that remain constant over time. 

g. Simulation models: In general, computer models are mathematical representations 

of real-world systems. Crop simulation models' primary goal is to estimate 
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agricultural production as a function of weather and soil conditions, as well as crop 

management. These models employ one or more sets of differential equations to 

compute rate and state variables over time, typically from planting to harvest maturity 

or final harvest. 

Statistical Modelling 

A fundamental problem in statistics is developing models based on a sample of 

observations and making inferences based on the model. Huge amounts of data 

pertaining to crop production/productivity, import-export of various agricultural 

commodities, and so on are being collected sequentially over time in almost all 

branches of agriculture, including animal sciences and fisheries. One feature of such 

data is that successive observations are dependent on one another. Each observation 

of the observed data series, Yt,may be considered as a realization of a stochastic 

process {Yt}, which is a family of random variables {Yt, t  T}, where T = { 0, 1, 2, 

…}, and apply standard time-series approach to develop an ideal model which will 

adequately represent the set of realizations and also their statistical relationships in a 

satisfactory manner. Forecasting of time-series data is critical for planners and 

policymakers. Over the last few decades, a new field known as "Nonlinear time-series 

modelling" has emerged. There are essentially two approaches available here: 

parametric or nonparametric. Obviously, we should use the former if we are certain 

about the functional form in a given situation; otherwise, the latter may be used. 

Parametric and Nonparametric Approaches 

Regression analysis has grown in popularity as a tool for statistical modelling and 

data analysis over the last several decades. This information describes the relationship 

between a response variable and one or more predictor variables. The primary goal is 

to express the mean of the response as a function of the predictor variables. The 

general regression model takes the following form: 

                                    Y    =   m (X) +   

Where Y is the response variable, m(X) = E (Y| X) is the mean response or regression 

function and   is the error. The regression function m(X) is usually unknown and the 

objective is to obtain a suitable estimator of m(X) using a sample of observations. 

 In the linear regression, it is assumed that the mean of the response variable Y is a 

linear function of predictor variable(s) X of the form  

                                    E (Y| X)   =  X 



  

 
 

114 

i.e. m (X) is linear in parameters. The parameter vector  is usually estimated by the 

Method of least squares. In nonlinear regression, it is assumed that the mean of the 

response variable is a nonlinear function of the predictor variable (s) X of the form 

E(Y|X)=m(X,) 

i.e.m(X) is nonlinear in parameters. Generally, there will be no closed form expression 

for the estimates of  and iterative procedures are required for estimation of 

parameters.  

A parametric regression model (linear or nonlinear) assumes that the form of m is 

known with the exception of some unknown parameters, and that the shape of the 

regression function is entirely dependent on the parameters. It is frequently difficult to 

guess the most appropriate functional form simply by looking at the data. There may 

be times when no suitable parametric form exists to express the regression function. 

In such cases, the nonparametric regression approach is very useful because it does 

not require strong assumptions about the shape of the regression function. A 

nonparametric regression model only assumes that m is part of an infinitely large 

collection of functions. One limitation of the preceding approach is that it generally 

relies on certain assumptions about the smoothness of the function being estimated, 

which may or may not be true in practice. As a result, the data under consideration 

may be over smoothed. 

LINEAR MODEL 

A mathematical model is an equation or set of equations that represents a system's 

behaviour. It can be 'linear' or 'nonlinear.' A linear model is one in which all of the 

parameters appear linearly.  

NONLINEAR MODELS  

Any type of statistical investigation in which principles from a body of knowledge are 

seriously considered in the analysis is likely to result in a 'Nonlinear model.' Such 

models are critical in understanding the complex interrelationships between variables. 

A ‘nonlinear model’ is one in which at least one of the parameters appears 

nonlinearly. More formally, in a ‘nonlinear model’, at least one derivative with 

respect to a parameter should involve that parameter.  

• Examples of a nonlinear model are: 

  Y(t) = exp (at+bt2)                                               (1a)          

  Y(t) = at + exp (bt)                                           (1b) 
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Note. Some authors use the term ‘intrinsically nonlinear’ to   indicate a nonlinear 

model which can be transformed to a linear model by means of some transformation.  

For example, the model given by Eq. (1a) is ‘intrinsically nonlinear’ in view of the 

transformation X(t) = loge Y(t). 

a. MALTHUS MODEL:  

Thomas R. Malthus, an Englishman, proposed a mathematical model of population 

growth in 1798. Despite its simplicity, the model has become the foundation for most 

future modelling of biological populations. His essay, "An Essay on the Principle of 

Population," contains an excellent discussion of the limitations of mathematical 

modelling and should be required reading for all serious students of the subject. 

Malthus observed that, if not restrained by environmental or social constraints, human 

populations appeared to double every twenty-five years, regardless of initial 

population size. In other words, he proposed that populations increased by a fixed 

proportion over a given period of time and that, in the absence of constraints, this 

proportion was unaffected by population size. According to Malthus, if a population 

of 100 people increased to a population of 135 people over the course of, say, five 

years, then a population of 1000 people would increase to 1350 people over the same 

period of time. Malthus' model is an example of a one-variable, one-parameter model. 

The quantity we are interested in observing is referred to as a variable. They typically 

evolve over time. Parameters are quantities known to the modeller before the model is 

built. They are frequently constants, though a parameter can change over time. The 

variable in the Malthusian model is population, and the parameter is population 

growth rate. 

If N(t) denotes the population size or biomass at time t and r is the intrinsic growth 

rate, then the rate of growth of population size is given by 

dN/dt = rN  

Therefore,  N(t) = Noexp (rt) 

Note : Malthus model can be used for describing growth of simplistic organisms, 

which begin to grow by binary splitting of cells. 

 Drawback:N(t) as t, which cannot happen in reality. 

Malthus predicted that unchecked population growth would quickly outstrip carrying 

capacity, resulting in overpopulation and social problems. 
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a. MONOMOLECULAR MODEL:  

Because the monomolecular model assumes a carrying capacity of one, which means 

that the maximum level of disease is one, disease severity or incidence is measured as 

a proportion. Plant tissue that is diseased may only have a value between zero 

(healthy) and one (complete disease).It also assumes the absolute rate of change is 

proportional to the healthy tissue i.e., (1-y).  

It describes growth progress in which it is assumed that the rate of growth at any point 

in time is proportional to the resources yet to be obtained, i.e. 

 dN/dt = r(KN),                     

 where K is the carrying capacity. 

or   N(t) = K (KNo) exp (rt) 

Drawback: No point of inflexion.  

a. LOGISTIC MODEL:  

Logistic model was developed by Belgian mathematician Pierre Verhulst (1838) who 

suggested that the rate of population increase may be limited, i.e., it may depend on 

population density. Population growth rate declines with population numbers, N, and 

reaches 0 when N = K. Parameter K is the upper limit of population growth and it is 

called carrying capacity. It is commonly interpreted as the amount of resources 

expressed in the number of organisms that these resources can support. If the 

population exceeds K, the population growth rate becomes negative and the 

population decreases. 

The differential equation represents this model: 

dN/dt = rN (1N/K)    (1) 

Therefore, N(t) = K/[1+(K/No1) exp(rt)]. The graph of N(t) versus t is elongated S-

shaped and the curve is symmetrical about its point of inflexion. 

a. GOMPERTZ MODEL 

This is another model with sigmoid behaviour that has been found to be quite useful 

in biological work. Benjamin Gompertz developed the Gompertz curve to estimate 

human mortality (Gompertz, B. "On the Nature of the Function Expressive of the Law 

of Human Mortality, and on a New Mode of Determining the Value of Life 

Contingencies." Phil. Trans. Roy. Soc. London 123, 513-585, 1832). An early 

description of the use of this equation to describe growth processes is given by 
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CharlesWinsor (1932). However, unlike the logistic model, this does not have a 

symmetric point of inflexion. 

This model's differential equation is 

dN/dt = rN loge (K/N)                                               (2) 

or   N(t) = K exp[loge (No / K) exp(rt)] 

a. RICHARDS MODEL:  

The Richards curve, also known as generalised logistic, is a popular growth model 

that can fit a wide range of S-shaped growth curves. Both 4 and 5 parameter versions 

are commonly used. The logistic curve is symmetrical about its point of inflection. 

Richards (1959) introduced an additional parameter to deal with asymmetrical growth 

curves. 

This model is given by  

                    .                               (4)                        

However, unlike the earlier models, this model has four parameters. 

Drawback. Number of parameters is more.  

a. MIXED-INFLUENCE MODEL:  

This is a mixture of      ‘Monomolecular’ and ‘Logistic’ Models. It  is  given  by  

 dN/dt = r (K-N) +s N (1-N/K),                       

FITTING OF NONLINEAR MODELS 

The models presented above have been posed deterministically. This is obviously 

unrealistic, so we replace these deterministic models with statistical models by 

including an error term on the right hand side and making appropriate assumptions 

about them. This produces a 'Nonlinear statistical model.' The 'Method of least 

squares' can be used to estimate parameters in non-linear regression, just as it can in 

linear regression. However, minimising the residual sum of squares produces normal 

equations with nonlinear parameters. Because exact solutions to nonlinear equations 

are not possible, iterative procedures are used to obtain approximate analytic 

solutions. 

• Four main methods of this kind are:  

            i) Linearization (or Taylor Series) method 

           ii) Steepest Descent method 

          iii) Levenberg-Marquardt’s method 

iv) Do not use Derivatives method 

   t m m 1/m
o o oN  = K N /[N +( K -N ) exp -rt ]
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Draper and Smith discuss the specifics of these methods, as well as their benefits and 

drawbacks (1998). Neither the Linearization nor the Steepest descent methods are 

perfect. The Levenberg-Marquardt method is the most widely used method for 

computing nonlinear least squares estimates. This method is a compromise between 

the other two methods, successfully combining the best features of both while 

avoiding their significant disadvantages. It's good because it almost always converges 

and doesn't' slow down' at the end of the iterative process. 

CHOICE OF INITIAL VALUES   

All nonlinear estimation procedures require initial parameter values, and selecting 

good initial values is critical. There is, however, no standard procedure for obtaining 

preliminary estimates. The use of prior information is the most obvious method for 

making initial guesses. Estimates based on previous experiments, known values for 

similar systems, and values derived from theoretical considerations all combine to 

form ideal first guesses. 

 Some other methods are:  

(i) Linearization:  

After ignoring the error term, check the form of the model to see if it could be 

transformed into a linear form by means of some transformation. In such cases, linear 

regression can be used to obtain initial values.  

(ii) Solving a system of equations: 

If there are p parameters, substitute for p sets of observations into the model ignoring 

the error. Solve these equations for the parameters, if possible. Widely separated xi 

often work best. 

R code 

Monomolecular growth model 

z=read.csv(file.choose(), header=TRUE) 

head(z) 

kk=data.frame(z) 

grz1=nls(y~k-(k-y0)*exp(-r*t),data=kk,  start=list(k=1 ,y0=0.03,r=0.1)) 

summary(grz1) 

 fitted=kk$y-resid(grz1) 

kkk=data.frame(fitted) 

MSE.nn<- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors<- c("blue","red") 
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plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,1),axes=FALSE, ann=FALSE) 

axis(1, at=1:20, lab=c(0:19)) 

axis(2, las=1, at=0.2*0:5) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, 

lty=1:2); 

zz=resid(grz1) 

predicted= 0.99651-(0.99651-0.08844)*exp(-0.26727*20) 

Gompertz model 

z=read.csv(file.choose(), header=TRUE) 

 head(z) 

 kk=data.frame(z) 

gr1=nls(y~k*exp(log(y0/k)* exp(-r*t)),data=kk,  start=list(k=50,y0=11.72,r=0.1)) 

summary(gr1) 

fitted=kk$y-resid(gr1) 

kkk=data.frame(fitted) 

MSE.nn<- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors<- c("blue","red") 

plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,35),axes=FALSE, ann=FALSE) 

axis(1, at=1:38, lab=c(0:37)) 

axis(2, las=1, at=5*0:8) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, 

lty=1:2); 

logistic model 

z=read.csv(file.choose(), header=TRUE) 
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 head(z) 

 kk=data.frame(z) 

gr2=nls(y~k/(1+(k/y0-1)* exp(-r*t)), data=kk,  start=list(k=50,y0=11.72,r=0.1)) 

summary(gr2) 

fitted=kk$y-resid(gr2) 

kkk=data.frame(fitted) 

MSE.nn<- sum((kk$y- kkk)^2)/nrow(kkk) 

plot_colors<- c("blue","red") 

plot(kk$y,type="o", col=plot_colors[1], ylim=c(0,35),axes=FALSE, ann=FALSE) 

axis(1, at=1:38, lab=c(0:37)) 

axis(2, las=1, at=5*0:8) 

box() 

lines(fitted,type="o", pch=22, lty=2,col=plot_colors[2])  

title(main="Actual vs predicted",col.main="red", font.main=4) 

title(xlab= "Time", col.lab=rgb(0,0.5,0)) 

title(ylab= "Growth", col.lab=rgb(0,0.5,0)) 

legend("topleft",c("actual", "predicted"),cex=0.8, col=plot_colors, pch=21:22, 

lty=1:2); 
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1. Introduction 

Regression analysis is a technique used to examine the relationships between 

variables. These relationships are expressed through equations or models that connect 

a response or dependent variable with one or more explanatory or predictor variables. 

Typically, the variables involved in regression analysis are quantitative in nature. The 

estimation of parameters in this type of analysis relies on four key assumptions. The 

first assumption is that the response variable is linearly related to the explanatory 

variables. In other words, there is a linear relationship between the dependent variable 

and the predictors. The second assumption is that the errors in the model are 

independently and identically distributed, following a normal distribution with a mean 

of zero and a common variance. This assumption ensures that the errors are random 

and have a consistent distribution. The third assumption assumes that the explanatory 

variables are measured without any errors. This means that the predictor variables are 

accurate and reliable. The last assumption relates to the equal reliability of 

observations. It assumes that each observation used in the analysis is equally reliable 

and contributes equally to the analysis. In cases where the response variable in the 

model is qualitative, instead of directly modeling the response variable itself, 

probabilities of belonging to different categories can be modelled using the same 

regression framework. However, this approach comes with additional constraints and 

assumptions for multiple regression models. The first constraint is that probabilities 

range between 0 and 1, while the right-hand side function in multiple regression 

models is unbounded. This means that adjustments need to be made to ensure that the 

predicted probabilities remain within the valid range. The second constraint is related 

to the error term of the model. In this case, the error term can only take limited values, 

and the variance of the errors is not constant but depends on the probability of the 

response variable falling into a particular category. There are several notable 

references available that provide a comprehensive overview of logistic regression, 

such as the works of Fox (1984) and Klienbaum (1994). For Probit analysis, a useful 

resource is Finney (1971). 

mailto:himadri.roy@icar.gov.in
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2. Assumptions of Linear Regression Model if Response is Qualitative                                                                                                                               

To illustrate the limitations of using linear regression when the response variable is 

qualitative, let's examine a simple linear regression model that involves a single 

predictor variable and a binary response variable. 

              , i = 1, 2, …, n     

where, the outcome Yi is binary (taking values 0,1),  ,   and   are 

independent and n is the number of observations.  

Let   denote the probability that Yi =1 when Xi = x, i.e. 

                                                                                 

thus          .                     

Under the assumption , the expected value of the response variable is  

 

If the response is binary, then the error terms   can take on two values, namely, 

                            when Yi =1 

                            when Yi =0 

Because the error is dichotomous (discrete), normality assumption is violated. 

Moreover, the error variance is given by: 

                                   

It can be seen that variance is a function of   and it is not constant. Therefore, the 

assumption of homoscedasticity (equal variance) does not hold. 

3. Logistic regression 

3.1 Binary Logistic regression 

Logistic regression is often recommended when the multivariate normality 

assumption is not met by the independent variables and the response variable is 

qualitative. This situation, where the response variable is qualitative and the 

independent variables include a mix of categorical and continuous variables, is 

commonly encountered in statistical applications such as agriculture and medical 

science. The binary logistic regression model, developed by researcher Cox in the late 

1950s, is the preferred statistical model for analysing binary (dichotomous) responses. 

Agricultural data often exhibit sigmoidal or elongated S-shaped curves, making 
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logistic regression models more appropriate. These models can capture non-linear 

relationships between the response variable and the qualitative and quantitative factors 

that influence it. Logistic regression addresses similar questions as discriminant 

function analysis and multiple regression, but it does not rely on distributional 

assumptions for the predictors. In other words, the predictors do not need to follow a 

normal distribution, the relationship between the response and predictors can be non-

linear, and the observations do not need to have equal variance in each group. For a 

comprehensive understanding of logistic regression, informative resources can be 

found in the works of Fox (1984) and Kleinbaum (1994). 

The issue of non-normality and heteroscedasticity, as discussed in section 2, renders 

least square estimation unsuitable for the linear probability model. When attempting 

to use weighted least square estimation as an alternative, the resulting fitted values 

may not be constrained within the interval (0, 1), making them inappropriate for 

interpretation as probabilities. Furthermore, there is a possibility of negative error 

variances arising. To address this problem, one solution is to constrain the values of π 

(the response variable) to the unit interval while still maintaining the linear 

relationship between π and the regressor X within that interval. By doing so, we can 

ensure that the predicted values of π remain within the valid range of probabilities.  

                

 

However, this constrained linear probability model has certain unattractive features 

such as abrupt changes in slope at the extremes 0 and 1 making it hard for fitting the 

same on data. A smoother relation between π and X is generally more sensible. To 

correct this problem, a positive monotone (i.e. non-decreasing) function is required to 

transform (β0 + β1xi) to unit interval. Any cumulative probability distribution function 

(CDF) P, meets this requirement. That is, respecify the model as  πi = P (β0 + β1xi). 

Moreover, it is advantageous if P is strictly increasing, for then, the transformation is 

one-to-one, so that model can be rewritten as P-1(πi) = (β0 + β1xi), where  P-1 is the 

inverse of the CDF P. Thus the non-linear model for itself will become both smooth 

and symmetric, approaching π = 0 and   π = 1 as asymptotes. Thereafter maximum 

likelihood method of estimation can be employed for model fitting. 

  

0 1

0 1 0 1
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3.2 Properties of Logistic Regression Model 

The logistic response function exhibits a characteristic S-shaped curve, which can be 

visualized in the accompanying figure. As X increases, the probability π initially 

experiences a gradual increase, followed by a rapid acceleration. Eventually, the 

increase in probability tapers off and stabilizes, but it never exceeds the value of 1.      

                                          

The shape of the S-curve can be reproduced if the probabilities can be modeled  with 

only one predictor variable as follows: 

 

where z = β0 + β1x, and e is the base of the natural logarithm. Thus for more than one 

(say r) explanatory variables, the probability π is modeled as  

 

where     . 

This equation is called the logistic regression equation. It is nonlinear in the 

parameters β0, β1… βr.  Modeling the response probabilities by the logistic 

distribution and estimating the parameters of the model constitutes fitting a logistic 

regression. The method of estimation generally used is the maximum likelihood 

estimation method.  

To explain the popularity of logistic regression, let us consider the mathematical form 

on which the logistic model is based. This function, called f (z), is given by   

                 f (z) = 1/ (1+e-z) , -∞ < z < ∞                                                                   

Now when z = -∞, f (z) =0 and when z = ∞, f (z) =1. Thus the range of f (z) is 0 to1. 

So the logistic model is popular because the logistic function, on which the model is 

based, provides. Estimates that lie in the range between zero and one.  
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An appealing S-shaped description of the combined effect of several explanatory 

variables on the probability of an event. 

3.6 Multinomial logistic regression modeling 

Let X is a vector of explanatory variables and  denotes the probability of binary 

response variable then logistic model is given by  

 

 

where, ‘alpha’ is the intercept parameter and  ‘beta’  is a vector of slope parameters.  

In case response variable has ordinal categories say 1,2,3,--------, I, I+1  then generally 

logistic model is fitted with common slope based  on cumulative probabilities of 

response categories instead of individual probabilities.  This provides parallel lines of 

regression model with following form  

g [Prob (                    )] =   

where, are k intercept parameters and    is the vector of slope 

parameters.   

Multinomial logistic regression (taking qualitative response variable with three 

categories, for simplicity) is given by 

logit[Pr(Y  j – 1 / X)] = j + T X ,      j = 1,2 

where j are two intercept parameters (1 < 2 ), 
T = (1, 2, …….,k) is the slope 

parameter vector not including the intercept terms, XT = (X1, X2, ….,Xk) is vector of 

explanatory variables.  This model fits a common slope cumulative model i.e. 

‘parallel lines’ regression model based on the cumulative probabilities of the response 

categories. 

logit(1) =          

logit(1 + 2) =       

j (X) denotes classification probabilities Pr(Y=j-1 / X) of response variable Y, j = 

1,2,3, at XT. 

These models can be fitted through maximum likelihood procedure. 
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4. Probit analysis 

4.1 Introduction 

Probit analysis is widely utilized in various fields when the response variable is 

qualitative. One of its main applications is observed in toxicological studies, where it 

transforms the sigmoid dose-response curve into a linear relationship that can be 

analyzed using regression techniques like least squares or maximum likelihood. In 

essence, probit analysis is a methodology that converts the complex relationship 

between the percentage affected and the dose response into a linear relationship 

between probit and the dose response. The probit values can then be translated back 

into percentages. This approach is appropriate because of the typical shape exhibited 

by dose-response curves. While the method is approximate, it enables the 

quantification of consequences resulting from exposure. The term "probit" originates 

from the phrase "probability unit" and was coined by Bliss. It was the first model 

developed and studied for analyzing data such as the percentage of pests killed by a 

pesticide.  

4.2 Probit Model  

In the realm of probability theory and statistics, the probit function represents the 

inverse of the cumulative distribution function (CDF) linked to the standard normal 

distribution. Alternatively, one can consider the logistic distribution, which results in 

the logit or logistic model. Both the logistic and probit curves are highly similar, 

producing almost indistinguishable outcomes. In practice, they provide estimated 

probabilities that exhibit very little variation (Aldrich and Nelson, 1984). The 

selection between the logistic and probit approaches is primarily based on practical 

preferences and prior experience. 

For the standard normal distribution N (0, 1), the CDF is commonly denoted by Φ (z) 

(continuous, monotone increasing sigmoid function) given by, 

                                                                    

As an example, considering the familiar fact that the N (0, 1) distribution places 95% 

of probability between -1.96 and 1.96, and is symmetric about zero, it follows that 
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The probit function gives the 'inverse' computation, generating a value of an N (0, 1) 

random variable, associated with specified cumulative probability. Formally, the 

probit function is the inverse of Φ (z), denoted by Φ − 1(p). Continuing the example, 

                                                                                    

In general, 

                and                                                                    

In statistics, a probit model is a popular specification of a generalized linear model. If 

Y be a binary response variable, and let X be the single predictor variable, then the 

probit model assumes that, 

                                                                                     

where Φ is the CDF of the standard normal distribution. The parameters β are 

estimated by maximum likelihood. 

In any dose-response scenario, there are two key components: the stimulus (such as a 

vitamin, drug, mental test, or physical force) and the subject (which could be an 

animal, plant, human volunteer, etc.). The stimulus is administered to the subject at a 

specific dose or intensity, measured in units such as concentration, weight, time, or 

other appropriate metrics, within a controlled environmental setting. Consequently, 

the subject exhibits a response. The response in this context is quantal, meaning it can 

either occur or not occur depending on the intensity of the stimulus. Under controlled 

conditions, a response is observed when the stimulus intensity surpasses a certain 

threshold or limen. However, the term "tolerance" is now more commonly used to 

refer to this value. The tolerance value varies among individuals within the population 

being studied.  For quantal response data it is therefore necessary to consider 

distribution of tolerance over the population studied. If the dose or intensity of 

stimulus is measured by z, the distribution of tolerance may be expressed by 

 .                                                                                                            

5. Classificatory ability of the models 

There are several different classification accuracy measures that are commonly used to 

assess the performance of a classification model. Here are a few examples: 
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Accuracy: This is the most basic measure and represents the proportion of correctly 

classified instances (both true positives and true negatives) out of the total number of 

instances. 

Precision: Precision focuses on the proportion of correctly classified positive instances 

(true positives) out of all instances predicted as positive (true positives plus false 

positives). It measures the model's ability to avoid false positives. 

Recall (Sensitivity or True Positive Rate): Recall calculates the proportion of correctly 

classified positive instances (true positives) out of all actual positive instances (true 

positives plus false negatives). It quantifies the model's ability to capture true positives 

and avoid false negatives. 

Specificity (True Negative Rate): Specificity evaluates the proportion of correctly 

classified negative instances (true negatives) out of all actual negative instances (true 

negatives plus false positives). It measures the model's ability to identify true negatives 

and avoid false positives. 

F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a 

balanced measure that combines both precision and recall into a single value, useful 

when there is an imbalance between positive and negative instances. 

Area Under the Receiver Operating Characteristic curve (AUC-ROC): The AUC-ROC 

measure quantifies the overall performance of a binary classifier by considering the 

trade-off between true positive rate (sensitivity) and false positive rate across different 

classification thresholds. It provides a single value that represents the model's ability to 

distinguish between positive and negative instances. 
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Introduction:  

A data set containing sequence of observations on a single phenomenon observed 

over time is called time-series data. In time series, past observations of the same 

variable are collected and analyzed to develop a model describing the underlying 

relationship. 

Time Series Components: 

Trend: A trend exists when there is a long-term increase or decrease in the data. It 

does not have to be linear. Sometimes we will refer to a trend “changing direction” 

when it might go from an increasing trend to a decreasing trend. 

Seasonal: A seasonal pattern exists when a series is influenced by seasonal factors 

(e.g., the quarter of the year, the month, or day of the week). Seasonality is always of 

a fixed and known period. 

Cyclic: A cyclic pattern exists when data exhibit rises and falls that are not of fixed 

period. The duration of these fluctuations is usually of at least 2 years. 

Irregular component: Unobserved component exhibit in a time series 

Exponential Smoothing Methods: 

This method is suitable for forecasting data with no trend or seasonal pattern. For 

example, the data in figure do not display any clear trending behaviour or any 

seasonality, although the mean of the data may be changing slowly over time. 

Simple moving average method assigns equal weights (1/k) to all k data points. 

Arguably, recent observations provide more information than do observations in the 

past. Exponential smoothing methods give larger weights to more recent observations, 

and the weights decrease exponentially as the observations become more distant. 

These methods are most effective when the parameters describing the time series are 

changing slowly over time 

Types 

 Simple exponential smoothing 

 Holt’s trend corrected exponential smoothing 

 Holt-Winters method 
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Simple Exponential Smoothing (SES): 

The SES method is used forecasting a time series when there is no trend or seasonal 

pattern, but the mean (or level) of the time series 𝑦𝑡 is slowly changing over time 

No trend model: 𝑦𝑡 = 𝛽0 + 𝜀𝑡 

Steps for SES method: 

1. Compute the initial estimate of the mean (or level) of the series at time period t = 0 

𝑙0 = 𝑦 =
∑ 𝑦𝑡

𝑛
𝑡=1

𝑛⁄  

2. Compute the updated estimate by using the smoothing equation 

1(1 )T T Ty    
 

where  is a smoothing constant between 0 and 1 

Note that,  

1(1 )T T Ty    
 

1 2(1 )[ (1 ) ]T T Ty y        
 

2

1 2(1 ) (1 )T T Ty y        
 

2 1

1 2 1 0(1 ) (1 ) ... (1 ) (1 )T T

T T Ty y y y       

          

Holt’s Trend Corrected Exponential Smoothing 

 A smoothing approach for forecasting such a time series that employs two 

smoothing constants, denoted by and. 

 There are two estimates ℓT-1 and bT-1 

 ℓT-1 is the estimate of the level of the time series constructed in time period T–1 

(This is usually called the permanent component). 

 bT-1 is the estimate of the growth rate of the time series constructed in time period 

T–1 (This is usually called the trend component). 

 Level estimate 

1 1(1 )( )T T T Ty b      
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 Trend estimate 

1 1( ) (1 )T T T Tb b     
 

 where  = smoothing constant for the level (0 ≤  ≤ 1) 

   = smoothing constant for the trend (0 ≤  ≤ 1) 

Holt-Winters Method 

 Estimate of the level 

1 1( / ) (1 )( )T T T L T Ty sn b      
 

 Estimate of the growth rate or trend 

1 1( ) (1 )T T T Tb b     
 

 Estimate of the seasonal factors 

( / ) (1 )T T T T Lsn y sn    
 

 where , , and δ are smoothing constants between 0 and 1, L = number of seasons in 

a year (L = 12 for monthly data, and L = 4 for quarterly data) 

ARIMA Model: 

Auto Regressive Integrated Moving Average (ARIMA) is a prediction model for time 

series analysis and forecasting 

 Here the terms indicate: 

Auto Regressive: lags of variables itself 

Integrated: Differencing steps required to make time series stationary 

Moving Average: lags of previous information shocks  

 ARIMA model is denoted as ARIMA(p,d,q) 

where 

p=number of autoregressive terms 

d=number of non-seasonal differences needed to make time series stationary 

q=number of lagged forecast errors in the prediction equation 

For ARIMA model building process there is a minimum of 30 data points required 

In an autoregressive integrated moving average model, the future value of a variable 

is assumed to be a linear function of several past observations and random errors. The 

underlying process that generate the time series has the form 
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1 1 2 2 1 1 2 2... ...t t t t p t t t q t qy c y y y                      
 

where,  and  are the actual and random error at time period t, respectively;  (i= 1, 2, 

…, p)   and  (j= 1, 2, …, q) are model parameters p and q are integers and often 

referred to as orders of the model 

Random errors are assumed to be independently and identically distributed with a 

mean zero and a constant variance of 𝜎2 

If q= 0, then the above equation becomes an AR model of order p. When p= 0, the 

model reduces to an MA model of order q.One central task of the ARIMA (p, d, q) 

model building is to determine the appropriate model order (p, q) where d is the order 

of differencing. 

ANN approach to time series forecasting:  

In the domain of time series analysis, the inputs are typically the past observations 

series and the output is the future value. The ANN performs the following nonlinear 

function mapping between the input and output 

1 2( ,..., , )t t t t p ty f y y y w     
 

where, w is a vector of all parameters and f  is a function of network structure and 

connection weights. Therefore, the neural network resembles a nonlinear 

autoregressive model. 

Single hidden layer multilayer feed forward network is the most popular for time 

series modeling and forecasting. This model is characterized by a network of three 

layers of simple processing units. The first layer is input layer, the middle layer is the 

hidden layer and the last layer is output layer. 

 

Fig 2: Architecture of ANN for time series forecasting 

The relationship between the output (𝑦𝑡 ) and the inputs (yt-1, yt-2,…,yt-p) can be 

mathematically represented as follows: 

0 0

q p

t j i j t i

j i

y f g y  

 

  
   

  
   

Output y(t) 
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where, 𝜔𝑗(𝑗 = 0,1,2, … . . , 𝑞)  and 𝜔𝑖𝑗(𝑖 = 0,1,2, … … , 𝑝, 𝑗 = 0,1,2, … . . , 𝑞) are the 

model parameters often called the connection weights, p is the number of input nodes 

and q is the number of hidden nodes, g and f denote the activation function at hidden 

and output layer respectively. Activation function defines the relationship between 

inputs and outputs of a network in terms of degree of the non-linearity. Most 

commonly used activation functions are as follows- 

Activation  function Equation 

Identity x  

Sigmoid 1

1 xe
 

TanH 
2

2
tanh( ) 1

1 x
x

e
 


 

ArcTan 1tan ( )x
 

Sinusoid sin( )x  

Gaussian 2xe
 

For time series forecasting sigmoid activation function is employed in hidden layer 

and identity activation function is employed in the output layer. 

The selection of appropriate number of hidden nodes as well as optimum number of 

lagged observation p for input vector is important in ANN modeling for determination 

of the autocorrelation structure present in a time series. Though there are no 

established theories available for the selection of p and q, hence experiments are often 

conducted for the determination of the optimal values of p and q. The connection 

weights of ANNs are determined by learning method. There are three common 

learning algorithms for ANN – 

1) Supervised Learning 

The supervised learning strategy consists of having available the desired outputs for a 

given set of input signals; in other words, each training sample is composed of the 

input signals and their corresponding outputs. Henceforth, it requires a table with 

input/output data, also called attribute/value table, which represents the process and 

its behavior. 

2) Unsupervised Learning 
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Different from supervised learning, the application of algorithm based on 

unsupervised learning does not require any knowledge of the respective desired 

outputs. Thus, the network needs to organize itself when there are existing 

particularities between the elements that compose the entire sample set, identifying 

subsets (or clusters) presenting similarities. The learning algorithm adjusts the 

synaptic weights and thresholds of the network in order to reflect these clusters within 

the network .itself. 

3) Reinforcement Learning 

It is the hybrid of supervised and unsupervised learning.  

For time series forecasting supervised learning approach is utilized. Gradient decent 

back propagation algorithm is one of the popular approach of supervised learning. 

Gradient decent back propagation algorithm 

The objective of training is to minimize the error function that measures the misfit 

between the predicted value and the actual value. The error function which is widely 

used is mean squared error which can be written as: 

2
2

1 1 0 0

1 1
( )

q pN N

i t j i j t i

n n j i

E e y f g y
N N

  

   

    
     

    
     

Where N is the total number of error terms. The parameters of the neural network are 

j  and i j  estimated by iteration. Initial connection weights are taken randomly 

from uniform distribution. In each iteration the connection weights changed by an 

amount j  

( ) ( 1)j j

j

E
t t   




     


 

where,   is the learning rate and 
j

E






 is the partial derivative of the function E with 

respect to the weight j .  is the momentum rate. The 
j

E






 can be represented as 

follows- 

( ) ( ) ( )j j

j

E
e n f x y n

w


   


 

where ( )je n is the residual at nth  iteration 
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( )f x = derivative of the activation function in the output layer. As in time series 

forecasting the activation function in the output layer is identity function hence ( )f x

=1. ( )jy n is the desired output. Now connection weights in from input to hidden nodes 

changed by an amount 
ij

 

( ) ( 1)ij i j

ij

E
t t   




     


 

where 

0

( ) ( )* ( )
q

j j

jij

E
g x e n w n

w 


 


  

where ( )g x is the activation function in the hidden layer. For sigmoid activation 

function 

( )g x = 
2

exp( )

(1 exp( ))

x

x



   

Learning rate is user defined parameter known as tuning parameter of neural network 

which determine how slow or fast the optimal weight is obtained. The learning rate 

must be set small enough to avoid divergence. The momentum term prevents the 

learning process from setting in a local minimum. Though there are no established 

theories available for the selection of learning rate and momentum, hence experiments 

are often conducted for the determination of the learning rate and momentum. 

Step by Step Modeling Procedure: 

1. Testing of Nonlinearity: 

As ANNs is suitable for nonlinear time series forecasting. Hence, prior to application 

of ANN the nonlinearity should be check. There are several tests for checking 

nonlinearity. BDS (Brock-Dechert-Scheinkman) test is of the popular approach for 

checking nonlinearity. This test utilizes the concept of spatial correlation from chaos 

theory. The computational procedure is given as follows 

i) Let the considered time series is 

  1 2 3[ , , ,..., ]i Nx x x x x  

ii) The next step is to specify a value of m (embedding dimension), embed the time 

series into m dimensional vectors, by taking each m successive points in the series. 

This transforms the series of scalars into a series of vectors with overlapping 

entries 
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1 1 2

2 2 3 1

1

( , ,..., )

( , ,..., )

.

.

.

( , ,..., )

m

m

m

m

m

N m N m N m N

x x x x

x x x x

x x x x



   







 

iii) In the third step correlation integral is computed, which measures the spatial 

correlation among the points, by adding the number of pairs of points ( i, j), where 

1≤ i ≤ N and 1≤ j≤N , in the m-dimensional space which are “close”  in the sense 

that the points are within a radius or tolerance  of each other. 

, , ;

1

( 1)
m i j

i jm m

C I
N N

 




  

where Ii,j;= 1 if m m

i jx x    

                    = 0 otherwise 

iv) If the time series is i.i.d. then C ,m [C ,1]
m

 

v) The BDS test statistics is as follows 

, ,1

,

,

[ ( ) ]m

m

m

m

N C C
BDS

V

 






  

where  
1

2 2 2 2 2 2

,

1
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j
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i j N
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The choice of m and  depends on number of data. The null hypothesis is data are 

independently and identically distributed (i.i.d) against the alternative hypothesis the 

data are not i.i.d.; this implies that the time series is non-linearly dependent. BDS test 

is a two-tailed test; the null hypothesis should be rejected if the BDS test statistic is 

greater than or less than the critical values.  

 

 

2. Division of the data: 
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Data is divided into training and test sets. The training sample is used for ANN for 

model development and the test sample is utilized to evaluate the forecasting 

performance. Sometimes a third one called the validation sample is also utilized to 

avoid the over fitting problem or to determine the stopping point of the training 

process. It is common to use one test set for both validation and testing purposes 

particularly for small data sets. The literature suggests little guidance in selecting the 

training and testing sets. Most commonly used rule are 90% vs. 10%, 80% vs. 20% or 

70% vs. 30%, etc. 

3. Data Normalization: 

Nonlinear activation functions such as the sigmoid function typically have the 

squashing role in restricting the possible output from a node to, typically, (0, 1).  

Hence, data normalization is done prior to training process begins.  

Normalization procedure 

Linear transformation to [0,1]: Xn=(X0-Xmin)/ ( Xmax-Xmin) 

Statistical normalization: Xn=(X0-mean(X))/var(X) 

simple normalization: Xn=X0/ Xmax 

4. Selection of appropriate number of hidden nodes as well as optimum number 

of lagged: 

 

There are no established theories available for the selection of p and q, hence 

experiments are often conducted for the determination of the optimal values of p and 

q. 

5. Estimation of connection weights: 

Estimation of connection weights are determined by learning algorithm. For time 

series forecasting most commonly used learning approach is gradient decent back 

propagation algorithm. 

6. Evaluating forecasting Performance 

Forecasting performance can be computed by several approaches. Some of the 

approaches are given below- 

1

1
ˆ / 100

n

t t t

t

MAPE y y y
n 

    

 
2

1

1
ˆ

n

t t

t

MSE y y
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2

1

1
ˆ

n

t t

t

RMSE y y
n 

   

where n is the total number of forecast values. ty is the actual value at period  t and ˆ
ty  

is the corresponding forecast value. The model with less MAPE/MSE/RMSE is 

preferred for forecasting purposes. 

Limitations of ANN for time series forecasting: 

i) ANNs are nonlinear time series model hence, for linear time series data the 

approach may not be better than linear statistical model. 

ii)  ANNs are black-box methods. There is no exact form to describe and analyze 

the relationship between inputs and outputs. This causes troublesome for 

interpretation of results. In addition, no formal statistical test is available. 

iii) ANNs are subjected to have over fitting problems owing to its large number of 

parameters. 

iv) There are no established theories available for the selection of p and q, hence 

experiments are often conducted for the determination of the optimal values of p 

and q which is tedious. 

v) ANNs usually require more data for time series forecasting. 

Support Vector Machine (SVM) in time series: 

Application of SVM in time series is generally utilized when the series shows non 

stationarity and non-linearity process. A tremendous advantage of SVM is that it is 

not model dependent as well as independent of stationarity and linearity. However, it 

may be computationally expensive  during the training. The training of the data driven 

prediction process SVM is done by a function which is estimated utilizing the 

observed data. Let, a time series 𝑦(𝑡)  which takes the data at time 𝑡{𝑡 =

0,1,2,3, … , 𝑁}. 

Now, the prediction function for linear regression is defined as: 

   𝑓(𝑦) = (𝑤. 𝑦) + 𝑐           

Whereas, for non linear regression, it will be: 

 𝑓(𝑦) = (𝑤. ∅(𝑦)) + 𝑐      

Where, 𝑤  dentoes the weights, 𝑐  represents threshold value and ∅(𝑦)  is known as 

kernel function.If the observed data is linear, then equation (1) will be used. But, for 

non-lineadata,the mapping of  𝑦(𝑡) is done to the higher dimension feature space 

through some function which is denoted as ∅(𝑦) and eventually it is transformed into 
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the linear process. Afer that, a linear regression will carry out in that feature space. 

The first and foremost objective is to find out the value of 𝑤 and 𝑐 which will be 

optimal. In SVM, there are two things viz., flatness of weights and error after the 

estimation which are to be minimized. The flatness of the weights is denoted by ‖𝑤‖2 

which is the eucledian norm. Firstly, one has to concentrate on minimization the 

‖𝑤‖2. Second important thing is the minimization of the error. This is also called as 

empirical risk. However, the overall aim is to minimize the regularized risk which is 

sum of empirical risk and the half of the product of the flatness of weight and a 

constant term which is known as regularized constant. The regularized risk can be 

written as- 

   𝑅𝑟𝑒𝑔(𝑓) = 𝑅𝑒𝑚𝑝(𝑓) +
𝜏

2
‖𝑤‖2    

Where, 𝑅𝑟𝑒𝑔(𝑓)is the regularized risk, 𝑅𝑒𝑚𝑝(𝑓) denotes the empirical risk, 𝜏  is as 

constant which is called as regularized constant/capacity control term and ‖𝑤‖2 is the 

flatness of weights. 

The regularization constant has a significant impact on a better fitting of the data and 

it can also be useful for the minimization of bad generalization effects. In the other 

words, this constant deals with the problem of over-fitting. The overfitting of the data 

can be redued by the proper selection of this constant value. The empirical risk can be 

defined as:- 

   𝑅𝑒𝑚𝑝(𝑓) =
1

𝑁
∑ 𝐿(𝑦(𝑖), 𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑁−1

𝑖=0  

Where, 𝛼(𝑖) denotes the truth data of predicted value, 𝐿(. ) is known as loss function 

and 𝑖 represents the index to the time series.There are various types of loss function in 

literature. But, two functions viz., vapnik loss function and quadratic loss function are 

most popular and they are generally used. The quadratic programming problem has 

been made to minimize the regularised risk which is- 

   Minimize,  
1

2
‖𝑤‖2 + 𝐷 ∑ 𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))𝑛

𝑖=1   

 Where, 

𝐿(𝛼(𝑖), 𝑓(𝑦(𝑖), 𝑤))=|𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)|−∈ if |𝛼(𝑖) − 𝑓(𝑦(𝑖), 𝑤)| ≥∈ 

 = 0; otherwise. 

Where, 𝐷 is a constant which equals to the summation normalization factor and ∈ 

represents the size of the tube. 
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The computation of ∈ and 𝐷 is done empirically because they are user defined. On 

has to choose proper value of 𝐷 and ∈. Now, dual optimization problem is formed 

using the lagrange multiplier which can be written as: 

Maximize, −
1

2
∑ (𝛽𝑖 − 𝛽𝑖

∗)𝑁
𝑖,𝑗=1 (𝛽𝑗 − 𝛽𝑗

∗)〈𝑦(𝑖), 𝑦(𝑗)〉−∈ ∑ (𝛽𝑖 − 𝛽𝑖
∗) +𝑁

𝑖=1

∑ 𝛼(𝑖)(𝛽𝑖 − 𝛽𝑖
∗)𝑁

𝑖=1         

Subject to,  ∑ (𝛽𝑖 − 𝛽𝑖
∗) = 0𝑁

𝑖−1  ; 𝛽𝑖 , 𝛽𝑖
∗ ∈ [0, 𝐷] 

The function 𝑓(𝑥) is defined as; 

   𝑓(𝑥) = ∑ (𝛽𝑖 − 𝛽𝑖
∗)𝑁

𝑖=1 〈𝑦, 𝑦(𝑖)〉 + 𝐶    

KKT conditions are used to get the solution of the weights. 

The significance of kernel function in non-linear support vector machine (NLSVR) is 

very much imporatnt for mapping the data 𝑦(𝑖)into higher dimension feature space  

∅( 𝑦(𝑖))in which the data becomes linear. Generally notation for kernel function is 

given as; 

   𝑘(𝑦, 𝑦′) = 〈∅(𝑦), ∅(𝑦′)〉;              

There are many methods in literature to solve the quadartic programming. However, 

the most used method is sequential minimization optimization (SMO) algorithm.  
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An experiment is usually associated with a scientific method for testing certain 

phenomena. An experiment facilitates the study of such phenomena under controlled 

conditions and thus creating controlled condition is an essential component. Scientists 

in the biological fields who are involved in research constantly face problems 

associated with planning, designing and conducting experiments. Basic familiarity 

and understanding of statistical methods that deal with issues of concern would be 

helpful in many ways. Researchers who collect data and then look for a statistical 

technique that would provide valid results will find that there may not be solutions to 

the problem and that the problem could have been avoided first by a properly 

designed experiment. Obviously it is important to keep in mind that we cannot draw 

valid conclusions from poorly planned experiments. Second, the time and cost 

involved in many experiments are enormous and a poorly designed experiment 

increases such costs in time and resources. For example, an agronomist who carries 

out fertilizer experiment knows the time limitation of the experiment. He knows that 

when seeds are to be planted and harvested. The experimenter plot must include all 

components of a complete design. Otherwise what is omitted from the experiment 

will have to be carried out in subsequent trials in the next cropping season or next 

year. The additional time and expenditure could be minimized by a properly planned 

experiment that will produce valid results as efficiently as possible. Good 

experimental designs are products of the technical knowledge of one's field, an 

understanding of statistical techniques and skill in designing experiments. 

Any research endeavor may entail the phases of Conception, Design, Data collection, 

Analysis and Dissemination. Statistical methodologies can be used to conduct better 

scientific experiments if they are incorporated into entire scientific process, i.e., From 

inception of the problem to experimental design, data analysis and interpretation. 

When planning experiments we must keep in mind that large uncontrolled variations 

are common occurrences. Experiments are generally undertaken by researchers to 

compare effects of several conditions on some phenomena or in discovering an 

unknown effect of particular process. An experiment facilitates the study of such 
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phenomena under controlled conditions. Therefore the creation of controlled 

condition is the most essential characteristic of experimentation. How we formulate 

our questions and hypotheses are critical to the experimental procedure that will 

follow. For example, a crop scientist who plants the same variety of a crop in a field 

may find variations in yield that are due to periodic variations across a field or to 

some other factors that the experimenter has no control over. The methodologies used 

in designing experiments will separate with confidence and accuracy a varietal 

difference of crops from the uncontrolled variations. 

The different concepts in planning of experiment can be well explained through 

chapati tasting experiment.  

Consider an experiment to detect the taste difference in chapati made of wheat flour 

of c306 and pv 18 varieties. The null hypothesis we can assume here is that there is 

no taste difference in chapatis made of c306 or pv18 wheat flours. After the null 

hypothesis is set, we have to fix the level of significance at which we can operate. 

The pv18 is a much higher yielding variety than c306. Hence a false rejection may 

not help the country to grow more pv18 and the wheat production may decrease 

while a false acceptance may give more production of pv18 wheat and the 

consumption may be less or practically nil. Thus the false acceptance or false 

rejection are of practically equal consequence and we agree to choose the level of 

significance at α = 0.05. Now to execute the experiment, a subject is to be found with 

extrasensory powers who can detect the taste differences. The colours of c306 and 

pv18 are different and anyone, even without tasting the chapatis, can distinguish the 

chapatis of either kind by a mere glance. Thus the taster of the chapatis has to be 

blindfolded before the chapatis are given for tasting. Afterwards, the method is to be 

decided in which the experiment will be conducted. The experiment can be 

conducted in many ways and of them three methods are discussed here: 

 Give the taster equal number of chapatis of either kind informing the taster about 

it. 

 Give the taster pairs of chapatis of each kind informing the taster about it. 

 Give the taster chapatis of either kind without providing him with any 

information. Let us use 6 chapatis in each of these methods. 

Under first method of experimentation, if the null hypothesis is true, then the 

experimenter cannot distinguish the two kinds of chapaties and he will randomly 
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select 3 chapatiS out of 6 chapaties given to him, as made of pvl8 wheat. In that case, 

all correct guesses are made if selection exactly coincides with the exactly used wheat 

variety and the probability for such an occurrence is:  

  05.0
20

11
6
3


 

Under second method,the pv18 wheat variety chapaties are selected from each pair 

given if the null hypothesis is true. Furthermore, independent choices are made of 

pv18 variety chapaties from each pair. Thus the probability of making all correct 

guesses is 

1/(2)3 = 1/8 = 0.125. 

In third method the experimenter has to make the choice for each chapati and the 

situation is analogous at calling heads or tails in a coin tossing experiment. The 

probability of making all correct guesses would then be: 

1/26 = 1/64 = .016. 

If the experimenter makes all correct guesses in third method as its probability is 

smaller than the selected  = 0.05, we can reject the null hypothesis and conclude that 

the two wheat varieties give different tastes at chapaties. In other methods the 

probability of making all correct guesses does not exceed  = 0.05 and hence with 

either method, we cannot   reject    the   null    hypothesis    even   if   all   correct    

guesses     are        made. 

However, if 8 chapaties are used by first method and if the taster guesses all of them, 

we can reject the null hypothesis, at 0.05 level of significance, as the probability of 

making all correct guesses would then be 
  56

11
8

3


 which is smaller than 0.05. 8 

chapaties will not enable us to reject the null hypothesis even if all correct guesses are 

made by second method as the probability of making all correct guesses is 

06.0
16

1

4

1
4









 it is easy to see that if 10 chapaties are given by second method 

and if all correct guesses are made, then we can reject the null hypothesis at 0.05 level 

of significance. Not to unduly influence the taster in making guesses, we should also 

present the chapaties in a random order rather than systematically presenting them for 

tasting. 

The above discussed chapati tasting experiment brings home the following salient 

features of experimentation: 
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 All the extraneous variations in the data should be eliminated or controlled 

excepting the variations due to the treatments under study. One should not 

artificially provide circumstances for one treatment to show better results than 

others. 

 Far a given size of the experiment, though the experiment can be done in many 

ways, even the best results may not turn out to be significant with some designs, 

while some other design can detect the treatment differences. Thus there is an 

imperative need the choose the right type of design, before the commencement 

of the experiment, lest the results may be useless. 

 If for some specific reasons related to the nature .of the experiment, a particular 

method has to be used in experimentation, then adequate number of replications 

of each treatment have to be provided in order to get valid inferences.  

 The treatments have to be randomly allocated to the experimental units. 

The terminologies often used in planning and designing of experiments are listed 

below. 

Treatment 

Treatment refers to controllable quantitative or qualitative factors imposed at a certain 

level by the experimenter. For an agronomist several fertilizer concentrations applied 

to a particular crop or a variety of crop is a treatment. Similarly, an animal scientist 

looks upon several concentrations of a drug given to animal species as a treatment. In 

agribusiness we may look upon impact of advertising strategy on sales a treatment. To 

an agricultural engineer, different levels of irrigation may constitute a treatment. 

Experimental Unit 

An experimental unit is an entity that receives a treatment e.g., for an agronomist or 

horticulturist it may be a plot of a land or batch of seed, for an animal scientist it may 

be a group of pigs or sheep, for a scientist engaged in forestry research it may be 

different tree species occurring in an area, and for an agricultural engineer it may be 

manufactured item. Thus, an experimental unit maybe looked upon as a small 

subdivision of the experimental material, which receives the treatment. 

Experimental Error 

Differences in yields arising out of experimental units treated alike are called 

Experimental Error. 

Controllable conditions in an experiment or experimental variable are terms as a 
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factor. For example, a fertilizer, a new feed ration, and a fungicide are all considered 

as factors. Factors may be qualitative or quantitative and may take a finite number of 

values or type. Quantitative factors are those described by numerical values on some 

scale. The rates of application of fertilizer, the quantity of seed sown are examples of 

quantitative factors. Qualitative factors are those factors that can be distinguished 

from each other, but not on numerical scale e.g., type of protein in a diet, sex of an 

animal, genetic make up of plant etc. While choosing factors for any experiment 

researcher should ask the following questions, like What treatments in the experiment 

should be related directly to the objectives of the study? Does the experimental 

technique adopted require the use of additional factors? Can the experimental unit be 

divided naturally into groups such that the main treatment effects are different for the 

different groups? What additional factors should one include in the experiment to 

interact with the main factors and shed light on the factors of direct interest? How 

desirable is it to deliberately choose experimental units of different types? 

Basic Principles of Design of Experiments 

Given a set of treatments which can provide information regarding the objective of an 

experiment, a design for the experiment, defines the size and number of experimental 

units, the manner in which the treatments are allotted to the units and also appropriate 

type and grouping of the experimental units. These requirements of a design ensure 

validity, interpretability and accuracy of the results obtainable from an analysis of the 

observations. 

These purposes are served by the principles of:  

 Randomization 

 Replication 

 Local (Error) control 

Randomization 

After the treatments and the experimental units are decided the treatments are allotted 

to the experimental units at random to avoid any type of personal or subjective bias, 

which may be conscious or unconscious. This ensures validity of the results. It helps 

to have an objective comparison among the treatments. It also ensures independence 

of the observations, which is necessary for drawing valid inference from the 

observations by applying appropriate statistical techniques. 

Depending on the nature of the experiment and the experimental units, there are 
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various experimental designs and each design has its own way of randomization. 

Various speakers while discussing specific designs in the lectures to follow shall 

discuss the procedure of random allocation separately. 

Replication 

If a treatment is allotted to r experimental units in an experiment, it is said to be 

replicated r times. If in a design each of the treatments is replicated r times, the design 

is said to have r replications. Replication is necessary to 

 Provide an estimate of the error variance which is a function of the differences 

among observations from experimental units under identical treatments. 

 Increase the accuracy of estimates of the treatment effects. 

Though, more the number of replications the better it is, so far as precision of 

estimates is concerned, it cannot be increased infinitely as it increases the cost of 

experimentation. Moreover, due to limited availability of experimental resources too 

many replications cannot be taken. 

The number of replications is, therefore, decided keeping in view the permissible 

expenditure and the required degree of precision. Sensitivity of statistical methods for 

drawing inference also depends on the number of replications. Sometimes this 

criterion is used to decide the number of replications in specific experiments. 

Error variance provides a measure of precision of an experiment, the less the error 

variance the more precision. Once a measure of error variance is available for a set of 

experimental units, the number of replications needed for a desired level of sensitivity 

can be obtained as below. 

Given a set of treatments an experimenter may not be interested to know if two 

treatment differ in their effects by less than a certain quantity, say, d. In other words, 

he wants an experiment that should be able to differentiate two treatments when they 

differ by d or more. 

The significance of the difference between two treatments is tested by t-test where   

 ,
r/s2

yy
t

2

ji 
  

Here, ,y i  and jy  are the arithmetic means of two treatment effects each based on r 

replications, s2 is measure of error variation. 

Given a difference d, between two treatment effects such that any difference greater 

than d should be brought out as significant by using a design with r replications, the 
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following equation provides a solution of r. 

,
r/s2

d
t

2
   

  2

2

2

0 s2x
d

t
r                          

where 0t is the critical value of the t-distribution at the desired level of significance, 

that is, the value of t at 5 or 1 per cent level of significance read from the t-table. If s2 

is known or based on a very large number of observations, made available from some 

pilot pre-experiment investigation, then t is taken as the normal variate. If s2 is 

estimated with n degree of freedom (d.f.) then t0 corresponds to n d.f. 

When the number of replication is r or more as obtained above, then all differences 

greater than d are expected to be brought out as significant by an experiment when it 

is conducted on a set of experimental units which has variability of the order of s2. For 

example, in an experiment on wheat crop conducted in a seed farm in Bhopal, to 

study the effect of application of nitrogen and phosphorous on yield a randomized 

block design with three replications was adopted. There were 11 treatments two of 

which were (i) 60 Kg/ha of nitrogen (ii) 120 Kg/ha of nitrogen. The average yield 

figures for these two application of the fertilizer were 1438 and 1592 Kg/ha 

respectively and it is required that differences of the order of 150 Kg/ha should be 

brought out significant. The error mean square (s2) was 12134.88. Assuming that the 

experimental error will be of the same order in future experiments and t0 is of the 

order of 2.00, which is likely as the error d.f. is likely to be more than 30 as there are 

11 treatments; Substituting in (1), we get: 

  .)approx( 4
150

88.2134x2x2

d

st2
r

2

2

2

22

0   

Thus, an experiment with 4 replications is likely to bring out differences of the order 

of 150 Kg/ha as significant. 

Another criterion for determining r is to take a number of replications which ensures 

at least 10 d.f. for the estimate of error variance in the analysis of variance of the 

design concerned since the sensitivity of the experiment will be very much low as the 

F test (which is used to draw inference in such experiments) is very much unstable 

below 10 d.f. 
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Local Control 

The consideration in regard to the choice of number of replications ensure reduction 

of standard error of the estimates of the treatment effect because the standard error of 

the estimate of a treatment effect is rs /2 , but it cannot reduce the error variance 

itself. It is, however, possible to devise methods for reducing the error variance. Such 

measures are called error control or local control. One such measure is to make the 

experimental units homogenous. Another method is to form the units into several 

homogenous groups, usually called blocks, allowing variation between the groups. 

A considerable amount of research work has been done to divide the treatments into 

suitable groups of experimental units so that the treatment effect can be estimated 

more precisely Extensive use of combinatorial mathematics has been made for 

formation of such group treatments. This grouping of experiment units into different 

groups has led to the development of various designs useful to the experimenter. We 

now briefly describe the various term used in designing of an experiment 

Blocking 

It refers to methodologies that form the units into homogeneous or pre-experimental 

subject-similarity groups. It is a method to reduce the effect of variation in the 

experimental material on the Error of Treatment of Comparisons. For example, 

animal scientist may decide to group animals on age, sex, breed or some other factors 

that he may believe has an influence on characteristic being measured. Effective 

blocking removes considerable measure of variation nom the experimental error. The 

selection of source of variability to be used as basis of blocking, block size, block 

shape and orientation are crucial for blocking. The blocking factor is introduced in the 

experiment to increase the power of design to detect treatment effects. 

The importance of good designing is inseparable from good research (results). The 

following examples point out the necessity for a good design that will yield good 

research. First, a nutrition specialist in developing country is interested in determining 

whether mother's milk is better than powdered milk for children under age one. The 

nutritionist has compared the growth of children in village A, who are all on mother's 

milk against the children in village B, who use powdered milk. Obviously, such a 

comparison ignores the health of the mothers, the sanitary-conditions of the villages, 

and other factors that may have contributed to the differences observed without any 

connection to the advantages of mother's milk or the powdered milk on the children. 
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A proper design would require that both mother's milk and the powdered milk be 

alternatively used in both villages, or some other methodology to make certain that 

the differences observed are attributable to the type of milk consumed and not to 

some uncontrollable factor. Second, a crop scientist who is comparing 2 varieties of 

maize, for instance, would not assign one variety to a location where such factors as 

sun, shade, unidirectional fertility gradient, and uneven distribution of water would 

either favor or handicap it over the other. If such a design were to be adopted, the 

researcher would have difficulty in determining whether the apparent difference in 

yield was due to variety differences or resulted from such factors as sun, shade, soil 

fertility of the field, or the distribution of water. These two examples illustrate the 

type of poorly designed experiments that are to be avoided. 

Analysis of Variance 

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in 

the responses into different assignable sources of variation, some of which are 

specifiable and others unknown. Total variance in the sample data is partitioned and is 

expressed as the sum of its non-negative components is a measure of the variation due 

to some specific independent source or factor or cause. ANOVA consists in 

estimation of the amount of variation due to each of the independent factors (causes) 

separately and then comparing these estimates due to ascribable factors (causes) with 

the estimate due to chance factor  the latter being known as experimental error or 

simply the error. 

Total variation present in a set of observable quantities may, under certain 

circumstances, be partitioned into a number of components associated with the nature 

of classification of the data. The systematic procedure for achieving this is called 

Analysis of Variance. The initial techniques of the analysis of variance were 

developed by the statistician and geneticist R. A. Fisher in the 1920s and 1930s, and 

is sometimes known as Fisher's analysis of variance, due to the use of Fisher's F-

distribution as part of the test of statistical significance. 

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are 

differences between the average value, or mean, across several population groups. 

With this model, the response variable is continuous in nature, whereas the predictor 

variables are categorical. For example, in a clinical trial of hypertensive patients, 

ANOVA methods could be used to compare the effectiveness of three different drugs 

in lowering blood pressure. Alternatively, ANOVA could be used to determine 

http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Geneticist
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/Statistical_significance
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whether infant birth weight is significantly different among mothers who smoked 

during pregnancy relative to those who did not. In a particular case, where two 

population means are being compared, ANOVA is equivalent to the independent two-

sample t-test. 

The fixed-effects model of ANOVA applies to situations in which the experimenter 

applies several treatments to the subjects of the experiment to see if the response 

variable values change. This allows the experimenter to estimate the ranges of 

response variable values that the treatment would generate in the population as a 

whole. In it factors are fixed and are attributable to a finite set of levels of factor eg. 

Sex, year, variety, fertilizer etc.  

Consider for example a clinical trial where three drugs are administered on a group of 

men and women some of whom are married and some are unmarried.  The three 

classifications of sex, drug and marital status that identify the source of each datum 

are known as factors.  The individual classification of each factor is known as levels 

of the factors.  Thus, in this example there are 3 levels of factor drug, 2 levels of 

factor sex and 2 levels of marital status. Here all the effects are fixed.  Random effects 

models are used when the treatments are not fixed. This occurs when the various 

treatments (also known as factor levels) are sampled from a larger population. When 

factors are random, these are generally attributable to infinite set of levels of a factor 

of which a random sample are deemed to occur   eg. research stations, clinics in 

Delhi, sire, etc. Suppose new inject-able insulin is to be tested using 15 different 

clinics of Delhi state. It is reasonable to assume that these clinics are random sample 

from a population of clinics from Delhi. It describe the situations where both fixed 

and random effects are present. 

In any ANOVA model, general mean is always taken as fixed effect and error is 

always taken as random effect. Thus class of model can be classified on the basis of 

factors, other than these two factors. ANOVA can be viewed as a generalization of t-

tests: a comparison of differences of means across more than two groups.  

The ANOVA is valid under certain assumptions. These assumptions are: 

 Samples have been drawn from the populations that are normally distributed. 

 Observations are independent and are distributed normally with mean zero and 

variance σ2. 

 Effects are additive in nature. 

http://en.wikipedia.org/wiki/Response_variable
http://en.wikipedia.org/wiki/Response_variable
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The ANOVA is performed as one-way, two-way, three-way, etc. ANOVA when the 

number of factors is one, two or three respectively. In general if the number of factors 

is more, it is termed as multi-way ANOVA.   

Completely Randomized Design 

Designs are usually characterized by the nature of grouping of experimental units and 

the procedure of random allocation of treatments to the experimental units.  In a 

completely randomized design the units are taken in a single group.  As far as 

possible the units forming the group are homogeneous.  This is a design in which only 

randomization and replication are used.  There is no use of local control here.  

Let there be v treatments in an experiment and n homogeneous experimental units.  

Let the ith  treatment be replicated ir times (i = 1,2,…, v) such that nr
v

1i

i 


. The 

treatments are allotted at random to the units. 

Normally the number of replications for different treatments should be equal as it 

ensures equal precision of estimates of the treatment effects.  The actual number of 

replications is, however, determined by the availability of experimental resources and 

the requirement of precision and sensitivity of comparisons.  If the experimental 

material for some treatments is available in limited quantities, the numbers of their 

replication are reduced.  If the estimates of certain treatment effects are required with 

more precision, the numbers of their replication are increased.   

Randomization 

There are several methods of random allocation of treatments to the experimental 

units.  The v treatments are first numbered in any order from 1 to v.  The n 

experimental units are also numbered suitably.  One of the methods uses the random 

number tables.  Any page of a random number table is taken.  If v is a one-digit 

number, then the table is consulted digit by digit.  If v is a two-digit number, then 

two-digit random numbers are consulted.  All numbers greater than v including zero 

are ignored. 

Let the first number chosen be 1n ; then the treatment numbered 1n is allotted to the 

first unit.  If the second number is 2n  which may or may not be equal to n1 then the 

treatment numbered 2n  is allotted to the second unit.  This procedure is continued.  

When the ith treatment number has occurred ir  times,  vi ,...,2,1  this treatment is 

ignored subsequently.  This process terminates when all the units are exhausted. 
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One drawback of the above procedure is that sometimes a very large number of 

random numbers may have to be ignored because they are greater than v.  It may even 

happen that the random number table is exhausted before the allocation is complete.  

To avoid this difficulty the following procedure is adopted.  We have described the 

procedure by taking v to be a two-digit number. 

Let P be the highest two-digit number divisible by v. Then all numbers greater than P 

and zero are ignored.  If a selected random number is less than v, then it is used as 

such.  If it is greater than or equal to v, then it is divided by v and the remainder is 

taken to the random number.  When a number is completely divisible by v, then the 

random number is v.  If v is an n-digit number, then P is taken to be the highest n-digit 

number divisible by v.  The rest of the procedure is the same as above. 

Analysis   

This design provides a one-way classified data according to levels of a single factor.  

For its analysis the following model is taken: 

                       ,iijiij r1,jv;,1,i           ,ety     

where ijy is the random variable corresponding to the observation ijy obtained from 

the jth replicate of the ith treatment,  is the general mean, it is the fixed effect of the ith 

treatment and ije  is the error component which is a random variable assumed to be 

normally and independently distributed with zero means and a constant variance  2.   

Let  vi    Ty i

j

ij ,...,2,1  be the total of observations from ith treatment.  Let 

further .GT
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The hypothesis that the treatments have equal effects is tested by F-test where F is the 

ratio MST / MSE with (v - 1) and (n - v) degrees of freedom.   

3. Randomized Complete Block Design 

It has been seen that when the experimental units are homogeneous then a CRD 

should be adopted.  In any experiment, however, besides treatments the experimental 

material is a major source of variability in the data.  When experiments require a large 

number of experimental units, the experimental units may not be homogeneous, and 

in such situations CRD can not be recommended.   When the experimental units are 

heterogeneous, a part of the variability can be accounted for by grouping the 

experimental units in such a way that experimental units within each group are as 

homogeneous as possible.  The treatments are then allotted randomly to the 

experimental units within each group (or blocks). The principle of first forming 

homogeneous groups of the experimental units and then allotting at random each 

treatment once in each group is known as local control.  This results in an increase in 

precision of estimates of the treatment contrasts, due to the fact that error variance 

that is a function of comparisons within blocks, is smaller because of homogeneous 

blocks.  This type of allocation makes it possible to eliminate from error variance a 

portion of variation attributable to block differences.  If, however, variation between 

the blocks is not significantly large, this type of grouping of the units does not lead to 

any advantage; rather some degrees of freedom of the error variance is lost without 

any consequent decrease in the error variance.  In such situations it is not desirable to 

adopt randomized complete block designs in preference to completely randomized 

designs. 

If the number of experimental units within each group is same as the number of 

treatments and if every treatment appears precisely once in each group then such an 

arrangement is called a randomized complete block design. 

Suppose the experimenter wants to study v treatments.  Each of the treatments is 

replicated r times (the number of blocks) in the design.  The total number of 

experimental units is, therefore, vr.  These units are arranged into r groups of size v 

each.  The error control measure in this design consists of making the units in each of 

these groups homogeneous.  

The number of blocks in the design is the same as the number of replications.  The v 

treatments are allotted at random to the v plots in each block.  This type of 

homogeneous grouping of the experimental units and the random allocation of the 
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treatments separately in each block are the two main characteristic features of 

randomized block designs.  The availability of resources and considerations of cost 

and precision determine actual number of replications in the design.  

Analysis 

The data collected from experiments with randomized block designs form a two-way 

classification, that is, classified according to the levels of two factors, viz., blocks and 

treatments.  There are vr cells in the two-way table with one observation in each cell.  

The data are orthogonal and therefore the design is called an orthogonal design. We 

take the following model:  

 ,
r,...,2,1j

;v,...,2,1i
            ,ebty ijjiij 












   

where ijy  denotes the observation from ith treatment in jth block.  The fixed effects

ji b,t,  denote respectively the general mean, effect of the ith treatment and effect of 

the jth block. The random variable ije  is the error component associated with ijy .  

These are assumed to be normally and independently distributed with zero means and 

a constant variance  2.   

Following the method of analysis of variance for finding sums of squares due to 

blocks, treatments and error for the two-way classification, the different sums of 

squares are obtained as follows: Let  v,...,2,1i  Ty i
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ANALYSIS OF VARIANCE  
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Error (r - 1)(v - 1) SSE = by subtraction MSE = 

SSE / (v - 1)(r - 1) 
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The hypothesis that the treatments have equal effects is tested by F-test, where F is 

the ratio MST / MSE with (v - 1) and (v - 1)(r - 1) degrees of freedom.  We may then 

be interested to either compare the treatments in pairs or evaluate special contrasts 

depending upon the objectives of the experiment.  This is done as follows:   

The critical difference for testing the significance of the difference of two treatment 

effects, say ji tt   is r/MSE2t.D.C 2/),1r)(1v(  , where 2/),1r)(1v(t   is 

the value of Student's t at the level of significance  and degree of freedom (v - 1)(r - 

1).  If the difference of any two-treatment means is greater than the C.D. value, the 

corresponding treatment effects are significantly different.  

4. Latin Square Design 

Latin square designs are normally used in experiments where it is required to remove 

the heterogeneity of experimental material in two directions.  These designs require 

that the number of replications equal the number of treatments or varieties.   

Definition 1.  A Latin square arrangement is an arrangement of v symbols in v2
 cells 

arranged in v rows and v columns, such that every symbol occurs precisely once in 

each row and precisely once in each column.  The term v is known as the order of the 

Latin square. 

If the symbols are taken as A, B, C, D, a Latin square arrangement of order 4 is as 

follows: 

    A B C D 

    B C D A 

    C D A B 

    D A B C 
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A Latin square is said to be in the standard form if the symbols in the first row and 

first column are in natural order, and it is said to be in the semi-standard form if the 

symbols of the first row are in natural order.  Some authors denote both of these 

concepts by the term standard form.  However, there is a need to distinguish between 

these two concepts.  The standard form is used for randomizing the Latin-square 

designs, and the semi-standard form is needed for studying the properties of the 

orthogonal Latin squares. 

Definition 2.  If in two Latin squares of the same order, when superimposed on one 

another, every ordered pair of symbols occurs exactly once, the two Latin squares are 

said to be orthogonal.  If the symbols of one Latin square are denoted by Latin letters 

and the symbols of the other are denoted by Greek letters, the pair of orthogonal Latin 

squares is also called a graeco-latin square. 

Definition 3.  If in a set of Latin squares every pair is orthogonal, the set is called a 

set of mutually orthogonal latin squares (MOLS).  It is also called a hypergraeco 

latin square. 

The following is an example of graeco latin square:  

         

ABCD

BADC

CDAB

DCBA

                       









                         









ABCD

BADC

CDAB

DCBA

                                           

We can verify that in the above arrangement every pair of ordered Latin and Greek 

symbols occurs exactly once, and hence the two latin squares under consideration 

constitute a graecolatin square. 

It is well known that the maximum number of MOLS possible of order v is v - 1.  A 

set of v - 1 MOLS is known as a complete set of MOLS.  Complete sets of MOLS of 

order v exist when v is a prime or prime power.  

Randomization 

According to the definition of a Latin square design, treatments can be allocated to the 

v2 experimental units (may be animal or plots) in a number of ways.  There are, 

therefore, a number of Latin squares of a given order.  The purpose of randomization 
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is to select one of these squares at random.  The following is one of the methods of 

random selection of Latin squares. 

Let a v  v Latin square arrangement be first written by denoting treatments by Latin 

letters A, B, C, etc. or by numbers 1, 2, 3, etc.  Such arrangements are readily 

available in the Tables for Statisticians and Biometricians  (Fisher and Yates, 1974).  

One of these squares of any order can be written systematically as shown below for a 

55 Latin square: 

                                         

DCBAE

CBAED

BAEDC

AEDCB

EDCBA

 

For the purpose of randomization rows and columns of the Latin square are 

rearranged randomly.  There is no randomization possible within the rows and/or 

columns.  For example, the following is a row randomized square of the above 55 

Latin square; 

                                          

BAEDC

CBAED

DCBAE

AEDCB

EDCBA

 

Next, the columns of the above row randomized square have been rearranged 

randomly to give the following random square: 

                                           

ACEDB

BDAEC

CEBAD

EBDCA

DACBE

 

As a result of row and column randomization, but not the randomization of the 

individual units, the whole arrangement remains a Latin square. 

Analysis of Latin Square Designs 

In Latin square designs there are three factors.  These are the factors P, Q, and 

treatments.  The data collected from this design are, therefore, analyzed as a three-

way classified data.  Actually, there should have been 3v  observations as there are 

three factors each at v levels.  But because of the particular allocation of treatments to 
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the cells, there is only one observation per cell instead of v in the usual three way 

classified orthogonal data.  As a result we can obtain only the sums of squares due to 

each of the three factors and error sum of squares.  None of the interaction sums of 

squares of the factors can be obtained.  Accordingly, we take the model 

 ijssjiijs etcrY     

where ijsy  denotes the observation in the ith row, jth column and under the sth 

treatment;   v,...,2,1s,j,it,c,r, sji   are fixed effects denoting in order the general 

mean, the row, the column and the treatment effects.  The ijse is the error component, 

assumed to be independently and normally distributed with zero mean and a constant 

variance, 2 . 

The analysis is conducted by following a similar procedure as described for the 

analysis of two-way classified data.  The different sums of squares are obtained as 

below:  Let the data be arranged first in a row  column table such that ijy denotes the 

observation of (i,  j)th cell of table. 

Let  ,v1,2,...,i total row iyR

j

th
iji 

 ,v1,2,...,j total column jyC th

i

ijj   sT  sum of those observations which 

come from sth treatment (s= 1,2,…,v),        .total grandRG

i

i   Correction factor, 

C.F.= .
v

G

2

2

 Treatment sum of squares = .F.C
v

T

s

2
s  , Row sum of squares = 

.F.C
v

R

i

2
i  ,   Column sum of squares = .F.C

v

C

j

2
j


 
Analysis of Variance of v  v Latin Square Design 

Sources of  Variation D.F. S.S. M.S. F 
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The hypothesis of equal treatment effects is tested by F-test, where F is the ratio of 

treatment mean squares to error mean squares.  If F is not significant, treatment 

effects do not differ significantly among themselves.  If F is significant, further 

studies to test the significance of any treatment contrast can be made in exactly the 

same way as discussed for randomized block designs. 
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ANCOVA 

Anindita Datta 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 

anindita.datta@icar.gov.in 

Introduction 

The meaning of ANVOVA is Analysis of Covariance. It is a general linear model with 

one continuous outcome variable (quantitative) and one or more factor variables 

(qualitative). ANCOVA is a merger of ANOVA and regression for continuous variables. 

ANCOVA tests whether certain factors have an effect on the outcome variable after 

removing the variance for which quantitative predictors (covariates) account. The 

inclusion of covariates can increase statistical power because it accounts for some of 

the variability. 

It is well known that in designed experiments the ability to detect existing 

differences among treatments increases as the size of the experimental error 

decreases, a good experiment attempts to incorporate all possible means of 

minimizing the experimental error. Besides proper experimentation, a proper data 

analysis also helps in controlling experimental error. In situations where blocking 

alone may not be able to achieve adequate control of experimental error, proper 

choice of data analysis may help a great deal. By measuring one or more covariates - 

the characters whose functional relationships to the character of primary interest 

are known - the Analysis of Covariance (ANCOVA) can reduce the variability among 

experimental units by adjusting their values to a common value of the covariates. 

For example, in an animal feeding trial, the initial body weight of the animals usually 

differs. Using this initial body weight as a covariate, the final weights recorded after 

the animals have been subjected to various physiological feeds (treatments) can be 

adjusted to the values that would have been obtained had there been no variation in 

the initial body weights of the animals at the start of the experiment. An another 

example, in a field experiment where rodents have (partially) damaged some of the 

plots, covariance analysis with rodent damage as a covariate could be useful in 

adjusting plot yields to the levels that they should have been had there been no 

rodent damage in any plot. 

 

http://www.answers.com/topic/general-linear-model
http://www.answers.com/topic/analysis-of-variance
http://www.answers.com/topic/regression-analysis
http://www.answers.com/topic/covariate
http://www.answers.com/topic/statistical-power
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ANCOVA requires measurement of the character of primary interest plus the 

measurement of one or more variables known as covariates. It also requires that the 

functional relationship of the covariates with the character of primary interest is 

known beforehand. Generally a linear relationship is assumed, though other type of 

relationships could also be assumed. 

Consider the case of a variety trial in which weed incidence is used as a covariate. 

With a known functional relationship between weed incidence and grain yield, the 

character of primary interest, the covariance analysis can adjust grain yield in each 

plot to a common level of weed incidence. With this adjustment, the variation in 

yield due to weed incidence is quantified and effectively separated from that due to 

varietal difference. 

ANCOVA can be applied to any number of covariates and to any type of functional 

relationship between variables viz. quadratic, inverse polynomial, etc. Here we 

illustrate the use of covariance analysis with the help of a single covariate that is 

linearly related with the character of primary interest. It is expected that this 

simplification shall not unduly reduce the applicability of the technique, as a single 

covariate that is linearly related with the primary variable is adequate for most of 

the experimental situations in agricultural research. 

Uses of Covariance Analysis in Agricultural Research 

There are several important uses of covariance analysis in agricultural research. 

Some of the most important ones are: 

1. To control experimental error and to adjust treatment means. 

2. To aid in the interpretation of experimental results. 

3. To estimate missing data. 

Error Control and Adjustment of Treatment Means 

It is now well realized that the size of experimental error is closely related to the 

variability between experimental units. It is also known that proper blocking can 

reduce experimental error by maximizing the differences between the blocks and 

thus minimizing differences within blocks. Blocking, however, can not cope with 

certain types of variability such as spotty soil heterogeneity and unpredictable insect 

incidence. In both instances, heterogeneity between experimental plots does not 

follow a definite pattern, which causes difficulty in getting maximum differences 
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between blocks. Indeed, blocking is ineffective in the case of nonuniform insect 

incidences because blocking must be done before the incidence occurs. 

Furthermore, even though it is true that a researcher may have some information on 

the probable path or direction of insect movement, unless the direction of insect 

movement coincides with the soil fertility gradient, the choice of whether soil 

heterogeneity or insect incidence should be the criterion for blocking is difficult. The 

choice is especially difficult if both sources of variation have about the same 

importance. 

Use of covariance analysis should be considered in experiments in which blocking 

couldn't adequately reduce the experimental error. By measuring an additional 

variable (e.g., covariate X) that is known to be linearly related to the primary variable 

Y, the source of variation associated with the covariate can be deducted from 

experimental error.  This adjusts the primary variable Y linearly upward or 

downward, depending on the relative size of its respective covariate. The adjustment 

accomplishes two important improvements: 

1. The treatment mean is adjusted to a value that it would have had; had there 

been no differences in the values of the covariate. 

2. The experimental error is reduced and the precision for comparing treatment 

means is increased. 

Although blocking and covariance techniques are both used to reduce experimental 

error, the differences between the two techniques are such that they are usually not 

interchangeable. The ANCOVA can be used only when the covariate representing the 

heterogeneity among the experimental units can be measured quantitatively. 

However, that is not a necessary condition for blocking. In addition, because blocking 

is done before the start of the experiment, it can be used only to cope with sources of 

variation that are known or predictable. ANCOVA, on the other hand, can take care of 

unexpected sources of variation that occur during the experiment. Thus, ANCOVA is 

useful, as a supplementary procedure to take care of sources of variation that cannot 

be accounted for by blocking.   

When covariance analysis is used for error control and adjustment of treatment 

means, the covariate must not be affected by the treatments being tested. 

Otherwise, the adjustment removes both the variation due to experimental error 
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and that due to treatment effects. A good example of covariates that are free of 

treatment effects are those that are measured before the treatments are applied, 

such as soil analysis and residual effects of treatments applied in the past 

experiments. In other cases, care must be exercised to ensure that the covariates 

defined are not affected by the treatments being tested. This technique can be 

illustrated through the following example: 

Example 1: A trial was designed to evaluate 15 rice varieties grown in soil with a 

toxic level of iron. The experiment was in a RCB design with three replications. Guard 

rows of a susceptible check variety were planted on two sides of each experimental 

plot. Scores for tolerance for iron toxicity were collected from each experimental 

plot as well as from guard rows. For each experimental plot, the score of susceptible 

check (averaged over two guard rows) constitutes the value of the covariate for that 

plot. Data on the tolerance score of each variety (Y variable) and on the score of the 

corresponding susceptible check (X variable) are shown below: 

Scores of tolerance for iron toxicity (Y) of 15 rice varieties and those of the 
corresponding guard rows of a susceptible check variety (X) in a RCB trial 
 

Variety 
Number 

Replication-I Replication-II Replication-III 

X Y X Y X Y 

1. 15 22 16 13 16 14 

2. 16 14 15 23 15 23 

3. 15 24 15 24 15 23 

4. 16 13 15 23 15 23 

5. 17 17 17 16 16 16 

6. 16 14 15 23 15 23 

7. 16 13 15 23 16 13 

8. 16 16 17 17 16 16 

9. 17 14 15 23 15 24 

10. 17 17 17 17 15 26 

11. 16 15 15 24 15 25 

12. 16 15 15 23 15 23 

13. 15 24 15 24 16 15 

14. 15 25 15 24 15 23 

15. 15 24 15 25 16 16 
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The usual analysis of variance without using the covariate (X variable) is as follows: 

Source                   DF                 SS          Mean Square    F Value      Pr > F 

Replication              2             104.0444        52.0222           2.85          0.0745 

Treatment              14             265.9111        18.9937           1.04          0.4448 

Error                      28             510.6222        18.2365 

Total                     44             880.5778 

R-Square                    C.V.                 Root MSE               Y - Mean 

  0.4201                    21.5436                  4.2704                    19.82222 

Using the covariate, the analysis is the following: 

Source                 DF           S.S.               M.S.        F-Value    Pr > F 

Replication           2           22.4802          11.2402       2.71         0.0844 

Treatment           14         152.5606          10.8972       2.63         0.0151 

Covariate X          1         398.7516        398.7516     96.24         0.0001 

Error                   27         111.8707            4.1434 

R-Square                  C.V.                 Root MSE                    Y Mean 

  0.8730                  10.2689                   2.0355                       19.8222 

It is interesting to note that the use of a covariate has resulted into a considerable 

reduction in the error mean square and hence the CV has also reduced drastically. 

This has helped in catching the small differences among the treatment effects as 

significant. This was not possible when the covariate was not used. The covariance 

analysis will thus result into a more precise comparison of treatment effects. 

The probability of significance of pairwise comparisons among the least square 

estimates of the treatment effects are given below: 
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Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

i/j        1           2           3           4           5           6          7           8            9        

1       .           0.3370   0.0666  0.4431  0.0019  0.3370  1.0000  0.0252  0.0232       

2     0.3370          .      0.3370  0.8425  0.0237  1.0000  0.3370  0.1834  0.1697       

3     0.0666  0.3370          .      0.2497  0.1620  0.3370  0.0666  0.6757  0.6751       

4     0.4431  0.8425  0.2497          .      0.0157  0.8425  0.4431  0.1320  0.1191       

5     0.0019  0.0237  0.1620  0.0157          .      0.0237  0.0019  0.2361  0.2493       

6     0.3370  1.0000  0.3370  0.8425  0.0237          .      0.3370  0.1834  0.1697       

7    1.0000  0.3370  0.0666  0.4431   0.0019  0.3370          .      0.0252  0.0232       

8     0.0252  0.1834  0.6757  0.1320  0.2361  0.1834  0.0252          .      0.9727       

9     0.0232  0.1697  0.6751  0.1191  0.2493  0.1697  0.0232  0.9727       .           

10   0.0001  0.0019  0.0237  0.0012  0.3370  0.0019  0.0001  0.0361  0.0385   

11   0.0874  0.4294  0.8575  0.3249  0.1046  0.4294  0.0874  0.5445  0.5439   

12   0.2497  0.8425  0.4431  0.6915  0.0351  0.8425  0.2497  0.2493  0.2361   

13   0.1270  0.5524  0.7066  0.4294  0.0739  0.5524  0.1270  0.4298  0.4229   

14   0.0446  0.2497  0.8425  0.1803  0.2158  0.2497  0.0446  0.8096  0.8204   

15   0.0589  0.3249  0.9860  0.2393  0.1452  0.3249  0.0589  0.6736  0.6809   

   Pr > |T| H0: LSMEAN(i)=LSMEAN(j) 

     i/j           10         11      12             13             14             15 

     1      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 

     2      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 

     3      0.0237  0.8575    0.4431      0.7066      0.8425      0.9860 

     4      0.0012  0.3249    0.6915      0.4294      0.1803      0.2393 

     5      0.3370  0.1046    0.0351      0.0739      0.2158      0.1452 

     6      0.0019  0.4294    0.8425      0.5524      0.2497      0.3249 

     7      0.0001  0.0874    0.2497      0.1270      0.0446      0.0589 
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     8      0.0361  0.5445    0.2493      0.4298      0.8096      0.6736 

     9      0.0385  0.5439   0.2361      0.4229      0.8204      0.6809 

    10       .          0.0124   0.0031      0.0079      0.0351      0.0191 

    11     0.0124      .         0.5524      0.8425      0.7066      0.8425 

    12     0.0031  0.5524      .              0.6915      0.3370      0.4294       

    13     0.0079  0.8425   0.6915         .              0.5671      0.6915       

    14     0.0351  0.7066   0.3370      0.5671         .              0.8575       

    15     0.0191  0.8425   0.4294      0.6915      0.8575        .   
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FACTORIAL EXPERIMENTS 
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1.   Introduction 

Factorial Experiments are experiments that investigate the effects of two or more 

factors or input parameters on the output response of a process.  Factorial experiment 

design, or simply factorial design, is a systematic method for formulating the steps 

needed to successfully implement a factorial experiment. Estimating the effects of 

various factors on the output of a process with a minimal number of observations is 

crucial to being able to optimize the output of the process. 

In a factorial experiment, the effects of varying the levels of the various factors 

affecting the process output are investigated. Each complete trial or replication of the 

experiment takes into account all the possible combinations of the varying levels of 

these factors.  Effective factorial design ensures that the least number of experiment 

runs are conducted to generate the maximum amount of information about how input 

variables affect the output of a process. 

For example, an experiment on rooting of cuttings involving two factors, each at two 

levels, such as two hormones at two doses, is referred to as a 2 x 2 or a 22 factorial 

experiment. Its treatments consist of the following four possible combinations of the 

two levels in each of the two factors. 

Treatment number 
Treatment Combination 

Hormone Dose (ppm) 

1 NAA 10 

2 NAA 20 

3 IBA 10 

4 IBA 20 

 

The total number of treatments in a factorial experiment is the product of the number 

of levels of each factor; in the 22 factorial example, the number of treatments is 2 x 2 

= 4, in the 23 factorial, the number of treatments is 2 x 2 x 2 = 8. The number of 

treatments increases rapidly with an increase in the number of factors or an increase 

in the levels in each factor. For a factorial experiment involving 5 clones, 4 

espacements, and 3 weed-control methods, the total number of treatments would be 5 
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x 4 x 3 = 60. Thus, indiscriminate use of factorial experiments has to be avoided 

because of their large size, complexity, and cost. Furthermore, it is not wise to 

commit oneself to a large experiment at the beginning of the investigation when 

several small preliminary experiments may offer promising results. For example, a 

tree breeder has collected 30 new clones from a neighbouring country and wants to 

assess their reaction to the local environment. Because the environment is expected to 

vary in terms of soil fertility, moisture levels, and so on, the ideal experiment would 

be one that tests the 30 clones in a factorial experiment involving such other variable 

factors as fertilizer, moisture level, and population density. Such an experiment, 

however, becomes extremely large as factors other than clones are added. Even if 

only one factor, say nitrogen or fertilizer with three levels were included, the number 

of treatments would increase from 30 to 90. Such a large experiment would mean 

difficulties in financing, in obtaining an adequate experimental area, in controlling 

soil heterogeneity, and so on. Thus, the more practical approach would be to test the 

30 clones first in a single-factor experiment, and then use the results to select a few 

clones for further studies in more detail. For example, the initial single-factor 

experiment may show that only five clones are outstanding enough to warrant further 

testing. These five clones could then be put into a factorial experiment with three 

levels of nitrogen, resulting in an experiment with 15 treatments rather than the 90 

treatments needed with a factorial experiment with 30 clones.  

The amount of change produced in the process output for a change in the 'level' of a 

given factor is referred to as the 'main effect' of that factor. Table 1 shows an 

example of a simple factorial experiment involving two factors with two levels 

each. The two levels of each factor may be denoted as 'low' and 'high', which are 

usually symbolized by '-' and '+' in factorial designs, respectively.  

Table 1. A Simple 2-Factorial Experiment 

 

 A (-) A (+) 

B (-) 20 40 

B (+) 30 52 

The main effect of a factor is basically the 'average' change in the output response as 

that factor goes from '-' to '+'.  Mathematically, this is the average of two numbers: 1) 

the change in output when the factor goes from low to high level as the other factor 
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stays low, and 2) the change in output when the factor goes from low to high level as 

the other factor stays high.     

In the example in Table 1, the output of the process is just 20 (lowest output) when 

both A and B are at their '-' level, while the output is maximum at 52 when both A and 

B are at their '+' level. The main effect of A is the average of the change in output 

response when B stays '-' as A goes from '-' to '+', or (40-20) = 20, and the change in 

output response when B stays '+' as A goes from '-' to '+', or (52-30) = 22.  The main 

effect of A, therefore, is equal to 21.     

Similarly, the main effect of B is the average change in output as it goes from '-' to '+' 

, i.e., the average of 10 and 12, or 11. Thus, the main effect of B in this process is 11. 

Here, one can see that the factor A exerts a greater influence on the output of process, 

having a main effect of 21 versus factor B's main effect of only 11. It must be noted 

that aside from 'main effects', factors can likewise result in 'interaction 

effects.'  Interaction effects are changes in the process output caused by two or more 

factors that are interacting with each other. Large interactive effects can make the 

main effects insignificant, such that it becomes more important to pay attention to the 

interaction of the involved factors than to investigate them individually. In Table 1, as 

effects of A (B) is not same at all the levels of B (A) hence, A and B are interacting.  

Thus, interaction is the failure of the differences in response to changes in levels of 

one factor, to retain the same order and magnitude of performance through out all the 

levels of other factors OR the factors are said to interact if the effect of one factor 

changes as the levels of other factor(s) changes. 

Graphical representation of lack of interaction between factors and interaction 

between factors are shown below. In case of two parallel lines, the factors are non-

interacting. 
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If interactions exist which is fairly common, we should plan our experiments in such 

a way that they can be estimated and tested.  It is clear that we cannot do this if we 

vary only one factor at a time.  For this purpose, we must use multilevel, multifactor 

experiments.  

The running of factorial combinations and the mathematical interpretation of the 

output responses of the process to such combinations is the essence of factorial 

experiments.  It allows to understand which factors affect the process most so that 

improvements (or corrective actions) may be geared towards these.  

We may define factorial experiments as experiments in which the effects (main 

effects and interactions) of more then one factor are studied together. In general if 

there are ‘n’ factors, say, F1, F2,..., Fn and ith factor has si levels, i=1,...,n, then total 

number of treatment combinations is si

n

i


1

. Factorial experiments are of two types. 

Experiments in which the number of levels of all the factors are same i.e all s i’s are 

equal are called symmetrical factorial experiments and the experiments in at least 

two of the si‘s are different are called as asymmetrical factorial experiments. 

Factorial experiments provide an opportunity to study not only the individual effects 

of each factor but also there interactions. They have the further advantage of 



  

 
 

172 

economising on experimental resources.  When the experiments are conducted 

factor by factor much more resources are required for the same precision than when 

they are tried in factorial experiments.   

2.   Experiments with Factors Each at Two Levels 

The simplest of the symmetrical factorial experiments are the experiments with each 

of the factors at 2 levels.  If there are ‘n’ factors each at 2 levels, it is called as a 2n 

factorial where the power stands for the number of factors and the base the level of 

each factor. Simplest of the symmetrical factorial experiments is the 22 factorial 

experiment i.e. 2 factors say A and B each at two levels say 0 (low) and 1 (high). 

There will be 4 treatment combinations which can be written as 

 00   = a0 b0   =   1; A and B both at first (low) levels 

 10   = a1 b0   =   a ; A at second (high) level and B at first (low) level 

 01   = a0 b1   =   b ; A at first level (low) and B at second (high) level 

 11   = a1 b1   =  ab; A and B both at second (high) level. 

In a 22 factorial experiment wherein r replicates were run for each combination 

treatment, the main and interactive effects of A and B on the output may be 

mathematically expressed as follows: 

A = [ab + a - b - (1)] / 2r;     (main effect of factor A) 

B = [ab + b - a - (1)] / 2r;     (main effect of factor B) 

AB = [ab + (1) - a - b] / 2r;   (interactive effect of factors A and B) 

where r is the number of replicates per treatment combination; a is the total of the 

outputs of each of the r replicates of the treatment combination a (A is 'high and B is 

'low); b is the total output for the n replicates of the treatment combination b (B is 

'high' and A is 'low); ab is the total output for the r replicates of the treatment 

combination ab (both A and B are 'high'); and (1) is the total output for the r replicates 

of the treatment combination (1) (both A and B are 'low’). 

Had the two factors been independent, then [ab + (1) - a - b] / 2n will be of the order 

of zero. If not then this will give an estimate of interdependence of the two factors and 

it is called the interaction between A and B.  It is easy to verify that the interaction of 

the factor B with factor A is BA which will be same as the interaction AB and hence 

the interaction does not depend on the order of the factors. It is also easy to verify that 

the main effect of factor B, a contrast of the treatment totals is orthogonal to each of 

A and AB. 
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Table 2. Two-level 2-Factor Full-Factorial  

RUN Comb. M A B AB 

1 (1) + - - + 

2 a + + - - 

3 b + - + - 

4 = 22 ab + + + + 

 

Consider the case of 3 factors A, B, C each at two levels (0 and 1) i.e. 23 factorial 

experiment. There will be 8 treatment combinations which are written as 

000  = a0 b0 c0   = (1);  A, B and C all three at first level 

100  = a1 b0 c0   =  a ;  A at second level and B and C at first level 

010  = a0 b1 c0  =  b ;  A and C both at first level and B at second level 

110  = a1 b1 c0   = ab;  A and B both at second level and C is at first level. 

001  = a0 b0 c1  =  c  ;  A and B both at first level and C at second level. 

101  = a1 b0 c1  =  ac;  A and C at second level, B at first level  

011  = a0 b1 c1 =  bc;  A is at first level and B and C both at second level 

111  = a1 b1 c1  = abc;  A, B and C all the three at second level 

In a three factor experiment there are three main effects A, B, C;  3 first order or two 

factor interactions AB, AC, BC; and one second order or three factor interaction 

ABC.   

Table 3. Two-level 3-Factor Full-Factorial Experiment Pattern 

RUN Comb. M A B AB C AC BC ABC 

1 (1) + - - + - + + - 

2 A + + - - - - + + 

3 B + - + - - + - + 

4 Ab + + + + - - - - 

5 C + - - + + - - + 

6 Ac + + - - + + - - 

7 Bc + - + - + - + - 

8 = 23 Abc + + + + + + + + 

  Main effect A = 
1

4
{[abc] -[bc] +[ac] -[c] + [ab] -[b] + [a] -[1]} 

            = 
1

4
(a-1) (b+1) (c+1)        

AB  = 
1

4
  [(abc)-(bc) -(ac) +c) - (ab) - (b) - (a)+ (1) ] 
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ABC = 
1

4
 [ (abc) - (bc) - (ac) + (c) - (ab) + (b) + (a) - (1) ] 

or equivalently,  

 AB    =  
1

4
  (a-1) (b-1) (c+1)                 

 ABC = 
1

4
 (a-1) (b-1) (c-1)           

The method of representing the main effect or interaction as above is due to Yates and 

is very useful and quite straightforward.  For example, if the design is 24 then 

 A   = (1/23)  [ (a-1) (b+1) (c+1) (d+1) ] 

ABC  =  (1/23)  [ (a-1) (b-1) (c-1) (d+1)] 

In case of a 2n factorial experiment, there will be 2n (=v) treatment combinations with 

‘n’ main effects, 
n

2








  first order or two factor interactions, 

n

3








  second order or three 

factor interactions, 
n

4








  third order or four factor interactions and so on , 

n

r








 , (r-1)th 

order or r factor interactions and 
n

n








  (n-1)th order or n factor interaction. Using these 

v treatment combinations, the experiment may be laid out using any of the suitable 

experimental designs viz. completely randomised design or block designs or row-

column designs, etc. 

Steps for Analysis 

1. The Sum of Squares (S.S.) due to treatments, replications [in case randomised 

block design is used], due to rows and columns (in case a row-column design has 

been used), total S.S. and error S.S. is obtained as per established procedures. No 

replication S.S. is required in case of a completely randomised design. 

2. The treatment sum of squares is divided into different components viz. main 

effects and interactions each with single d.f. The S.S. due to these factorial effects 

is obtained by dividing the squares of the factorial effect total by r.2n.  For 

obtaining 2n-1 factorial effects in a 2n factorial experiment, the ‘n’ main effects is 

obtained by giving the positive signs to those treatment totals where the particular 

factor is at second level and minus to others and dividing the value so obtained by 

r.2n-1, where r is the number of replications of the treatment combinations. All 
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interactions can be obtained by multiplying the corresponding coefficients of main 

effects.  

For a 22 factorial experiment, the S.S. due to a main effect or the interaction effect 

is obtained by dividing the square of the effect total by 4r. Thus, 

 S.S. due to main effect of A   = [A]2/ 4r, with 1 d.f. 

 S.S. due to main effect of B   = [B]2/ 4r, with 1 d.f 

 S.S. due to interaction AB     = [AB]2/ 4r, with 1 d.f. 

3. Mean squares (M.S) is obtained by dividing each S.S. by corresponding degrees 

of freedom. 

4. After obtaining the different S.S.’s, the usual Analysis of variance (ANOVA) 

table is prepared and the different effects are tested against error mean square and 

conclusions drawn. 

5. Standard errors (S.E.’s) for main effects and two factor interactions: 

S.E of difference between main effect means =
2MSE

r.2n 1
 

S.E of difference between A means at same level of B=S.E of difference 

between B means at same level of A= 
2MSE

r.2n 2
  

In general,  

      S.E. for difference between means in case of a r-factor interaction = 
2MSE

r.2nr
 

The critical differences are obtained by multiplying the S.E. by the student’s t 

value at % level of significance at error degrees of freedom. 

The ANOVA for a 22 factorial experiment with r replications conducted using a 

RCBD is as follows: 

ANOVA 

Sources of Variation DF S.S. M.S. F 

Between Replications r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 22-1=3 SST MST=SST/3 MST/MSE 

A 1 SSA=[A]2/4r MSA=SSA MSA/MSE 

  B 1 SSB=[B]2/4r MSB=SSB MSB/MSE 

AB 1 SSAB=[AB]2/4r MSAB=SSAB MSAB/MSE 

Error  3(r-1) SSE MSE=SSE/3(r-1)  

Total 4r-1 TSS   
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ANOVA for a 23-factorial experiment conducted in RCBD with r replications is given by 

ANOVA 

 

Sources of Variation DF SS MS F 

Between Replications r-1 SSR MSR=SSR/(r-1) MSR/MSE 

Between treatments 23 -1=7 SST MST=SST/7 MST/MSE 

A 1 SSA MSA=SSA MSA/MSE 

B 1 SSB MSB=SSB MSB/MSE 

C 1 SSC MSC=SSC MSC/MSE 

AB 1 SSAB MSAB=SSAB MSAB/MSE 

AC 1 SSAC MSAC=SSAC MSAC/MSE 

BC 1 SSBC MSBC=SSBC MSBC/MSE 

ABC 1 SSABC MSABC=SSABC MSABC/MSE 

Error  (r-1)(23-1) 

=7(r-1) 

SSE MSE=SSE/7(r-1)  

Total r.23-1=8r-1 TSS   

 

Similarly ANOVA table for a 2n factorial experiment can be made. 

3.   Experiments with Factors Each at Three Levels  

When factors are taken at three levels instead of two, the scope of an experiment 

increases. It becomes more informative. A study to investigate if the change is linear 

or quadratic is possible when the factors are at three levels. The more the number of 

levels, the better, yet the number of the levels of the factors cannot be increased too 

much as the size of the experiment increases too rapidly with them. Consider two 

factors A and B, each at three levels say 0, 1 and 2 (32-factorial experiment). The 

treatment combinations are 

 00 = a0b0   = 1  ; A and B both at first levels 

 10  = a1b0  = a  ; A is at second level and B is at first level 

 20  = a2b0   = a2 ; A is at third level and b is at first level 

 01  = a0b1  = b ; A is at first level and B is at second level 

 11  = a1b1  = ab ; A and B both at second level 

 21  = a2b1  = a2b ; A is at third level and B is at second level 

 02 = a0b2  = b2 ; A is at first level and B is at third level 

 12  = a1b2  = ab2 ; A is at second level and B is at third level 

 22  = a2b2  = a2b2 ; A and B both at third level 
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Any standard design can be adopted for the experiment.   

The main effects A, B can respectively be divided into linear and quadratic 

components each with 1 d.f. as AL, AQ, BL and BQ. Accordingly AB can be 

partitioned into four components as AL BL , AL BQ,  AQ BL, AQ BQ. 

The coefficients of the treatment combinations to obtain the above effects are given as 

Treatment 

Totals 

Factorial 

Effects  

 

[1] 

 

[a] 

 

[a2] 

 

[b] 

 

[ab] 

 

[a2b] 

 

[b2] 

 

[ab2] 

 

[a2

b2] 

 

Divisor 

M +1 +1 +1 +1 +1 +1 +1 +1 +1 9r=r32 

AL -1 0 +1 -1 0 +1 -1 0 +1 6r=r2 3 

AQ +1 -2 +1 +1 -2 +1 +1 -2 +1 18r=63 

BL -1 -1 -1 0 0 0 +1 +1 +1 6r=r23 

AL BL +1 0 -1 0 0 0 -1 0 +1 4r=r22 

AQ BL -1 +2 -1 0 0 0 +1 -2 +1 12r=r62 

BQ +1 +1 +1 -2 -2 -2 +1 +1 +1 18r=r36 

AL BQ -1 0 +1 +2 0 -2 -1 0 +1 12r=r26 

AQ BQ +1 -2 +1 -2 +4 -2 +1 -2 +1 36r=r66 

 

The rule to write down the coefficients of the linear (quadratic) main effects is to give 

a coefficient as +1 (+1) to those treatment combinations containing the third level of 

the corresponding factor, coefficient as 0(-2) to the treatment combinations containing 

the second level of the corresponding factor and coefficient as -1(+1) to those 

treatment combinations containing the first level of the corresponding factor. The 

coefficients of the treatment combinations for two factor interactions are obtained by 

multiplying the corresponding coefficients of two main effects. The various factorial 

effect totals are given as 

[AL]  = +1[a2b2]+0[ab2] -1[b2]+1[a2b]+0[ab] -1[b]+1[a2]+0[a] -1[1] 

[AQ] = +1[a2b2] -2[ab2]+1[b2]+1[a2b] -2[ab]+1[b]+1[a2] -2[a]+1[1] 

[BL]  = +1[a2b2]+1[ab2]+1[b2]+0[a2b]+0[ab]+0[b] -1[a2] -1[a] -1[1] 

[ALBL] = +1[a2b2]+0[ab2] -1[b2]+0[a2b]+0[ab]+0[b] -1[a2]+0[a] -1[1] 

[AQBL] = +1[a2b2] -2[ab2]+1[b2]+0[a2b]+0[ab]+0[b] -1[a2]+2[a] -1[1] 

[BQ] = +1[a2b2]+1[ab2]+1[b2] -2[a2b] -2[ab] -2[b] -1[a2] -1[a] -1[1] 

[ALBQ] = +1[a2b2]+0[ab2] -1[b2] -2[a2b]+0[ab]+2[b]+1[a2]+0[a] -1[1] 
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[AQBQ]  = +1[a2b2] -2[ab2]+1[b2] -2[a2b]+4[ab] -2[b]+1[a2] -2[a]+1[1] 

Factorial effects are given by 

AL = [AL]/r.3 AQ= [AQ]/r.3 BL = [BL]/r.3 ALBL = [ALBL]/r.3 

AQBL = [AQBL]/r.3 BQ = [BQ]/r.3 ALBQ = [ALBQ]/r.3 AQBQ = [AQBQ]/r.3 

The sum of squares due to various factorial effects is given by 

SSAL = 
 A

r.2.3

L

2

; SSAq = 
 A

r.6.3

Q

2

; SSBL = 
 B

r.3.2

L

2

;  

SSALBL = 
 A B

r.2.2

L L

2

; 

SSAQBL = 
 A B

r.6.2

Q L

2

; SSBQ= 
 B

r.3.6

Q

2

; SSALBQ = 
 A B

r..2.6

L Q

2

;  

SSAQBQ = 
 A B

r.6.6

Q Q

2

; 

If a RBD is used with r-replications then the outline of analysis of variance is  

ANOVA 

Sources of Variation D.f SS MS 

Between Replications r-1 SSR MSR=SSR/(r-1) 

Between treatments 32-1=8 SST MST=SST/8 

A 2 SSA MSA=SSA/2 

AL 1 SSAL MSAL= SSAL 

AQ 1 SSAQ          MSAQ=SSAQ 

B 2 SSB MSB=SSB/2 

BL 1 SSBL MSBL= SSBL 

BQ 1 SSBQ MSBQ=SSBQ 

AB 4 SSAB MSAB=SSAB/2 

ALBL 1 SSALBL MSALBL=SSALBL 

AQBL 1 SSAQBL MSAQBL=SSAQBL 

ALBQ 1 SSALBQ MSALBQ=SSALBQ 

AQBQ 1 SSAQBQ MSAQBQ=SSAQBQ 

Error  (r-1)(32-`1) 

=8(r-1) 

SSE MSE=SSE/8(r-1) 

Total r.32-1=9r-1 TSS  
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In general, for n factors each at 3 levels, the sum of squares due to any linear 

(quadratic) main effect is obtained by dividing the square of the linear (quadratic) 

main effect total by r.2.3n-1(r.6.3n-1). Sum of squares due to a ‘p’ factor interaction is 

given by taking the square of the total of the particular interaction component divided 

by r.(a1 a2 ...ap). 3
n-p, where a1, a2,...,ap are taken as 2 or 6 depending upon the linear or 

quadratic effect of particular factor.  

4.   Confounding in Factorial Experiments 

When the number of factors and/or levels of the factors increase, the number of 

treatment combinations increase very rapidly and it is not possible to accommodate 

all these treatment combinations in a single homogeneous block. For example, a 25 

factorial would have 32 treatment combinations and blocks of 32 plots are quite big to 

ensure homogeneity within them. A new technique is therefore necessary for 

designing experiments with a large number of treatments. One such device is to take 

blocks of size less than the number of treatments and have more than one block per 

replication. The treatment combinations are then divided into as many groups as the 

number of blocks per replication. The different groups of treatments are allocated to 

the blocks. 

There are many ways of grouping the treatments into as many groups as the number 

of blocks per replication. It is known that for obtaining the interaction contrast in a 

factorial experiment where each factor is at two levels, the treatment combinations are 

divided into two groups.  Such two groups representing a suitable interaction can be 

taken to form the contrasts of two blocks each containing half the total number of 

treatments. In such case the contrast of the interaction and the contrast between the 

two block totals are given by the same function. They are, therefore, mixed up and 

can not be separated.  In other words, the interaction has been confounded with the 

blocks. Evidently the interaction confounded has been lost but the other interactions 

and main effects can now be estimated with better precision because of reduced block 

size. This device of reducing the block size by taking one or more interaction 

contrasts identical with block contrasts is known as confounding. Preferably only 

higher order interactions, that is, interactions with three or more factors are 

confounded, because their loss is immaterial. As an experimenter is generally 

interested in main effects and two factor interactions, these should not be confounded 

as far as possible. 
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When there are two or more replications, if the same set of interactions are 

confounded in all the replications, confounding is called complete and if different sets 

of interaction are confounded in different replications, confounding is called partial. 

In complete confounding all the information on confounded interactions are lost. But 

in partial confounding, the confounded interactions can be recovered from those 

replications in which they are not confounded.   

Advantages of Confounding 

It reduces the experimental error considerably by stratifying the experimental material 

into homogeneous subsets or subgroups. The removal of the variation among 

incomplete blocks (freed from treatments) within replicates results in smaller error 

mean square as compared with a RBD, thus making the comparisons among some 

treatment effects more precise. 

Disadvantages of Confounding 

 In the confounding scheme, the increased precision is obtained at the cost of 

sacrifice of information (partial or complete) on certain relatively unimportant 

interactions. 

 The confounded contrasts are replicated fewer times than are the other contrasts 

and as such there is loss of information on them and they can be estimated with a 

lower degree of precision as the number of replications for them is reduced. 

 An indiscriminate use of confounding may result is complete or partial loss of 

information on the contrasts or comparisons of greatest importance. As such the 

experimenter should confound only those treatment combinations or contrasts 

which are of relatively less or of importance at all. 

 The algebraic calculations are usually more difficult and the statistical analysis is 

complex, especially when some of the units (observations) are missing. 

Confounding in 23 Experiment 

Although 23 is a factorial with small number of treatment combinations but for 

illustration purpose, this example has been considered. Let the three factors be A, B, 

C each at two levels. 
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    Factorial Effects  

Treat. Combinations  

A B C AB AC BC ABC 

(1) - - - + + + - 

(a) + - - - - + + 

(b) - + - - + - - 

(ab) + + - + - - - 

(c) - - + + - - + 

(ac) + - + - + - - 

(bc) - + + - - + - 

(abc) + + + + + + + 

 

The various factorial effects are as follows: 

A   = (abc) + (ac) + (ab) + (a) - (bc) - (c) -  (b) - (1) 

B     = (abc) + (bc) + (ab) + (b) - (ac) - (c) -  (a) - (1) 

C     = (abc) + (bc) + (ac) + (c) - (ab) - (b) -  (a) - (1) 

AB   = (abc) +  (c)  + (ab) + (1) - (bc) - (ac) - (b) - (a) 

AC   = (abc) + (ac) + (b)   + (1) - (bc) - (c) -  (ab) - (a) 

BC   = (abc) + (bc) + (a)   + (1) - (ac) - (c) -  (ab) - (b) 

ABC = (abc) +  (c)  + (b)   + (a) - (bc) - (ac) - (ab) - (1) 

Let the highest order interaction ABC be confounded and we decide to use two blocks 

of 4 units (plots) each per replicate. 

Thus in order to confound the interaction ABC with blocks all the treatment 

combinations with positive sign are allocated at random in one block and those with 

negative signs in the other block.  Thus the following arrangement gives ABC 

confounded with blocks and hence we loose information on ABC. 

   Replication I  

 Block 1: (1) (ab) (ac) (bc) 

 Block 2 : (a) (b) (c) (abc) 

It can be observed that the contrast estimating ABC is identical to the contrast 

estimating block effects.  

The other six factorial effects viz. A, B, C, AB, AC, BC each contain two treatments 

in block 1 (or 2) with the  positive signs and two with negative sign so that they are 

orthogonal with block totals and hence these differences are not influenced among 

blocks and can thus be estimated and tested as usual without any difficulty. Whereas 



  

 
 

182 

for confounded interaction, all the treatments in one group are with positive sign and 

in the other with negative signs. 

Similarly if AB is to be confounded, then the two blocks will consists of  

Block 1  (abc) (c) (ab) (1) 

Block 2 (bc) (ac) (b) (a) 

Here AB is confounded with block effects and cannot be estimated independently 

whereas all other effects A, B, C, AC, Bc and ABC can be estimated independently. 

When an interaction is confounded in one replicate and not in another, the experiment 

is said to be partially confounded.  Consider again 23 experiment with each replicate 

divided into two blocks of 4 units each. It is not necessary to confound the same 

interaction in all the replicates and several factorial effects may be confounded in one 

single experiment. For example, the following plan confounds the interaction ABC, 

AB, BC and AC in replications I, II, III and IV respectively. 

Rep. I 

Block 1      Block 2 

Rep. II 

Block 3       Block 4 

Rep. III 

Block 5       Block 6 

Rep. IV 

Block 7       Block 

8 

(abc) (ab) (abc) (ac) (abc) (ab) (abc) (ab) 

(a) (ac) (c) (bc) (bc) (ac) (ac) (bc) 

(b) (bc) (ab) (a) (a) (b) (b) (a) 

(c) (1) (1) (b) (1) (c) (1) (c) 

 

In the above arrangement, the main effects A, B and C are orthogonal with block 

totals and are entirely free from block effects. The interaction ABC is completely 

confounded with blocks in replicate 1, but in the other three replications the ABC is 

orthogonal with blocks and consequently an estimate of ABC may be obtained from 

replicates II, III and IV.  Similarly it is possible to recover information on the other 

confounded interactions AB (from I, III, IV), BC (from I, II, IV) and AC (from I, II, 

III). Since the partially confounded interactions are estimated from only a portion of 

the observations, they are determined with a lower degree of precision than the other 

effects. 

For carrying out the statistical analysis, the various factorial effects and their S.S. are 

estimated in the usual manner with the modification that for completely confounded 

interactions neither the S.S due to confounded interaction is computed nor it is 

included in the ANOVA table. The confounded component is contained in the (2p-1) 
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degrees of freedom (D.f.) (in case of p replicates) due to blocks. The partitioning of 

the d.f for a 23 completely confounded factorial is as follows. 

Source of Variation D.f  

Blocks 2p-1 

A 1 

B 1 

C 1 

AB 1 

AC 1 

BC 1 

Error 6(p-1) 

Total 8p-1 

In general for a 2n completely confounded factorial in p replications, the different 

d.f’s are given as follows 

Source of Variation D.f  

Replication p-1 

Blocks within replication p(2n-r-1) 

Treatments 2n-1-(2n-r-1) 

Error By subtraction 

Total p2n-1 

The treatment d.f has been reduced by 2n-r-1 as this is the total d.f confounded per 

block. 

  In case of partial confounding, we can estimate the effects confounded in one 

replication from the other replication in which it is not confounded. In (2n, 2r) 

factorial experiment with p replications, following is the splitting of d.f’s. 

Source of Variation D.f  

Replication p-1 

Blocks within 

replication 

p(2n-r-1) 

Treatments 2n-1 

Error By subtraction 

Total p2n-1 
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The S.S. for confounded effects are to be obtained from those replications only in 

which the given effect is not confounded.  

5.   Fractional Factorial 

In a factorial experiment, as the number of factors to be tested increases, the complete 

set of factorial treatments may become too large to be tested simultaneously in a 

single experiment. A logical alternative is an experimental design that allows testing 

of only a fraction of the total number of treatments. A design uniquely suited for 

experiments involving large number of factors is the fractional factorial. It provides a 

systematic way of selecting and testing only a fraction of the complete set of factorial 

treatment combinations. In exchange, however, there is loss of information on some 

pre-selected effects. Although this information loss may be serious in experiments 

with one or two factors, such a loss becomes more tolerable with large number of 

factors. The number of interaction effects increases rapidly with the number of factors 

involved, which allows flexibility in the choice of the particular effects to be 

sacrificed. In fact, in cases where some specific effects are known beforehand to be 

small or unimportant, use of the fractional factorial results in minimal loss of 

information.  

In practice, the effects that are most commonly sacrificed by use of the fractional 

factorial are high order interactions - the four-factor or five-factor interactions and at 

times, even the three-factor interaction. In almost all cases, unless the researcher has 

prior information to indicate otherwise one should select a set of treatments to be 

tested so that all main effects and two-factor interactions can be estimated. 

In forestry research, the fractional factorial is to be used in exploratory trials where 

the main objective is to examine the interactions between factors. For such trials, the 

most appropriate fractional factorials are those that sacrifice only those interactions 

that involve more than two factors. 

With the fractional factorial, the number of effects that can be measured decreases 

rapidly with the reduction in the number of treatments to be tested. Thus, when the 

number of effects to be measured is large, the number of treatments to be tested, even 

with the use of fractional factorial, may still be too large. In such cases, further 

reduction in the size of the experiment can be achieved by reducing the number of 

replications. Although the use of fractional factorial without replication is uncommon 

in forestry experiments, when fractional factorial is applied to exploratory trials, the 

number of replications required can be reduced to the minimum.  
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Another desirable feature of fractional factorial is that it allows reduced block size by 

not requiring a block to contain all treatments to be tested. In this way, the 

homogeneity of experimental units within the same block can be improved. A 

reduction in block size is, however, accompanied by loss of information in addition to 

that already lost through the reduction in number of treatments.  
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Introduction 

Rapid advances in data collection and storage technology have enables organizations 

to accumulate vast amounts of data. However, extracting useful information has 

proven extremely challenging. Often, traditional data analysis tools and techniques 

cannot be used because of the massive size of a data set. Sometimes, the non-

traditional nature of the data means that traditional approaches cannot be applied even 

if the data set is relatively small. In other situations, the questions that need to be 

answered cannot be addressed using existing data analysis techniques, and thus, new 

methods need to be developed. 

Data mining is a technology that blends traditional data analysis methods with 

sophisticated algorithms for processing large volumes of data. It has also opened up 

exiting opportunities for exploring and analyzing new types of data and for analyzing 

old types of data in new ways. Data Mining is the process of automatically 

discovering useful information in large data repositories. Data mining techniques are 

deployed to scour large databases in order to find novel and useful patterns that might 

otherwise remain unknown. They also provide capabilities to predict the outcome of a 

future observation, such as predicting whether a newly arrived customer will spend 

more than Rs.1000 at a department store. 

Data mining, or knowledge discovery, has become an indispensable technology for 

businesses and researchers in many fields. Drawing on work in such areas as 

statistics, machine learning, pattern recognition, databases, and high performance 

computing, data mining extracts useful information from the large data sets now 

available to industry and science. 

Knowledge Discovery in Database 

The transformation of data into knowledge has been using mostly manual methods for 

data analysis and interpretation, which makes the process of pattern extraction of 

databases too expensive, slow and highly subjective, as well as unthinkable if the 

volume of data is huge. The interest in automating the analysis process of great 

volumes of data has been fomenting several research projects in an emergent field 

called Knowledge Discovery in Databases (KDD).  KDD is the process of knowledge 
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extraction from great masses of data with the goal of obtaining meaning and 

consequently understanding of the data, as well as to acquire new knowledge. This 

process is very complex because it consists of a technology composed of a group of 

mathematical and technical models of software that are used to find patterns and 

regularities in the data.  

Knowledge discovery in databases (KDD) has been defined as the process of 

discovering valid, novel, and potentially useful patterns from data. Let us examine 

these terms in more details:  

 Data is a set of facts F (e.g. cases in databases). 

 Pattern is an expression E in a language L describing facts in a subset FEof F. 

E is called a pattern if it simpler than the enumeration of all facts in FE. 

 Process: Usually in KDD is a multi step process, which involves data 

preparation, search for patterns, knowledge evaluation, and refinement 

involving iteration after modification. The process is assumed to be non-

trivial-that is, to have some degree of search autonomy. 

 Validity: The discovered patterns should be valid on new data with some 

degree of certainty.  

 Novel: The patterns are novel (at least to the system). Novelty can be 

measured with respect to changes in data (by comparing current values to 

previous or expected values) or knowledge (how a new finding is related to 

old ones). In general, it can be measured by a function N (E, F), which can be 

a Boolean function or a measure of degree of novelty or unexpectedness.  

 Potentially useful: The patterns should potentially lead to some useful actions, 

as measured by some utility function. Such a function U maps expressions in 

L to a partially or totally ordered measure space MU: hence u=U (E,F). 

 Ultimately Understandable: A goal of KDD is to make patterns 

understandable to humans in order to facilitate a better understanding of the 

underlying data. While this is difficult to measure precisely, one frequent 

substitute is the simplicity measure. Several measure of simplicity exist, and 

they range form the purely syntactic to the semantic. It is assumed that this is 

measured, if possible, by a function S mapping expressions E in L to a 

partially or totally ordered space MS: hence, s= S (E, F).  
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An important notion, called interestingness, is usually taken as an overall measure of 

pattern value, combining validity, novelty, usefulness, and simplicity. Some KDD 

systems have an explicit interestingness function i = I (E, F, C, N, U, S) which maps 

expressions in L to a measure space MI. Other systems define interestingness 

indirectly via an ordering of the discovered patterns.  

Based on the notions given above, we can now make an attempt to define knowledge. 

Knowledge: A pattern E is called knowledge if for some user-specified threshold i 

MI, I (E, F, C, N, U, S) > i.  

This definition of knowledge is purely user-oriented and determined by whatever 

functions and thresholds the user chooses.  

To extract knowledge from databases, it is essential that the Expert follows some 

steps or basic stages in order to find a path from the raw data to the desired 

knowledge. The KDD process organizes these stages in a sequential and iterative 

form. In this way, it would be interesting if the obtained results of these steps were 

analyzed in a more interactive and friendly way, seeking a better evaluation of these 

results. The process of knowledge extraction from databases combines methods and 

statistical tools, machine learning and databases to find a mathematical and/or logical 

description, which can be eventually complex, of patterns and regularities in data. The 

knowledge extraction from a large amount of data should be seen as an interactive 

and iterative process, and not as a system of automatic analysis.  

The interactivity of the KDD process refers to the greater understanding, on the part 

of the users of the process, of the application domain. This understanding involves the 

selection of a representative data subset, appropriate pattern classes and good 

approaches to evaluating the knowledge. For a better understanding the functions of 

the users that use the KDD process can be divided in three classes:  

(a) Domain Expert, who should possess a large understanding of the application 

domain;  

(b) Analyst, who executes the KDD process and, therefore, he should have a lot 

of knowledge of the stages that compose this process and  

(c) Final User, who does not need to have much knowledge of the domain, the 

Final User uses knowledge extracted from the KDD process to aid him in a 

decision-making process. 

KDD Process: Knowledge discovery from data can be understood as a process that 

contains, at least, the steps of application domain understanding, selection and 
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preprocessing of data, Data Mining, knowledge evaluation and consolidation and use 

of the knowledge. The KDD process is interactive and iterative, involving numerous 

steps with many decisions being made by the user. Practical view of the KDD process 

emphasizing the interactive nature of the process outlines the following basic steps:  

 Data Selection: Where data relevant to the analysis task are retrieved from the 

database. 

 Data Preprocessing: To remove noise and inconsistent data which is called 

cleaning and integration of data that is combining multiple data sources. 

 Data Transformation: Where data are transformed or consolidated into forms 

appropriate for mining by performing summary or aggregation operations. 

 Data Mining: An essential process where intelligent methods are applied in 

order to extract data patterns. 

 Pattern Evaluation: To identify the truly interesting patterns representing 

knowledge based on some interestingness measures. 

 Knowledge Presentation: Where visualization and knowledge representation 

techniques are used to present the mined knowledge to the user. 

The several steps of KDD have been shown in the following figure. 

 

Figure: Various Steps of KDD process 

The KDD process begins with the understanding of the application domain, 

considering aspects such as the objectives of the application and the data sources. 

Next, a representative sample (e.g. using statistical techniques) is removed from 

database, preprocessed and submitted to the methods and tools of the Data Mining 

stage with the objective of finding patterns/models (knowledge) in the data. This 

knowledge is then evaluated as to its quality and/or usefulness, so that it can be used 

to support a decision-making process. 

The data mining component of the KDD process is mainly concerned with means by 

which patterns are extracted and enumerated from the data. Knowledge discovery 

involves the evaluation and possibly interpretation of the patterns to make the 
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decision of what constitutes knowledge and what does not. It also includes of 

encoding schemes, preprocessing, sampling and projections of the data prior to the 

data mining step. 

Data Mining 

Generally, Data Mining is the process of analyzing data from different perspectives 

and summarizing it into useful information. Data Mining can be defined as "the 

nontrivial extraction of implicit, previously unknown, and potentially useful 

information from data” and "the science of extracting useful information from large 

data sets or databases". Although it is usually used in relation to analysis of data, data 

mining, like artificial intelligence, is an umbrella term and is used with varied 

meaning in a range of wide contexts. It is usually associated with a business or other 

organization's need to identify trends. 

Data Mining involves the process of analyzing data to show patterns or relationships; 

sorting through large amounts of data; and picking out pieces of relative information 

or patterns that occur e.g., picking out statistical information from some data. 

The Data-Mining Communities: As data-mining has become recognized as a 

powerful tool, several different communities have laid claim to the subject: 

1. Statistics. 

2. AI, where it is called \machine learning." 

3. Researchers in clustering algorithms. 

4. Visualization researchers. 

5. Databases.  

In a sense, data mining can be thought of as algorithms for executing very complex 

queries on non-main-memory data. 

Motivating Challenges 

Traditional data analysis techniques have often encountered practical difficulties in 

meeting the challenges posed by new data sets. The following are some of the specific 

challenges that motivated the development of data mining: 

 Scalability: Because of advances in data generation and collection datasets 

with sizes of gigabytes, terabytes, or even petabytes are becoming common. If 

data mining algorithms are to handle these massive datasets, then they must be 

scalable. Many data mining algorithms employ special search strategies to 

handle exponential search problems. Scalability may also require the 

implementation of novel data structures to access individual records in an 
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efficient manner. For instance, out-of-core algorithms may be necessary when 

processing data sets that cannot fit into main memory. Scalability can also be 

improved by using sampling or developing parallel and distributed algorithms. 

 High Dimensionality: It is now common to encounter data sets with hundreds 

or thousands of attributes instead of the handful common a few decades ago. 

In bioinformatics, progress in microarray technology has produced gene 

expression data involving thousands of features. Data sets with temporal or 

spatial components also tend to have high dimensionality. For example, 

consider a data set that contains measurements of temperature at various 

locations. It the temperature measurements are taken repeatedly for an 

extended period, the number of dimensions (features) increases in proportion 

to the number of measurements taken. Traditional data analysis techniques 

that were developed for low-dimensional data often do not work well for such 

high-dimensional data. Also, for some data analysis algorithms, the 

computational complexity increase rapidly as the dimensionality (the number 

of features) increases. 

 Heterogeneous and Complex Data: Traditional data analysis methods often 

deal with data sets containing attributes of the same type, either continuous or 

categorical. As the role of data mining in business, science, medicine, and 

other fields has grown, so has the need for techniques that can handle 

heterogeneous attributes. Recent years have also seen the emergence of more 

complex data objects. Examples of such non-traditional types of data include 

collections of Web pages containing semi-structured text and hyper lines; 

DNA data with sequential and three-dimensional structure; and climate data 

that consists of time series measurements (temperature, pressure, etc.) at 

various locations on the Earth’s surface. Techniques developed for mining 

such complex objects should take into consideration relationships in the data, 

such as temporal and spatial autocorrelation, graph connectivity, and parent-

child relationships between the elements in semi-structures text and XML 

documents. 

 Data Ownership and Distribution: Sometimes, the data needed for an 

analysis is not stored in one location or owned by one organization. Instead, 

the data is geographically distributed among resources belonging to multiple 
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entities. This requires the development of distributed data mining techniques. 

Among the key challenges faced distributed data mining algorithms include 

(1) how to reduce the amount of communication needed to perform the 

distributed computation, (2) how to effectively consolidate the data mining 

results obtained from multiple sources, and (3) how to address data security 

issues. 

 Non-Traditional Analysis: The traditional statistical approach is based on a 

hypothesize-the test paradigm. In other words, a hypothesis is proposed, an 

experiment is designed to gather the data, and then the data is analysed with 

respect to the hypothesis. Unfortunately, this process is extremely labor-

intensive. Current data analysis tasks often require the generation and 

evaluated of thousands of hypotheses, and consequently, the development of 

some data mining techniques has been motivated by the desire to automate the 

process of hypothesis generation and evaluation. Furthermore, the data sets 

analyzed in data mining are typically nor the result of a carefully designed 

experiments and often represent opportunistic samples of the data, rather than 

random samples. Also, the data sets frequently involve non-traditional types of 

data and data distributions. 

Data Preprocessing 

Data preprocessing is a broad area and consists of a number of different strategies and 

techniques that are interrelated in complex ways. We will present some of the most 

important ideas and approaches, and try to point the interrelationships among them. 

The preprocessing techniques fall into two categories: selecting data objects and 

attributes for the analysis or creating/ changing the attributes. In both cases the goal is 

to improve the data mining analysis with respect to time, cost, and quality. 

Specifically, following are the important preprocessing techniques: 

 Aggregation: Sometimes “less is more” and this is the case with aggregation, 

the combining of two or more objects into a single object.. Consider a dataset 

consisting of transactions (data objects) recording the daily sales of products 

in various store locations for different days over the course of a year. One way 

of aggregate the transactions of this data set is to replace all the transactions of 

a single store with a single storewide transaction. This reduces the hundreds or 
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thousands of transactions that occur daily at a specific store to a single daily 

transaction, and the number of data objects is reduced to the number of stores. 

  An obvious issue is how an aggregate transaction is created; i.e. how the 

values  of each attribute are combined across all the records corresponding to a 

particular location to create the aggregate transaction that represents the sales of a 

single store or date. Quantitative attributes, such as price, are typically aggregated by 

taking a sum or an average. A qualitative attribute, such as item, can either be omitted 

or summarized as the set of all the items that were sold at that location. 

 Sampling:  Sampling is a commonly used approach for selectinga subset of 

the data objects to be analyzed. In statistics, it has long been used for both the 

preliminary investigation of the data and the final data analysis. Sampling can 

also be very useful in data mining. However, the motivations for sampling in 

statistics and data mining are often different. Statisticians use sampling 

because obtaining the entire set of data of interest is too expensive or time 

consuming to process all the data. In some cases, using a sampling algorithm 

can reduce the data size to the point where a better, but more expensive 

algorithm can be used. 

 Dimensionality reduction: Datasets can have a large number of feature. 

Consider set documents, where each documents is represented by a vector 

whose components are the frequencies with which each word occurs in the 

document. In such cases, there are typically thousands or tens of thousands of 

attributes (components), one for each word in the vocabulary. As another 

example, consider a set of time series consisting of the daily closing price of 

various stocks over a period of 30 days. In this case, the attributes, which are 

the prices on specific days again number in the thousands. 

 There is variety of benefits to dimensionality reduction. A key benefit is that  

many data mining algorithms work better if the dimensionality — the number of 

attributes in the data—is lower. This is partly because the dimensionality reduction 

can eliminateirrelevant features and reduce noise and partly because of the curse of 

dimensionality. Another benefit of dimensionality reduction is that a reduction of 

dimensionality can lead to a more understandable model because the model may 

involve fewer attributes. Also, dimensionality reduction may allow the data to be 

more easily visualized. Even if dimensionality reduction doesn’t reduce the data to 
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two or three dimensions, data is often visualized by looking at pairs or triplets of 

attributes, and the number of such combinations is greatly reduced.  

Finally, the amount of time and memory required by the data mining algorithms is 

reduced with a reduction in dimensionality. 

 Feature subset selection:   The term dimensionality reduction is often those 

techniques that reduce the dimensionality of data set by creating new attributes 

that are a combination of the old attributes. The reduction of dimensionality by 

selecting new attributes that are a subset of the old is known as feature subset 

selection or feature selection. While it might seem that such as approach 

would lose information, this is not the case if redundant and irrelevant features 

are present. Redundant features duplicate much or all the information 

contained in one or more other attributes. For example, the purchase price of a 

product and ge amount of sales tax paid contain much of the same 

information. Irrelevant features contain almost no useful information for the 

data mining task at hand. For instance, student’s ID numbers are irrelevant to 

the task of predicting student’s grade point averages. Redundant and irrelevant 

features can reduce classification accuracy and the quality of the clusters that 

are found. 

 Feature creation: It is frequently possible to create, from the original 

attributes, a new set of attributes that captures the important information in a 

data set much more effectively. Furthermore, the number of new attributes can 

be smaller than the number of original attributes, allowing us to reap all the 

benefits of dimensionality reduction. Three related methodologies for creating 

new attributes are: feature extraction, mapping the data to a new space, and 

feature construction. 

 Discretization and Binarization: Some data mining algorithms, especially 

certain classification algorithms, require that the data be in the form of 

categorical attributes. Algorithms that fine association patterns require that the 

data be in the form of binary attributes. Thus, it is often necessary to transform 

a continuous attribute into a categorical attribute (discretization), and both 

continuous and discrete attributes may need to be transformed into one or 

more binary attributes (binarization). Additionally, if a categorical attribute 

has a large number of values (categories), or some values occur infrequently, 
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then it may be beneficial for certain data mining tasks to reduce the number of 

categories by combining some of the values. 

 Variable transformation: A variable transformation refers to a 

transformation that is applied to all the values of a variable. In other words, for 

each subject, the transformation is applied to the value of the variable for that 

object. For example, if only the magnitude of a variable is important, then the 

values of the variable can be transformed by taking the absolute value.  

What kinds of Data can be Mined? 

Data mining can be applied to any kind of data as long as the data are meaningful for 

a target application. The most basic forms of data for mining applications are database 

data, data warehouse data, and transactional data. Data mining can also be applied to 

other forms of data (e.g., data streams, ordered/sequence data, graph or networked 

data, spatial data, text data, multimedia data, and the world wide web data). 

Techniques for mining of these kinds of data may be different. Data mining will 

certainly continue to embrace new data types as they emerge. 

Tasks in Classical Data Mining 

The two “high-level” primary goals of data mining in practice tend to be prediction 

and description. Data Mining tasks are generally divided into two major categories: 

Predictive Tasks: the objective of these tasks is to predict the value of a particular 

attribute based on the values of other attributes. The attribute to be predicted is 

commonly known as the target or dependent variable, while the attributes used for 

making the prediction are known as the explanatory or independent variables. 

Descriptive Tasks: Here, the objective is to derive patterns (correlations, trends, 

clusters, trajectories and anomalies) that summarize the underlying relationships in 

data. Descriptive data mining tasks are often explanatory in nature and frequently 

require post processing techniques to validate and explain and results. 

The relative importance of prediction and description for particular data mining 

applications can vary considerably. However, in context of KDD, description tends to 

be more important than prediction. 

Discovering patterns and rules: Other data mining applications are concerned with 

pattern detection. One example is spotting fraudulent behavior by detecting regions of 

the space defining the different types of transactions where the data points 

significantly different from the rest. Another use is in astronomy, where detection of 

unusual stars or galaxies may lead to the discovery of previously unknown 
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phenomenon. Yet another is the task of finding combinations of items that occur 

frequently in transaction databases (e.g., grocery products that are often purchased 

together). This problem has been the focus of much attention in data mining and has 

been addressed using algorithmic techniques based on association rules. 

A significant challenge here, one that statisticians have traditionally dealt with in the 

context of outlier detection, is deciding what constitutes truly unusual behavior in the 

context of normal variability. In high dimensions, this can be particularly difficult. 

Background knowledge and human interpretation can be invaluable.  

To achieve the goals of prediction and description, following data mining tasks are 

carried out. 

 Classification 

 Association Rule Mining 

 Clustering 

 Evolution Analysis 

 Outlier Detection 

 Dependency Modeling 

 Change and Deviation Detection 

1. Classification: Classification, which is the task of assigning objects to one of 

several predefined categories, is a pervasive problem that encompasses many diverse 

applications. Examples include, detecting spam email messages based upon the 

message header and content, categorizing cells as malignant or benign based upon the 

results of MRI scans, and classifying galaxies based upon their shapes. 

The input data for a classification task is a collection of records. Each record, also 

known as an instance or example, is categorized by a tuple (x, y), where x is the 

attribute set and y is a special attribute, designated as the class label (also known as 

category or the target attribute). The attributes set in a dataset for classification can be 

either discrete or continuous but the class label must be a discrete attribute. This is the 

key characteristic that distinguishes classification from regression, a predictive 

modeling task in which y is a continuous attribute. 

Definition (classification): Classification is the task of learning a target function f 

that maps each attribute set x to one of the predefined class labels y. 

The target function is also known informally as a classification model. A 

classification model is useful for the following purposes. 
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Descriptive Modeling:  A classification model can serve as an explanatory tool to 

distinguish between objects of different classes. For example, it would be useful-for 

both biologists and others-to have a descriptive model that summarizes that data 

shown… and explains what features define a vertebrate as a mammal, reptile, bird, 

fish, and amphibian. 

Predictive Modeling: A classification model can also be used to predict the class label 

of unknown records. A classification model can be treated as a black box that 

automatically assigns a class label when presented with the attribute set of an 

unknown record.  

Classification techniques are most suited for predicting or describing data sets with 

binary or nominal categories. They are less effective for ordinal categories (e.g., to 

classify a person as a member of high, medium or low income group) because they do 

not consider the implicit order among the categories. Other forms of relationships, 

such as subclass-super class relationships among categories (e.g., humans and apes 

are primates, which in turn is a subclass of mammals) are also ignored.  

The classifier-training algorithm uses pre-classified examples to determine the set of 

parameters required for proper discrimination. The algorithm then encodes these 

parameters into a model called a classifier. Types of classification models: 

 Classification by decision tree induction 

 Bayesian Classification 

 Neural Networks 

 Support Vector Machines (SVM) 

 Classification Based on Associations 

2. Association Rule Mining: Association rule mining, one of the most important and 

well researched techniques of data mining, was first introduced in 1993.It aims to 

extract interesting correlations, frequent patterns, associations or casual structures 

among sets of items in the transaction databases or other data repositories. 

Association rules are widely used in various areas such as telecommunication 

networks, market and risk management, inventory control etc. Various association 

mining techniques and algorithms will be briefly introduced and compared later. 

Association rule mining is to find out association rules that satisfy the predefined 

minimum support and confidence from a given database. The problem is usually 

decomposed into two sub-problems. One is to find those item sets whose occurrences 
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exceed a predefined threshold in the database; those item sets are called frequent or 

large item sets. The second problem is to generate association rules from those large 

item sets with the constraints of minimal confidence. Suppose one of the large item 

sets is Lk, Lk = {I1, I2, … , Ik}, association rules with this item sets are generated in the 

following way: the first rule is {I1, I2, … , Ik-1}⇒{Ik}, by checking the confidence this 

rule can be determined as interesting or not. Then other rule are generated by deleting 

the last items in the antecedent and inserting it to the consequent, further the 

confidences of the new rules are checked to determine the interestingness of them. 

Those processes iterated until the antecedent becomes empty. Since the second sub 

problem is quite straight forward, most of the researches focus on the first sub 

problem. The first sub-problem can be further divided into two sub-problems: 

candidate large item sets generation process and frequent item sets generation 

process. We call those item sets whose support exceed the support threshold as large 

or frequent item- sets, those item sets that are expected or have the hope to be large or 

frequent are called candidate item sets. In many cases, the algorithms generate an 

extremely large number of association rules, often in thousands or even millions. 

Further, the association rules are sometimes very large. It is nearly impossible for the 

end users to comprehend or validate such large number of complex association rules, 

thereby limiting the usefulness of the data mining results. Several strategies have been 

proposed to reduce the number of association rules, such as generating only 

“interesting” rules, generating only “non redundant” rules, or generating only those 

rules satisfying certain other criteria such as coverage, leverage, lift or strength.  

Methods for association rule mining: 

  Multilevel association rule 

  Multidimensional association rule 

  Quantitative association rule 

3. Clustering: Clustering or cluster analysis divides the data into groups (clusters) 

that are meaningful, useful or both. If meaningful groups are the goal, then the 

clusters should capture the natural structure of the data. In some cases, however, 

cluster analysis is only a useful starting point for other purposes, such as data 

summarization. Cluster analysis groups data objects based only on information found 

in the data that describes the objects and their relationships. The goal is that the 

objects within a group be similar (or related) to one another and different from (or 



  

 
 

199 

unrelated to) the objects in other groups. The greater the similarity (or homogeneity) 

within a group and the greater the difference between groups, the better or more 

distinct the clustering. There are various clustering methods:  

 Partitioning Methods 

 Hierarchical Agglomerative (divisive) methods 

 Density based methods 

 Grid-based methods 

 Model-based methods 

4. Evolution Analysis: Data evolution analysis describes and models regularities or 

trends for objects whose behaviors changes over time. Although this may include 

characterization, discrimination, association, classification, or clustering of time-

related data, distinct feature of such an analysis include time-series data analysis, 

sequence or periodicity pattern matching, and similarity-based data analysis. 

5. Outlier Detection: A database may contain data objects that do not comply with 

the general behavior or model of the data. Theses data objects are outliers. Most data 

mining methods discard outliers as noise as exceptions. However, in some 

applications such as fraud detection, the rare events can be more interesting than the 

more regularly occurring ones. The analysis of outlier data is referred to as outlier 

mining. 

6. Dependency modeling: Dependency modeling consists of finding a model that 

describes significant dependencies between variables. Dependency models exist at 

two levels: (1) the structural level of the model specifies (often in graphic form) 

which variables are locally dependent on each other and (2) the quantitative level of 

the model specifies the strengths of the dependencies using some numeric scale. For 

example, probabilistic dependency networks use conditional independence to specify 

the structural aspect of the model and probabilities or correlations to specify the 

strengths of the dependencies. Probabilistic dependency networks are increasingly 

finding applications in areas as diverse as the development of probabilistic medical 

expert systems from databases, information retrieval, and modeling of the human 

genome. 

7. Change and deviation detection: Change and deviation detection focuses on 

discovering the most significant changes in the data from previously measured or 

normative values. 
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Components of Data Mining Algorithms 

The data mining algorithms that address various data mining tasks have four basic 

components: 

1. Model or Pattern Structure: Determining the underlying structure of 

functional forms that we seek from the data. 

2. Score Function: Score functions are for judging the quality of a fitted model. 

Score Functions quantify how well a model or parameter structure fits a given 

data set. In an ideal world the choice of score function would precisely reflect 

the utility (i.e., the true expected benefit) of a particular predictive model. In 

practice, however, it is often difficult to specify precisely the true utility of a 

model’s predictions. Hence, simple, “generic” score functions, such as least 

squares and classification accuracy are commonly used. 

3. Optimization and Search Method: Optimizing the score function and 

searching over different model and pattern structures. The score function is a 

measure of how ell aspects of the data match proposed models or patterns. 

Usually, these models or patters are described in terms of a structure, 

sometimes with unknown parameter values. The goal of optimization and 

search is to determine the structure and the parameter values that achieve a 

minimum (or maximum, depending on the context) value of the score 

function. The task of finding the “best” values of parameters in models is 

typically cast as an optimization (for estimation) problem. The task of finding 

interesting patterns (such as rules) from a large family of potential patterns is 

typically cast as a combinatorial search problem, and is, often accomplished 

using heuristic search techniques. In linear regression, a prediction rule is 

usually found by minimizing a least squares score function (the sum of 

squared errors between the prediction from a model and the observed values 

of the predicted variable). Such a score function is amenable to mathematical 

manipulation, and the model that minimizes it can be found algebraically. In 

contrast, a score function such as misclassification rate in supervised 

classification is difficult to minimize analytically. 

4. Data Management Strategy: Handling the data access efficiently during the 

search/optimization. The final component in any data mining algorithm is the 

data management strategy: the ways in which the data stored, indexed, and 

accessed. Most well-known data analysis algorithms in statistics and machine 
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learning have been developed under the assumption that all individual data 

points can be accessed quickly and efficiently in random-access 

memory(RAM), while main memory technology has improved rapidly, there 

have been equally rapid improvements in secondary (disk) and tertiary tape) 

storage technologies, to the extent that many massive data sets still reside 

largely on disk or tape and will not fit in available RAM. Thus, there will 

probably be a price to pay for accessing massive data sets, since not all data 

points can be simultaneously close to the main processor.  

Some Challenges 

A data mining system which is quick and correct on some small training sets, could 

behave completely different when applied to a larger database. A data mining system 

may work perfect for consistent data and may not perform well when a little noise is 

added to the training set. The most prominent challenges for data mining systems 

today are: 

 Noisy Data 

 Difficult Training Set 

 Databases are Dynamic 

 Databases may be Huge 

Noisy Data: In a large database, many of the attribute values will be inexact or 

incorrect. This may be due to erroneous instruments measuring some property, or 

human error when registering it. We will distinguish between two forms of noise in 

the data, both described below: 

Corrupted Values: Sometimes some of the values in the training set are altered from 

what they should have been. This may result in one or more tuples in the database 

conflict with the rules already established. The system may then regard these extreme 

values as noise, and ignore them. Alternatively, one may take the values into account 

possibly changing correct patterns recognized. The problem is that one never knows if 

the extreme values are correct or not, and the challenge is how to handle ``weird'' 

values in the best manner. 

Missing Attribute Values: One or more of the attribute values may be missing both for 

examples in the training set and for object which are to be classified. If attributes are 

missing in the training set, the system may either ignore this object totally, try to take 

it into account by for instance finding what is the missing attribute's most probable 

value, or use the value ``unknown'' as a separate value for the attribute. When an 

http://www.pvv.ntnu.no/~hgs/project/report/node23.html#SECTION00561000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node24.html#SECTION00562000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node25.html#SECTION00563000000000000000
http://www.pvv.ntnu.no/~hgs/project/report/node26.html#SECTION00564000000000000000
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attribute value is missing for an object during classification, the system may check all 

matching rules and calculate the most probable classification.  

Difficult Training Set: Sometimes the training set is not the ultimate training set due 

to several reasons. These are the following: 

Not Representative Data: If the data in the training set is not representative for the 

objects in the domain, we have a problem. If rules for diagnosing patients are being 

created and only elderly people are registered in the training set, the result for 

diagnosing a kid based on these data probably will not be good. Even though this may 

have serious consequences, we would say that not representative data is mainly a 

problem of machine learning when the learning is based on few examples. When 

using large data sets, the rules created probably are representative, as long as the data 

being classified belongs to the same domain as those in the training set. 

No Boundary Cases: To find the real differences between two classes, some boundary 

cases should be present. If a data mining system for instance is to classify animals, the 

property counting for a bird might be that it has wings and not that it can fly. This 

kind of detailed distinction will only be possible if e.g. penguins are registered. 

Limited Information: In order to classify an object to a specific class, some condition 

attributes are investigated. Sometimes, two objects with the same values for condition 

attributes have a different classification. Then, the objects have some properties which 

are not among the attributes in the training set, but still make a difference. This is a 

problem for the system, which does not have any way of distinguish these two types 

of objects.  

Databases are Dynamic: Databases usually change continually. We would like rules 

which reflect the content of the database at all times, in order to make the best 

possible classification. Many existing data mining systems require that all the training 

examples are given at once. If something is changed at a later time, the whole learning 

process may have to be conducted again. An important challenge for data mining 

systems is to avoid this, and instead change its current rules according to updates 

performed.  

Databases may be Huge: The size of databases seem to be ever increasing. Most 

machine learning algorithms have been created for handling only a small training set, 

for instance a few hundred examples. In order to use similar techniques in databases 

thousands of times bigger, much care must be taken. Having very much data is 

advantageous since they probably will show relations really existing, but the number 
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of possible descriptions of such a dataset is enormous. Some possible ways of coping 

with this problem, are to design algorithms with lower complexity and to use 

heuristics to find the best classification rules. Simply using a faster computer is 

seldom a good solution.  
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1. Introduction 

In certain research studies, development of a reliable decision rule, which can be used to 

classify new observations into some predefined categories, plays an important role. The 

existing traditional statistical methods are inappropriate to use in certain specific situations, 

or of limited utility, in addressing these types of classification problems. There are a 

number of reasons for these difficulties. First, there are generally many possible “predictor” 

variables which makes the task of variable selection difficult. Traditional statistical 

methods are poorly suited for this sort of multiple comparisons. Second, the predictor 

variables are rarely nicely distributed. Many variables (in agriculture and other real life 

situations) are not normally distributed and different groups of subjects may have markedly 

different degrees of variation or variance. Third, complex interactions or patterns may exist 

in the data. For example, the value of one variable (e.g., age) may substantially affect the 

importance of another variable (e.g., weight). These types of interactions are generally 

difficult to model and virtually impossible to model when the number of interactions and 

variables becomes substantial. Fourth, the results of traditional methods may be difficult to 

use. For example, a multivariate logistic regression model yields a probability for different 

classes of the dependent variable, which can be calculated using the regression coefficients 

and the values of the explanatory variable. But practitioners generally do not think in terms 

of probability but, rather in terms of categories, such as “presence” versus “absence.” 

Regardless of the statistical methodology being used, the creation of a decision rule 

requires a relatively large dataset.  

Classification methods include the conventional clustering methods (e.g. K-means), 

discriminant function method and SOFMs while predictive models include decision trees 

(e.g., CART - Classification And Regression Trees), neural networks (the most popular 

type of architectures being MLP – MultiLayer Perceptron) and statistical models (e.g. MLR 

- Multiple Linear Regression, Logistic regression etc.). Decision trees are nothing but 

classification systems that predict or classify future observations based on a set of decision 

rules and are sometimes called rule induction methods because the reasoning process 

behind them is clearly evident when browsing the trees. Neural network models are used 
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when the underlying relationship between the different variables in the system are unknown 

(which are complex and typically non-linear). Self-Organizing Feature Maps (SOFMs) also 

known as Kohonen neural networks which comes under the category of unsupervised 

learning which are used when the study or main or dependent variable is a categorical 

variable and hence such networks are used for classification purposes.   

The Kohonen architecture of neural networks is a special type of architecture and is totally 

different from other types and solely meant for classification rather than prediction. 

Kohonen network offers a considerably different approach to ANNs and are designed 

primarily for unsupervised learning rather than for supervised problems. The very first thing 

to be aware of while employing any classification method or prediction model is of 

ascertaining whether the nature of the problem requires a ‘supervised’ or an ‘unsupervised’ 

approach.  The supervised problem occurs when there is a known membership class or 

output associated with each input in the ‘training’ data set i.e. the set upon which the 

method or model will be fitted or employed.  The unsupervised problem means that one 

deals with a set of data which have no specific associated classes or outputs attached.     

In this write-up, two chief methods viz., CART and SOM in the context of classification 

(i.e. when the main or study or dependent variable is categorical) are discussed in detail.  

1. Classification And Regression Tree (CART) 

CART analysis is a tree-building technique which is different from traditional data analysis 

methods. In a number of studies, CART has been found to be quite effective for creating 

decision rules which perform as well or better than rules developed using more traditional 

methods aiding development of DSS (Decision Support Systems). In addition, CART is 

often able touncover complex interactions between predictors which may be difficult or 

impossible using raditional multivariate techniques. It is now possible to perform a CART 

analysis with a simple understanding of each of the multiple steps involved in its procedure. 

Classification tree methods such as CART are convenient way to produce a prediction rule 

from a set of observations described in terms of a vector of features and a response value. 

The aim is to define a general prediction rule which can be used to assign a response value 

to the cases solely on the bases of their predictor (explanatory) variables. Tree-structured 

classifications are not based on assumptions of normality and user-specified model 

statements, as are some conventional methods such as discriminant analysis and ordinary 

least square regression. 

Tree based classification and regression procedure have greatly increased in popularity 

during the recent years. Tree based decision methods are statistical systems that mine data 
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to predict or classify future observations based on a set of decision rules and are sometimes 

called rule induction methods because the reasoning process behind them is clearly evident 

when browsing the trees. The CART methodology have found favour among researchers 

for application in several areas such as agriculture, medicine, forestry, natural resources 

management etc. as alternatives to the conventional approaches such as discriminant 

function method, multiple linear regression, logistic regression etc. In CART, the 

observations are successively separated into two subsets based on associated variables 

significantly related to the response variable; this approach has an advantage of providing 

easily comprehensible decision strategies. CART can be applied either as a classification 

tree or as a regressive tree depending on whether the response variable is categorical or 

continuous. Tree based methods are not based on any stringent assumptions. These methods 

can handle large number of variables, are resistant to outliers, non-parametric, more 

versatile, can handle categorical variables, though computationally more intensive. They 

can be applied to data sets having both a large number of cases and a large number of 

variables, and are extremely robust to outliers. These are not based on assumptions such as 

normality and user-specified model statements, as are some conventional methods such as 

discriminant analysis or ordinary least square (OLS) regression. Yet, unlike the case for 

other nonparametric methods for classification and regression, such as kernel-based 

methods and nearest neighbor methods, the resulting tree-structured predictors can be 

relatively simple functions of the predictor variables which are easy to use. 

CART can be a good choice for the analysts as they give fairly accurate results quickly, 

than traditional methods. If more conventional methods are called for, trees can still be 

helpful if there are a lot of variables, as they can be used to identify important variables and 

interactions. These are also invariant to the monotonic transformations of the explanatory 

variables and do not require the selection of the variable in advance as in regression 

analysis. 

Agriculture being a highly uncertain occupation, classification and prediction in the field of 

agriculture aid planners to take proactive measures. Keeping in view the requirements to 

develop a sound classificatory system and that the potentials of the tree based methods for 

this purpose has not fully been explored, it will be of interest to employ these  

methodologies upon a suitable data set in the field of agriculture. More importantly, since 

the real world data often does not satisfy the usual assumptions like that of normality, 

homoscedasticity etc it can be taken up as a motivation to find such a classificatory rule 

where assumptions of such rules fail. Apart from all these, tree based methods are one 
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among the promising data mining tools that provide easily comprehensible decision 

strategy. 

Tree based applications originated in the 1960s with the development of AID (Automatic 

Interaction Detector) by Morgan and Sonquistin the 1960s as regression trees. Further 

modifications in this technique was carried out to result in THAID (THeta AID) by Morgan 

and Messenger (1973) to produce classification trees and CHAID (CHi AID) by Kass in the 

late 1970s.Breimanet al.(1984) developed CART (Classification and Regression Trees) 

which is a sophisticated program for fitting trees to data. Breiman, again in 1994, 

developed the bagging predictors which is a method of generating multiple versions of a 

predictor and using them to get an aggregated predictor.  A good account of the CART 

methodology can be found in many recent books, say, Izenman (2008).An application of 

classification trees in the field of agriculture can be found in Sadhu et al. (2014). 

Theconventional CART methodologyis outlined briefly. Following is a schematic 

representation of aconventional CART tree structure: 

 

The unique starting point of,say, a classification tree, is called a root node and consists 

of the entire learning set L at the top of the tree. A node is a subset of the set of 

variables, and it can be terminal or nonterminal node. A nonterminal (or parent) node is 

a node that splits into two left and right child nodes (binary split). Such a binary split is 

determined by a condition on the value of a single variable, where the condition is 

either satisfied or not satisfied by the observed value of that variable. All observations 

in L that have reached a particular (parent) node and satisfy the condition for that 

variable drop down to one of the two child nodes; the remaining observations at that 

(parent) node that do not satisfy the condition drop down to the other child node. A 

node that does not split is called a terminal node and is assigned a class label. Each 

observation in L falls into one of the terminal nodes. When an observation of unknown 

class is “dropped down” the tree and ends up at a terminal node, it is assigned the class 

corresponding to the class label attached to that node. There may be more than one 
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terminal node with the same class label. To produce a tree-structured model using 

recursive binary partitioning, CART determines the best split of the learning set L to 

start with and thereafter the best splits of its subsets on the basis of various issues such 

as identifying which variable should be used to create the split, and determining the 

precise rule for the split, determining when a node of the tree is a terminal one, and 

assigning a predicted class to each terminal node. The assignment of predicted classes 

to the terminal nodes is relatively simple, as is determining how to make the splits, 

whereas determining the right-sized tree is not so straightforward. After growing a fully 

expanded tree, a tree of optimum size is obtained. In a particular type of tree building 

called ‘exhaustive search’, at each stage of recursive partitioning, all of the allowable 

ways of splitting a subset of L are considered, and the one which leads to the greatest 

increase in node purity is chosen. This can be accomplished using what is called an 

“impurity function”, which is nothing but a function of the proportion of the learning 

sample belonging to the possible classes of the response variable. To choose the best 

split over all variables, first the best split for a given variable has to be determined. To 

assess the goodness of a potential split, the value of the ‘impurity function’ such as 

Gini diversity index and the Entropy function can be calculated using the cases in the 

learning sample corresponding to the parent node, and subtract from this the weighted 

average of the impurity for the two child nodes, with the weights proportional to the 

number of cases of the learning sample corresponding to each of the child nodes, to get 

the decrease in the overall impurity that would result from the split. To select the way 

to split a subset ofLin the tree growing procedure, all allowable ways of splitting can be 

considered, and the one which will result in the greatest decrease in node impurity (or, 

in other words, greatest increase in the node purity) can be chosen.  

In order to grow a tree, the starting point is the root node, which consists of the learning 

setL.  Using the “goodness of split” criterion for a single variable, the tree algorithm 

finds the best split at the root node for each of the variables. The best split s at the root 

node is then defined as the one that has the largest value of this goodness of split 

criterion over all single-variable best splits at that node. Next is to split each of the 

child nodes of the root node in the same way. The above computations are repeated for 

each of the child nodes except that this time only the observations in that specific child 

node are considered for the calculations rather than all the observations. When these 

splits are completed, the splitting is continued with the subsequent nodes. This 



  

 
 

209 

sequential splitting procedure of building a tree layer-by-layer is hence called recursive 

partitioning. If every parent node splits in two child nodes, the result is called a binary 

tree. If the binary tree is grown until none of the nodes can be split any further, then the 

tree is said to be saturated. Usually, first a very large tree is grown, splitting subsets in 

the current partition of L even if a split does not lead to an appreciable decrease in 

impurity. Then a sequence of smaller trees can be created by “pruning” the initial large 

tree, where in the pruning process, splits that were made are removed and a tree having 

a fewer number of nodes is produced. The crucial part of creating a good tree-

structured classification model is determining how complex the tree should be. If nodes 

continue to be created until no two distinct values of the independent variables for the 

cases in the learning sample belong to the same node, the tree may be over fitting the 

learning sample and not be a good classifier of future cases. On the other hand, if a tree 

has only a few terminal nodes, then it may be that it is not making enough use of 

information in the learning sample, and classification accuracy for future cases will 

suffer. Initially, in the tree-growing procedure, the predictive accuracy typically 

increases as more nodes are created and the partition gets finer. But it is usually seen 

that at some point the misclassification rate for future cases will start to get worse as 

the tree becomes more complex. In order to compare the prediction accuracy of various 

tree-structured models, there needs to be a way to estimate a given tree’s 

misclassification rate for the future observations, a measure named ‘resubstitution 

estimate’ of the misclassification rate is obtained by using the tree to classify the 

members of the learning sample (that were used to create the tree), and observing the 

proportion that are misclassified. More often, a better estimate of a tree’s 

misclassification rate can be obtained using an independent “test set”, which is a 

collection of cases coming from the same population or distribution as the learning set. 

Like the learning set, for the test set the true class for each case is known in addition to 

the values for the predictor variables. The test set estimate of the misclassification rate 

is just the proportion of the test set cases that are misclassified when predicted classes 

are obtained using the tree created from the learning set. The learning set and the test 

set are both composed of cases for which the true class is known in addition to the 

values for the predictor variables. Generally, about one third of the available cases 

should be set aside to serve as a test set, and the rest of the cases should be used as 

learning set. But sometimes a smaller fraction, such as one tenth, is also used and then 

resorting to 10-fold cross validation. A specific way to create a useful sequence of 
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different-sized trees is to use “minimum cost-complexity pruning”. In this process, a 

nested sequence of subtrees of the initial large tree is created by “weakest-link cutting”. 

With weakest-link cutting (pruning), all of the nodes that arise from a specific 

nonterminal node are pruned off (leaving that specific node itself as terminal node), and 

the specific node selected is the one for which the corresponding pruned nodes provide 

the smallest per node decrease in the resubstitution misclassification rate. If two or 

more choices for a cut in the pruning process would produce the same per node 

decrease in the resubstitution misclassification rate, then pruning off the largest number 

of nodes is preferred. The sequence of subtrees produced by the pruning procedure 

serves as the set of candidate subtrees for the model, and to obtain the classification 

tree, all that remains to be done is to select the one which will hopefully have the 

smallest misclassification rate for future observations. The selection of final tree is 

based on estimated misclassification rates, obtained using a test set or by cross 

validation. 

1. Self Organizing Map (SOM) 

In SOM, the training data set contains only input variables and no outputs. It is a 'self-

organizing' system, which automatically adapts itself in such a way that similar input 

objects are associated with the topological close neurons in the ANN. The phrase 

'topological close neurons' means that neurons that are physically located close to 

each other will react similar to similar inputs, while the neurons that are far apart in 

the lay-out of the ANN will react quite different to similar inputs. A practical 

treatment on SOFM based Kohonen networks can be found in Haykin (1996).   

The principal goal is to transform an incoming input pattern of arbitrary dimension 

into a two dimensional discrete map.  Neurons in the network are arranged in a two 

dimensional grid and there happens a competition among these neurons to represent 

the input pattern. The ‘winning’ neurons and the similar pattern neurons i.e. the 

neighboring neurons are placed in contiguous locations in output space. The neurons 

learn to pin-point the location of the neuron in the ANN that is most 'similar' to the 

input vector. Here, the phrase 'location of the most similar neuron' has to be taken in a 

very broad sense. It can mean the location of the closest neuron with the smallest or 

with the largest Euclidean distance to the input vector, or it can mean the neuron with 

the largest output in the entire network for this particular input vector etc. In other 

words, in the Kohonen network, a ‘rule’ deciding which of all neurons will be 

selected after the input vector enters the ANN is mandatory.  During the training in 
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the Kohonen’s ANN, the multidimensional neurons self-organise themselves in the 

two-dimensional plane in such a way that the objects from the multidimensional 

measurement space are mapped into the plane of neurons with respect to some 

internal property correlated to the m-dimensional measurement space of objects.  

Bullinaria (2004) has explained the above discussion in the following manner. 

Neurons are placed at the nodes of a lattice that is usually two-dimensional and 

undergo the following three steps: 

(i) Competition 

Neurons become selectively tuned to various input patterns (stimuli). Such “winning” 

neurons become ordered w.r. to each other in such a way that a meaningful coordinate 

system for different input features is created over the lattice. The competitive learning 

is characterized by formation of a topographic map of the inputs in which spatial 

locations  of the neurons in the lattice are indicative of intrinsic features contained in 

the inputs, hence the name SOFM. 

(ii) Cooperation 

The winning neurons determines the spatial location of a topographic neighbourhood 

of excited neurons, thereby providing the basis for cooperation 

(iii) Adaptation 

The excited neurons adapts their individual values of its functional form in relation to 

the input pattern through suitable adjustments applied to their synaptic weights.  Thus 

the response of the winning neuron to the subsequent application of a similar input 

pattern is enhanced 

The correction of weights is carried out after the input of each input object in the 

following four steps:  

(i) the neuron with the most ’distinguished’ response of all (in a sense explained 

above) is selected and named the ’central’ or the ’most excited’ neuron 

(ii) the maximal neighbourhood around this central neuron is determined.  

(iii) the ‘correction factor’ is calculated for each neighbourhood ring separately (the 

correction changes according to the distance and time of training) 

(iv) the ‘weights’ in neurons of each neighbourhood are corrected according to a 

pre-specified equation 

The most important difference is that the neurons in the error back propagation 

learning (in that of the most famous multi-layer perceptron type of architectured 

neural network) tries to yield quantitatively an answer as close as possible to the 
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target, while in the Kohonen approach the neurons learn to pin-point the location of 

the neuron in the ANN that is most ’similar’ to the input vector.  

In order to make things clear, let us consider the following figure wherein there are 

six input variables along with a two-dimensional map of order 7x7. The neurons are 

in the columns associating the input variables with the (i, j)-th neuron in the output 

map, with weights at various levels corresponding to the inputs.  That is, because the 

Kohonen ANN has only one layer of neurons, the specific input variable, let us say 

the i-th variable xi is always received in all neurons of the ANN by the weight placed 

in the i-th position.  If the neurons are presented as columns of weights then all i-th 

weights in all neurons can be regarded as the weights of the i-th level (Zupan, 1994). 

 

Because the Kohonen ANN has only one layer of neurons the specific input variable, 

let us say the i-th variable, xi, is always received in all neurons of the ANN, by the 

weight placed at the i-th position. If the neurons are presented as columns of weights 

then all i-th weights in all neurons can be regarded as the weights of the i-th level. 

This is especially important because the neurons are usually ordered in a two-

dimensional formation.  

Thus the main goal of Kohonen is to perform a non-linear mapping from an high-

dimensional variable space to a low-dimensional (usually 2D) target space so that the 

distance and proximity relations between the samples or, in a single word, the 

topology, are preserved. The target space used in Kohonen mapping is a two-
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dimensional array of neurons fully connected to the input layer, onto which the 

samples are mapped. Introducing the preservation of topology, results in specifying 

for each node in the Kohonen layer, a defined number of neurons as nearest 

neighbors, second-nearest neighbors and so on.  

The layout of neurons in the Kohonen ANN is an important feature to be discussed 

(Marini et al., 2007). The neighborhood of a neuron is usually considered to be 

hexagonal [see (a) in figure below] or square [see (b) in figure below] which means 

that each neuron has eight or six nearest neighbors, respectively. 

 

The main issue in Kohonen learning is that similar input vectors excite neurons which 

are very close in the 2D layer. From an algorithmic point of view, Kohonen mapping 

implements competitive learning, i.e. only one neuron in the 2D layer is selected after 

each input is presented to the network (winner takes-all). The winning neuron c is 

selected as the one having the weight vector most similar to the input pattern. After 

the winning neuron in the Kohonen layer is selected, the weights of each other neuron 

in the Kohonen layer are updated on the basis of the difference between their old 

value and the values of the input vector; this correction is scaled according to the 

topological distance from the winner. 

Lynn (2014) have extensively discussed about the theKohonen package available in 

the open source and freely available R software. This Kohonen R package allows us 

to visualise the count of how many samples are mapped to each node on the map. 

This metric can be used as a measure of map quality – ideally the sample distribution 

is relatively uniform. Large values in some map areas suggests that a larger map 

would be benificial. Empty nodes indicate that the map size is too big for the number 
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of samples. He suggest that one should aim for at least 5-10 samples per node when 

choosing map size. One such output where node counts are visualized is given 

subsequently. 

 

The node weight vectors, or “codes”, are made up of normalised values of the original 

variables used to generate the SOM. Each node’s weight vector is representative / 

similar of the samples mapped to that node. By visualising the weight vectors across 

the map, we can see patterns in the distribution of samples and variables. Such a 

visualisation of the weight vectors can be done using a “fan diagram”, where 

individual fan representations of the magnitude of each variable in the weight vector 

is shown for each node. One such fan diagram is given below. 
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1. Introduction 

Clustering algorithms maps the data items into clusters, where clusters are natural 

grouping of data items based on similarity methods. Unlike classification and 

prediction which analyzes class-label data objects, clustering analyzes data objects 

without class-labels and tries to generate such labels. Clustering has many 

applications. In business/ marketing, clustering can help in identifying different 

customer groups and appropriate marketing campaign can be carried out targeting 

different groups. In agriculture, it can be used to derive plant and animal taxonomies, 

characterization of diseases and varieties, in bioinformatics- categorization of genes 

with similar functionally. Further it can be used to group similar documents on the 

web for faster discovery of content. It can be used to group geographical locations 

based on crime, amenities, weather etc. As data mining function, cluster analysis is 

used to gain insight into distribution of data, to observe the characteristics of each 

cluster and to focus on a particular set of clusters for further analysis.  

1. Similarity Measures 

Similarity is fundamental to majority of clustering algorithms. Similarity is quantity 

that reflects the strength of relationship between two objects or two features. This 

quantity is usually having range of either -1 to +1 or normalized into 0 to 1. If the 

similarity between feature i and feature j is denoted by sij , we can measure this 

quantity in several ways depending on the scale of measurement (or data type) that we 

have. Dissimilarity is opposite to similarity. There are many types of distance and 

similarity measures. 

Similarity and dissimilarity can be measured for two objects based on several 

features/ variables. After the distance or similarity of each variable is determined, we 

can aggregate all features/ variables together into single Similarity (or dissimilarity) 

index between the two objects.  
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2.1 Distance for binary variables 

We often face variables that only binary value such as Yes and No, or Agree and 

Disagree, True and False, Success and Failure, 0 and 1, Absence or Present, Positive 

and Negative, etc. Similarity of dissimilarity (distance) of two objects that represented 

by binary variables can be measured in term of number of occurrence (frequency) of 

positive and negative in each object.  

For example:  

Feature of Fruit  Sphere shape  Sweet  Sour  Crunchy  

Object =Apple  Yes  Yes  Yes  Yes  

Object =Banana  No  Yes  No  No  

The coordinate of Apple is (1,1,1,1) and coordinate of Banana is (0,1,0,0). Because 

each object is represented by 4 variables, we say that these objects have 4 dimensions.  

Let p = number of variables that positive for both objects . 

q = number of variables that positive for the i th objects and negative for the j th 

object  

r= number of variables that negative for the th objects and positive for the th 

object 

s= number of variables that negative for both objects  

t= p+q+r+s = total number of variables.  

 Object     

      Yes  No  

object  Yes    

   No    

 For our example above, we have measured Apple and Banana have p=1, q=3 and 

r=0, s=0. Thus, t= p+q+r+s=4. 

 The most common use of binary dissimilarity (distance) is  

Simple Matching distance  

Jaccard's distance  

Hamming distance  

Example: Simple matching distance between Apple and Banana is 3/4. 

Jaccard's distance between Apple and Banana is 3/4. 
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Hamming distance between Apple and Banana is 3. 

2.2 Distance for quantitative variables 

Variable which have quantitative values.  

      Features        

   cost  time  weight  incentive  

Object A  0  3  4  5  

Object B  7  6  3  -1  

We can represent the two objects as points in 4 dimension. Point A has coordinate (0, 

3, 4, 5) and point B has coordinate (7, 6, 3, -1). Dissimilarity (or similarity) between 

the two objects are based on these coordinates.  

Euclidean Distance: Euclidean Distance is the most common use of distance. In most 

cases when people said about distance, they will refer to Euclidean distance. 

Euclidean distance or simply 'distance' examines the root of square differences 

between coordinates of a pair of objects. 

  Formula  

 

Euclidean distance is a special case of Minkowski distance with  

City block (Manhattan) distance : It is also known as Manhattan distance, boxcar 

distance, absolute value distance. It examines the absolute differences between 

coordinates of a pair of objects. City block distance is a special case of Minkowski 

distance with    

Formula:  

The City Block Distance between point A and B is  

 

Chebyshev Distance : Chebyshev distance is also called Maximum value distance. It 

examines the absolute magnitude of the differences between coordinates of a pair of 

objects. This distance can be used for both ordinal and quantitative variables.  

http://people.revoledu.com/kardi/tutorial/similarity/OrdinalVariables.html
http://people.revoledu.com/kardi/tutorial/similarity/QuantitativeVariables.html
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Formula and B is  

 

Minkowski Distance: This is the generalized metric distance. When it becomes 

city block distance and when , it becomes Euclidean distance. Chebyshev 

distance is a special case of Minkowski distance with (taking a limit). This 

distance can be used for both ordinal and quantitative variables.  

  Formula  

2. Clustering Algorithms 

There are many clustering algorithms available in literature, choice of appropriate 

algorithm depends on the data type and desired results. We will be focusing on 

commonly used clustering algorithms. 

3.1 Hierarchical Algorithms 

A hierarchical method creates a hierarchical decomposition of data objects in the form 

of tree like diagram which is called a dendogram. There are two approaches to 

building a cluster hierarchy.  

Agglomerative approach also called bottom up approach starts with each object 

forming a separate group and successively merges the objects close to one another, 

until all the groups are merged into one.  

Divisive approach also called top-down approach starts with all the objects in same 

cluster, until each object is in one cluster.  

 

Process flow of agglomerative hierarchical clustering method is given below: 

 Convert object features to distance matrix.  

s1 

 

s2 s4 s5 s3 

http://people.revoledu.com/kardi/tutorial/similarity/OrdinalVariables.html
http://people.revoledu.com/kardi/tutorial/similarity/QuantitativeVariables.html
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 Set each object as a cluster (thus if we have 6 objects, we will have 6 clusters 

in the beginning)  

 Iterate until number of cluster is 1  

1. Merge two closest clusters  

2. Update distance matrix  

First distance matrix is computed using any valid distance measure between pairs of 

objects. The choice of which clusters to merge is determined by a linkage criterion, 

which is a function of the pairwise distances between observations. Commonly used 

linkage criteria are mentioned below: 

 Complete Linkage: The maximum distance between elements of each cluster 

 

 Single Linkage: The minimum distance between elements of each cluster 

 

 Average Linkage /UPGMA: The mean distance between elements of each 

cluster   

 

3.1.1 Hierarchical Clustering (HC) using R: 

In R, function hclust() performs hierarchical clustering. First the dissimilarity values 

are computed with dist function. Feed these values into hclust and specify the 

agglomeration method to be used (i.e. “complete”, “average”, “single”, “ward.D”). 

Then plot  the dendrogram. 

# Dissimilarity matrix 

d <- dist(df, method = "euclidean") 

# Hierarchical clustering using Complete Linkage 

hc1 <- hclust(d, method = "complete" ) 

# Plot the obtained dendrogram 

plot(hc1, cex = 0.6, hang = -1) 
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Alternatively, you can use the agnes function. These functions behave very similarly; 

however, with the agnes function you can also get the agglomerative coefficient, 

which measures the amount of clustering structure found (values closer to 1 suggest 

strong clustering structure). 

# Compute with agnes 

hc2 <- agnes(df, method = "complete") 

# Agglomerative coefficient 

hc2$ac 

## [1] 0.8531583 

This allows us to find certain hierarchical clustering methods that can identify 

stronger clustering structures. Here we see that Ward’s method identifies the strongest 

clustering structure of the four methods assessed. 

# methods to assess 

m <- c( "average", "single", "complete", "ward") 

names(m) <- c( "average", "single", "complete", "ward") 

# function to compute coefficient 

ac <- function(x) { 

  agnes(df, method = x)$ac 

} 

map_dbl(m, ac) 

##   average    single  complete      ward  
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## 0.7379371 0.6276128 0.8531583 0.9346210 

hc3 <- agnes(df, method = "ward") 

pltree(hc3, cex = 0.6, hang = -1, main = "Dendrogram of agnes")  

Similarly, HC can be performed using function diana.  diana works similar to agnes; 

however, there is no method to provide. 

# compute divisive hierarchical clustering 

hc4 <- diana(df) 

# Divise coefficient; amount of clustering structure found 

hc4$dc 

## [1] 0.8514345 

# plot dendrogram 

pltree(hc4, cex = 0.6, hang = -1, main = "Dendrogram of diana") 

Working with Dendrograms 

In the dendrogram displayed above, each leaf corresponds to one observation. As we 

move up the tree, observations that are similar to each other are combined into 

branches, which are themselves fused at a higher height. The height of the fusion, 

provided on the vertical axis, indicates the (dis)similarity between two observations.  

The height of the cut to the dendrogram controls the number of clusters obtained. we 

can cut the dendrogram with cutree (): 

# Ward's method 

hc5 <- hclust(d, method = "ward.D2" ) 

# Cut tree into 4 groups 

sub_grp <- cutree(hc5, k = 4) 

# Number of members in each cluster 

table(sub_grp) 

## sub_grp 

##  1  2  3  4  

##  7 12 19 12 

It’s also possible to draw the dendrogram with a border around the 4 clusters. The 

argument border is used to specify the border colors for the rectangles: 

plot(hc5, cex = 0.6) 

rect.hclust(hc5, k = 4, border = 2:5) 
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3.2 Partitional Algorithms 

It basically involves segmenting data objects into k partitions, optimizing some 

criteria, over t iterations. These methods are popularly known as iterative relocation 

methods.  

3.2.1 K-means Algorithm 

K-means is the most popularly used algorithm in this category. It randomly selects k 

objects as cluster mean or center. It works towards optimizing square error criteria 

function, defined as: 








k

i Cx
i

i

mx
1

2
, where im  is the mean of cluster iC . 

Main steps of k-means algorithm are:  

1)  Assign initial means im   

2)  Assign each data object x to the cluster iC  for the closest mean 

3)  Compute new mean for each cluster  

4)Iterate until criteria function converges, that is, there are no more new 

assignments.  

The k-means algorithm is sensitive to outliers since an object with an extremely large 

value may substantially distort the distribution of data.  

3.2.2 k-means clustering in R : 

We can compute k-means in R with the kmeans function. In this example, data is 

grouped into two clusters (centers = 2). The kmeans function also has an nstart option 

that attempts multiple initial configurations and reports on the best one. For example, 

adding nstart = 25 will generate 25 initial configurations.  
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k2 <- kmeans(df, centers = 2, nstart = 25) 

str(k2) 

## List of 9 

##  $ cluster     : Named int [1:50] 1 1 1 2 1 1 2 2 1 1 ... 

##   ..- attr(*, "names")= chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ... 

##  $ centers     : num [1:2, 1:4] 1.005 -0.67 1.014 -0.676 0.198 ... 

##   ..- attr(*, "dimnames")=List of 2 

##   .. ..$ : chr [1:2] "1" "2" 

##   .. ..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape" 

##  $ totss       : num 196 

##  $ withinss    : num [1:2] 46.7 56.1 

##  $ tot.withinss: num 103 

##  $ betweenss   : num 93.1 

##  $ size        : int [1:2] 20 30 

##  $ iter        : int 1 

##  $ ifault      : int 0 

##  - attr(*, "class")= chr "kmeans" 

The output of kmeans is a list with several bits of information. The most important 

being: 

cluster: A vector of integers (from 1:k) indicating the cluster to which each point is 

allocated. 

centers: A matrix of cluster centers. 

totss: The total sum of squares. 

withinss: Vector of within-cluster sum of squares, one component per cluster. 

tot.withinss: Total within-cluster sum of squares, i.e. sum(withinss). 

betweenss: The between-cluster sum of squares, i.e. $totss-tot.withinss$. 

size: The number of points in each cluster. 

We can also view the results by using fviz_cluster. This provides a nice illustration of 

the clusters. If there are more than two dimensions (variables). fviz_cluster will 

perform principal component analysis (PCA) and plot the data points according to the 

first two principal components that explain the majority of the variance. 

fviz_cluster(k2, data = df) 
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Introduction 

The most widely used technique for analysis of time-series data is; undoubtedly, the 

Box Jenkins’ Autoregressive integrated moving average (ARIMA) methodology (Box 

et al., 2007). However, it is based on some crucial assumptions, like linearity and 

homoscedastic prediction error variances.  In reality, underlying relationships among 

variables are highly complex and cannot be described satisfactorily through a linear 

modelling approach. There are many features, like existence of threshold value, which 

can be described only through a nonlinear approach. During the last few decades a 

new area of “Nonlinear time-series modelling” is fast coming up. Here, there are 

basically two approaches, viz. Parametric or Nonparametric. Evidently, if in a 

particular situation, we are quite sure about the functional form, we should use the 

former; otherwise the latter may be employed.  

When dealing with nonlinearities, Campbell et al. (1997) made the distinction 

between: 

 Linear Time-Series: shocks are assumed to be uncorrelated but not necessarily 

identically and independently distributed (iid). 

 Nonlinear Time-Series: shocks are assumed to be iid, but there is a nonlinear 

function relating the observed time-series  
0ttX  and the underlying shocks, 

 
0tt
. 

A nonlinear process is described as 

   ,...,,..., 2121   tttttt hgX  .    ,...,/ 211   tttt gXE   

  2

121 /,...,  ttth   

where  function g(·) corresponds to  conditional mean of tX , and  function h(·) is 

coefficient of proportionality between  innovation in tX  and  shock t . The general 

form above leads to a natural division in Nonlinear time-series literature in two 

branches:  

• Models Nonlinear in Mean:  g(·) is nonlinear; 

• Models Nonlinear in Variance:  h(·) is nonlinear. 

      2

11 //   ttttt XEXEXVar 

mailto:ranjitstat@gmail.com
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The most promising parametric nonlinear time series models like ARCH and GARCH 

models are described below. 

Autoregressive Conditional Heteroscedastic (ARCH) Model 

The most promising parametric nonlinear time-series model has been the 

Autoregressive conditional heteroscedastic (ARCH) model, which was introduced by 

Engle (1982). It allows the conditional variance to change over time as a function of 

squared past errors leaving the unconditional variance constant. The presence of 

ARCH type effects in financial and macro-economic time-series is a well established 

fact. The combination of ARCH specification for conditional variance and the 

Autoregressive (AR) specification for conditional mean has many appealing features, 

including a better specification of the forecast error variance. Ghosh and Prajneshu 

(2003) employed AR(p)-ARCH(q)-in-Mean model for carrying out modelling and 

forecasting of volatile monthly onion price data. The AR-ARCH model has also been 

used as the basic “building blocks” for Markov switching and mixture models (See 

e.g. Lanne and Saikkonen 2003 and Wong and Li 2001). 

The ARCH (q) model for series  is defined by specifying the conditional 

distribution of t  given information available up to time t −1. Let 1t  denote this 

information. It consists of the knowledge of all available values of the series, and 

anything which can be computed from these values, e.g. innovations, and squared 

observations. In principle, it may even include  knowledge of the values of other 

related time-series, and anything else which might be useful for forecasting and is 

available by time t −1. 

We say that the process  is ARCH (q), if the conditional distribution of  given 

available information 1t  is  

 ttt hN ,0~| 1 and 



q

i

itit aah
1

2

0      (1) 

where 00 a , 0ia  for all i and 



q

i

ia
1

1 

Properties of the ARCH model (Tsay,2005) 

To study the properties of ARCH model, consider the simple ARCH (1) model. The 

conditional variance equation of the this model is defined as  

  
2/1

ttt h  ,  

 t

 t  t
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t is white noise and conditional variance ht satisfies 

2

110  tt aah   

where 00 a , 01 a .The important properties of ARCH models are mentioned 

below: 

(i) The unconditional mean of t  remains zero because, 

        0εEhE|ΨεEEεE tt1ttt    

 (ii) The unconditional variance of t  can be defined as  

          2

110

2

1101

22 |var   tttttt EaaaaEEEE  . 

If t  is a stationary process with   0tE  ,      2

11varvar   ttt E  . Therefore, 

   tt aa  varvar 10   and so   tvar  a0 / (1 – a1). Since variance of t  must be 

positive, therefore 1a0 1  . 

(iii) In some applications, higher order moments of t  are required to exist and, 

hence,  must satisfy some additional constraints. For instance, to study its tail 

behavior, we require that the fourth moment of t  is finite.  

Heavy tails are a common aspect of financial data, and hence the ARCH models are 

very popular in this field. Besides that, Bera and Higgins (1993) mention the 

following reasons for the ARCH success: 

• ARCH models are simple and easy to handle. 

• ARCH models take care of clustered errors. 

• ARCH models take care of nonlinearities. 

• ARCH models take care of changes in the econometrician’s ability to forecast. 

Forecasting  

Forecasts of the ARCH model can be obtained recursively as those of an AR model. 

Consider an ARCH (q) model. At the forecast origin t, the one-step ahead forecast is 

  2
q1tq

2
t10t εa...εaa1h  (2) 

The two-step ahead forecast is     2
q2tq

2
t2t10t εa...εa1haa2h  , and l- step 

ahead forecast is    



q

i

tit ilhaalh
1

0  where   2

iltt ilh    if 0 il . 

However, ARCH model has some drawbacks. Firstly, when the order of ARCH 

model is very large, estimation of a large number of parameters is required. Secondly, 

1a
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conditional variance of ARCH(q) model has the property that unconditional 

autocorrelation function (Acf) of squared residuals; if it exists, decays very rapidly 

compared to what is typically observed, unless  maximum lag q is large. To overcome 

these difficulties, Bollerslev (1986) proposed the Generalized ARCH (GARCH) 

model in which conditional variance is also a linear function of its own lags. This 

model is also a weighted average of past squared residuals, but it has declining 

weights that never go completely to zero. It gives parsimonious models that are easy 

to estimate and, even in its simplest form, has proven surprisingly successful in 

predicting conditional variances. Angelidis et al. (2004) evaluated the performance of 

GARCH models in modelling the daily Value-at-Risk (VaR) of perfectly distributed 

portfolios in five stock indices, using a number of distributional assumptions and 

sample sizes. Paul et al. (2009, 2014) applied GARCH model for forecasting of spices 

export and wheat yield respectively. 

Generalized ARCH(GARCH) Model 

 To overcome the weaknesses of ARCH model, Bollerslev (1986) and Taylor (1986) 

proposed the Generalized ARCH (GARCH) model independently of each other, in 

which conditional variance is also a linear function of its own lags and has the 

following form 

2/1

ttt h  






 
p

j

jtj

q

i

itit hbaah
11

2

0                              (3) 

where t  ~ IID(0,1). A sufficient condition for the conditional variance to be positive 

is  

 p,...2,1,j0,bq.,...2,1,i0,a0,a ji0   

The GARCH (p, q) process is weakly stationary if and only if    1ba
p

1j

j

q

1i

i 


.  

The conditional variance defined by (3) has the property that the unconditional 

autocorrelation function of 
2

t  ; if it exists, can decay slowly. For the ARCH family, 

the decay rate is too rapid compared to what is typically observed in financial time-

series, unless the maximum lag q is long. As (3) is a more parsimonious model of the 

conditional variance than a high-order ARCH model, most users prefer it to the 

simpler ARCH alternative. 
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The most popular GARCH model in applications is the GARCH(1,1) model. To 

express GARCH model in terms of ARMA model, denote ttt h 2 . Then from 

equation (3)  
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2

0

2                                  (4) 

Thus a GARCH model can be regarded as an extension of the ARMA approach to 

squared series {
2

t }. Using the unconditional mean of an ARMA model, we have  

 E(
2

t ) = 

 



),(

1

0

1
qpMax

i

ii ba

a
                                                           (5) 

provided that the denominator of the prior fraction is positive. 

Properties of GARCH model 

The most widely used GARCH specification asserts that the best predictor of the 

variance in the next period is a weighted average of the long-run average variance, the 

variance predicted for this period, and the new information in this period that is 

captured by the most recent squared residual. Such an updating rule is a simple 

description of adaptive or learning behavior and can be thought of as Bayesian 

updating. 

The properties of GARCH models can easily be studied by focusing on the simplest 

GARCH(1,1) model with  

2/1

ttt h  11

2

110   ttt hbaah  ,                                             (6) 

where t  ~ IID(0,1) and   1,1,0 1111  baba .   

The GARCH model that has been described is typically called the GARCH(1,1) 

model. The (1,1) in parentheses is a standard notation in which the first number refers 

to how many autoregressive lags, or ARCH terms, appear in the equation, while the 

second number refers to how many moving average lags are specified, which here is 

often called the number of GARCH terms. Sometimes models with more than one lag 

are needed to find good variance forecasts. 

First a large 
2

1t  or 1th  gives rise to a large th . This means that a large 
2

1t  tends to 

followed by another large
2

t , generating again the well known behavior of volatility 

clustering in financial time-series.  
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Second it can be seen that if   021
2

11

2

1  baa , then 
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Consequently, similar to ARCH models, the tail distribution of a GARCH(1,1) 

process is heavier than that of a normal distribution.  

Third, the model provides a simple parametric function that can be used to describe 

the volatility evolution. 

Forecasting volatility by GARCH model 

Forecasts of a GARCH model can be obtained using methods similar to those of an 

ARMA model. Although this model is directly set up to forecast for just one period, it 

turns out that based on the one-period forecast, a two-period forecast can be made. 

Ultimately, by repeating this step, long-horizon forecasts can be constructed. For the 

GARCH(1,1), the two-step forecast is a little closer to the long-run average variance 

than is the one-step forecast, and, ultimately, the distant-horizon forecast is the same 

for all time periods as long as   111 ba . This is just the unconditional variance. 

Thus, the GARCH models are mean reverting and conditionally heteroscedastic, but 

have a constant unconditional variance. 

Consider the GARCH(1,1) model in (6) and assume that the forecast origin is t, the 

one-step ahead forecast is   ttt hbaah 1

2

101    

For multi-step ahead forecasts, use ttt h22    and rewrite the volatility equation in (6) 

as  

   12

11101  tttt hahbaah   

For two-step ahead forecasts    12

11111102   tttt hahbaah  Since

    0/12

1  ttE  ,  

The two-step ahead volatility forecast at the forecast origin t satisfies the equation  

  )1()2( 110 tt hbaah   

In general we have    )1()( 110  lhbaalh tt ,  l>1   

This result is exactly the same as that of an ARMA(1,1) model. By repeated 

substitution in the equation (7), the one- step ahead forecast can be written as  
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Therefore,  


 las
ba

a
lht ,

1
)(

11

0 ,provided that 
11 ba  <1.  

Consequently, the multi-step ahead volatility forecast of a GARCH(1,1) model 

converge to the unconditional variance of t  as the forecast horizon increases to 

infinity provided that Var( t )exists. 

In order to estimate the parameters of GARCH model, three types of estimator are 

available in literature. They are the conditional maximum likelihood estimator, 

Whitle’s estimator and the least absolute deviation estimator.  

Conditional maximum likelihood estimator 

Similar to the estimation for ARMA models, the most frequently used estimators for 

ARCH/GARCH models are those derived from a (conditional) Gaussian likelihood 

function.  

The loglikelihood function of a sample of T observations, apart from constant, is  

    



T

1t

1
t

2
tt

1
T hhlogTL  , where 
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For a general GARCH model the conditional variance ( th ) cannot be expressed in 

terms of a finite number of the past observations. Some truncation is inevitable. By 

induction, it is possible to derive 
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where the multiple sum vanishes if q = 0. It is to be noted that the multiple sum above 

converges with probability 1 since each ia  and ib is nonnegative, and since the 

expected value of the multiple series is finite. In practice the above expression of th is 

replaced by truncation version 
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wheret>q. 

In general, suppose that f(.) is the probability density function of t . However, 

generally, maximum likelihood estimators are derived by minimizing  
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where th
~

 is the truncated version of th  (Fan and Yao, 2003).  

Whitle’s estimator 

 For GARCH(p,q) defined by (3), the conditional variance can be written a 
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Suppose that { t } is fourth-order stationary in the sense that its first four moments 

are all time-invariant. 2

ttx  then {xt} is a stationary AR(∞) process satisfying  
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density of the process {xt} is  
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Whitle’s estimators for ia  and ib  are obtained by minimizing    
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jjT gI   

whereIT(.) is the periodogram of {xt} and 2/2 jj   .  

Whittle’s estimator suffer from the lack of efficiency, as et is unlikely to be normal 

even when t  is normal. 

Least absolute deviations estimator 

Both the estimators discussed above are derived from maximizing a Gaussian 

likelihood or an approximate Gaussian likelihood. In time-series they are known as L2 

- estimators. Empirical evidence suggests that some financial time-series exhibit 

heavy-tailed than those of a normal distribution would be more appropriate. Based on 

this consideration, Peng and Yao (2003) proposed Least absolute deviations 

estimation (LADE) which minimizes 
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t hloglogε wherev = p+1, if q = 0 and v >p+1, if q >0.   

The idea behind this implies implicitly a reparameterization of model (3) such that E(

t ) = 0 and the median (instead of variance) of 2

t  is equal to 1. Peng and Yao (2002) 

showed that under very mild conditions, the least absolute deviations estimators are 

asymptotically normal with the standard convergence rate T1/2 regardless of whether 

the distribution of t  has heavy tails or not. This is in marked contrast to the 

conditional maximum likelihood estimators, which will suffer from slow convergence 

when t  is heavy-tailed. 

Fan and Yao (2003) and Straumann (2005) have given a good description of various 

estimation procedures for conditionally heteroscedastic time- series models.  

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

values for GARCH model with Gaussian distributed errors are computed by:  

AIC =   



T

1t

1
t

2
tt h

~
εh

~
log  + 2(p + q + 1)                                     (7) 

and   

   BIC =   



T

1t

1
t

2
tt h

~
εh

~
log + 2(p + q + 1) log(T – v + 1)              (8) 

whereT is the total number of observations.  

Evidently, the likelihood equations are extremely complicated. Fortunately, the 

estimates can be obtained by using a software package, like EViews, SAS, SPLUS 

GARCH, GAUSS, TSP, R, MATLAB, and RATS.  

Testing for ARCH Effects 

Let 1ttt yy    be the residual series. The squared series  2

t is then used to 

check for conditional heteroscedasticity, which is also known as the ARCH effects. 

To this end, two tests, briefly discussed below, are available. The first one is to apply 

the usual Ljung-Box statistic Q(m) to the  2

t series. The null hypothesis is that the 

first m lags of autocorrelation functions of the  2

t  series are zero. The second test 

for conditional heteroscedasticity is the Lagrange multiplier test of Engle (1982). This 

test is equivalent to usual F-statistic for testing 0a:H i0  , i =1 ,2,… ,q in the linear 

regression  
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qtq
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236 

where te  denotes the error term, q is the prespecified positive integer, and T is the 

sample size.  

Let  
2

1

2

0 



T

qt

tSSR  , where T/2
t

T

1qt

 


 is the sample mean of  2

t , and 




T

1qt

2
t1 êSSR , where tê  is the least squares residual of (9). Then, under H0,  

 
 1

/

1

10






qTSSR

qSSRSSR
F                                                                  (10) 

is asymptotically distributed as chi-squared distribution with q degrees of freedom. 

The decision rule is to reject H0 if   2

qF  , where   2

q
 is the upper 100(1- )th 

percentile of 2

q  or, alternatively, the p-value of F is less than  . 

Illustration(Paul et al., 2009) 

Paul et al. (2009) found that AR(1)-GARCH (1,1) model was better than ARIMA 

model for modeling and forecasting of all-India data of monthly export of spices 

during the period April, 2000 to November, 2006.First of all they fitted ARIMA 

model. The appropriate model was chosen on the. ARIMA(1,1,1) model is selected 

for modelling and forecasting of the export of spices based on minimum Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) values. The 

estimates of parameters of above model are reported in Table 1. The graph of fitted 

model along with data points is exhibited in Fig. 1. Evidently, the fitted 

ARIMA(1,1,1) model is not able to capture successfully the volatility present at 

various time-epochs, like October, 2001; May, 2002; March, 2004; and March, 2006. 

Table 1.  Estimates of parameters along with their standard errors  

for fitted ARIMA(1,1,1) model  

 

Parameter Estimate Standard error 

AR1 -0.100 0.159 

MA1   0.696 0.119 

Constant  1.468 0.966 
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Fig. 1. Fitted ARIMA(1,1,1) model along with  data points 

Fitting of GARCH Model 

On investigating autocorrelation of the squared residuals of the fitted ARIMA(1,1,1) 

model it was found that the autocorrelation was highest at lag 24, which was 0.265. 

The ARCH-LM test statistic at lag 24 computed using equation (10) was 37.48, which 

was significant at 5% level of significance. But it is not reasonable to apply ARCH 

model of order 24 in view of the enormously large number of parameters. Therefore, 

the parsimonious GARCH model is applied. The AR(1)-GARCH(1,1) model is 

selected on the basis of minimum AIC and BIC values. The estimates of parameters 

of the above model along with their corresponding standard errors in brackets ( ) are 

yt = 157.99 + 0.829yt-1+ t  

(33.692)  (0.087) 

where ttt h  2/1 , and ht satisfies the variance equation 

ht = 1427.855 + 0.354 2

1t + 0.509ht-1 

(237.058)  (0.277)        (0.206)  

Using eqs. (7) and (8), the AIC and BIC values for fitted AR(1) – GARCH(1,1) 

model, are respectively computed as 479.77 and 521.97. To study the appropriateness 

of the fitted GARCH model, the autocorrelation function of the standardized residuals 

and squared standardized residuals are computed and it is found that, in both 

situations, the autocorrelation function is insignificant at 5% level of significance, 

thereby confirming that the mean and variance equations are correctly specified.The 
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graph of fitted model along with data points is exhibited in Fig. 2. Obviously, the 

fitted GARCH model is able to capture the volatility present in the data set.EViews 

software package was employed for fitting of these models.  

 

Fig. 4. Fitted AR(1) – GARCH(1,1) model along with  data points 

Forecasting 

One-step ahead forecasts of export of spices along with their corresponding standard 

errors inside the brackets ( ) for the months of September, 2006 to November, 2006 in 

respect of  above fitted models are reported in Table 2. A perusal indicates that, for 

fitted GARCH model, all the forecast values lie within one standard error of forecasts. 

However, this attractive feature does not hold for fitted ARIMA model. 

The Mean square prediction error (MSPE) values and Mean absolute prediction error 

(MAPE) values for fitted GARCH model are respectively computed as 18.14 and 

15.00, which are found to be lower than the corresponding ones for fitted ARIMA 

model, viz. 33.17 and 29.02 respectively. 

Table 2. One-step ahead forecasts of export of spices ( Rs. Crores) for fitted 

models 

Months Actual Price Forecasts by 

ARIMA(1,1,1)             AR(1)-GARCH(1,1) 

Sep. ’06 270.91 235.67(29.58) 247.14 (40.93) 

Oct. ’06 232.59 240.27 (30.12) 231.89 (48.17) 

Nov. ’06 286.21 241.50 (31.16) 265.68 (53.31) 
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To sum up, it may be concluded that the AR(1)-GARCH(1,1) model has performed 

better than the ARIMA(1,1,1) model for present data for both modelling as well as 

forecasting purposes. 
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Ensemble methods are techniques that aim at improving the accuracy of results in 

models by combining multiple models instead of using a single model. They combine 

multiple algorithms to produce better classification performance.It is a machine 

learning approach to combine multiple other models in the prediction process. The 

combined models increase the accuracy of the results significantly.Those models are 

referred to as base estimators. It is a solution to overcome the following technical 

challenges of building a single estimator:High variance: The model is very sensitive to 

the provided inputs to the learned features. 

 Low accuracy: One model or one algorithm to fit the entire training data might not 

be good enough to meet expectations. 

 Features noise and bias: The model relies heavily on one or a few features while 

making a prediction. 

Bagging is used to reduce the variance of weak learners. Boosting is used to reduce 

the bias of weak learners. Stacking is used to improve the overall accuracy of strong 

learners. 

Ensemble Algorithm 

A single algorithm may not make the perfect prediction for a given dataset. Machine 

learning algorithms have their limitations and producing a model with high accuracy is 

challenging. If we build and combine multiple models, the overall accuracy could get 

boosted. The combination can be implemented by aggregating the output from each 

model with two objectives: reducing the model error and maintaining its 

generalization. The way to implement such aggregation can be achieved using some 

techniques. Some textbooks refer to such architecture as meta-algorithms. 
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Ensemble Learning 

Building ensemble models is not only focused on the variance of the algorithm used. 

For instance, we could build multiple C45 models where each model is learning a 

specific pattern specialized in predicting one aspect. Those models are called weak 

learners that can be used to obtain a meta-model. In this architecture of ensemble 

learners, the inputs are passed to each weak learner while collecting their predictions. 

The combined prediction can be used to build a final ensemble model. 

One important aspect to mention is those weak learners can have different ways of 

mapping the features with variant decision boundaries. 

 

Ensemble Techniques 

Bagging 

We use bagging for combining weak learners of high variance. Bagging aims to 

produce a model with lower variance than the individual weak models. These weak 

learners are homogenous, meaning they are of the same type. 

Bagging is also known as Bootstrap aggregating. It consists of two steps: 

bootstrapping and aggregation. 

Bootstrapping 

Involves resampling subsets of data with replacement from an initial dataset. In other 

words, subsets of data are taken from the initial dataset. These subsets of data are 

called bootstrapped datasets or, simply, bootstraps. Resampled ‘with replacement’ 

means an individual data point can be sampled multiple times. Each bootstrap dataset 

is used to train a weak learner. 

Aggregating 

The individual weak learners are trained independently from each other. Each learner 

makes independent predictions. The results of those predictions are aggregated at the 
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end to get the overall prediction. The predictions are aggregated using either max 

voting or averaging. 

Max Voting is commonly used for classification problems. It consists of taking the 

mode of the predictions (the most occurring prediction). It is called voting because 

like in election voting, the premise is that ‘the majority rules’. Each model makes a 

prediction. A prediction from each model counts as a single ‘vote’. The most 

occurring ‘vote’ is chosen as the representative for the combined model. 

Averaging is generally used for regression problems. It involves taking the average of 

the predictions. The resulting average is used as the overall prediction for the 

combined model. 

It is one of the most straightforward and most intuitive ensemble-based algorithms 

that create separate samples of the training dataset. Each training dataset is used to 

train a different classification. 

 
 Bagging 

The idea of bagging is based on making the training data available to an iterative 

process of learning. Each model learns the error produced by the previous model 

using a slightly different subset of the training dataset. Bagging reduces variance 

and minimizes overfitting. One example of such a technique is the Random 

Forest algorithm. 

The steps of Bagging are as follows: 

1. We have an initial training dataset containing n-number of instances. 
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2. We create a m-number of subsets of data from the training set.  We take a 

subset of N sample points from the initial dataset for each subset. Each subset 

is taken with replacement. This means that a specific data point can be 

sampled more than once. 

3. For each subset of data, we train the corresponding weak learners 

independently. These models are homogeneous, meaning that they are of the 

same type. 

4. Each model makes a prediction. 

5. The predictions are aggregated into a single prediction. For this, either max 

voting or averaging is used. 

 

Bagging Algorithm:  

Input:  

Data Set D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn )}  

Number of iteration T  

Process:  

Step 1: for i = 1 to T  

(a) Through sampling data points with replacement, create a dataset sample 

Sm.  
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(b) From each dataset sample, Sm learns a classifier Cm.  

Step 2: for every test example.  

(a) Try all classifiers Cm.  

(b) Estimate the class that earns the largest number of votes. 

 Random Forest: Random Forest is another ensemble machine learning 

algorithm that follows the bagging technique. It is an extension of the bagging 

estimator algorithm. The base estimators in random forest are decision trees. 

Unlike bagging meta estimator, random forest randomly selects a set of 

features which are used to decide the best split at each node of the decision 

tree. It uses subset of training samples as well as subset of features to build 

multiple split trees. Multiple decision trees are built to fit each training set. The 

distribution of samples/features is typically implemented in a random mode. 

 

Looking at it step-by-step, this is what a random forest model does: 

1. Random subsets are created from the original dataset (bootstrapping). 

2. At each node in the decision tree, only a random set of features are considered 

to decide the best split. 

3. A decision tree model is fitted on each of the subsets. 

4. The final prediction is calculated by averaging the predictions from all 

decision trees. 

Note: The decision trees in random forest can be built on a subset of data and 

features. Particularly, the sklearn model of random forest uses all features for 
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decision tree and a subset of features are randomly selected for splitting at each 

node. 

To sum up, Random forest randomly selects data points and features, and 

builds multiple trees (Forest). 

 Extra-Trees Ensemble: is another ensemble technique where the predictions are 

combined from many decision trees. Similar to Random Forest, it combines a large 

number of decision trees. However, the Extra-trees use the whole sample while 

choosing the splits randomly. 

 Boosting: 

We use boosting for combining weak learners with high bias. Boosting aims to 

produce a model with a lower bias than that of the individual models. Like in 

bagging, the weak learners are homogeneous. 

Boosting involves sequentially training weak learners. Here, each subsequent 

learner improves the errors of previous learners in the sequence. A sample of data 

is first taken from the initial dataset. This sample is used to train the first model, 

and the model makes its prediction. The samples can either be correctly or 

incorrectly predicted. The samples that are wrongly predicted are reused for 

training the next model. In this way, subsequent models can improve on the errors 

of previous models. 

Unlike bagging, which aggregates prediction results at the end, boosting 

aggregates the results at each step. They are aggregated using weighted averaging. 

Weighted averaging involves giving all models different weights depending on 

their predictive power. In other words, it gives more weight to the model with the 

highest predictive power. This is because the learner with the highest predictive 

power is considered the most important. 

Boosting works with the following steps: 

1. We sample m-number of subsets from an initial training dataset. 

2. Using the first subset, we train the first weak learner. 

3. We test the trained weak learner using the training data. As a result of the 

testing, some data points will be incorrectly predicted. 

4. Each data point with the wrong prediction is sent into the second subset of 

data, and this subset is updated. 

5. Using this updated subset, we train and test the second weak learner. 
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6. We continue with the following subset until the total number of subsets is 

reached. 

7. We now have the total prediction. The overall prediction has already been 

aggregated at each step, so there is no need to calculate it. 

 

Algorithm:  

Input:  

Data set D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn )}  

Number of iteration T  

Process:  

Step 1: Initialize Weight: Each case receives the same weight.  

Wi = 1/N, where i = 1, 2, 3 … N.  

Step 2: Construct a classifier using current weight, Compute its error: 

 

Step 3: Get a classifier influence and update example weight. 

 

Step 4: Go to step 2. 

 Adaptive Boosting (AdaBoost): is an ensemble of algorithms, where we build 

models on the top of several weak learners. As we mentioned earlier, those 

learners are called weak because they are typically simple with limited 
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prediction capabilities. It is one of the simplest boosting algorithms. Usually, 

decision trees are used for modelling. Multiple sequential models are created, 

each correcting the errors from the last model. AdaBoost assigns weights to 

the observations which are incorrectly predicted and the subsequent model 

works to predict these values correctly. 

The adaptation capability of AdaBoost made this technique one of the earliest 

successful binary classifiers. Sequential decision trees were the core of such 

adaptability where each tree is adjusting its weights based on prior knowledge 

of accuracies. Hence, we perform the training in such a technique in sequential 

rather than parallel process. In this technique, the process of training and 

measuring the error in estimates can be repeated for a given number of iteration 

or when the error rate is not changing significantly. 

AdaBoost was the first boosting technique and is still now widely used in 

several domains. AdaBoost, in theory, is not prone to overfitting. Stage-wise 

estimation may slow down the learning process since parameters aren’t jointly 

optimized. AdaBoost may be used to increase the accuracy of the weak 

classifiers, allowing it to be more flexible. It requires no normalization and has 

a low generalization error rate. However, training the algorithm takes 

enormous time. The method is also susceptible to noisy data and outliers. 

Therefore, removing them before employing them is strongly advised. 

Looking at it step-by-step, this is what a AdaBoost model does: 

1. Initially, all observations in the dataset are given equal weights. 

2. A model is built on a subset of data. 

3. Using this model, predictions are made on the whole dataset. 

4. Errors are calculated by comparing the predictions and actual values. 

5. While creating the next model, higher weights are given to the data points 

which were predicted incorrectly. 

6. Weights can be determined using the error value. For instance, higher the 

error more is the weight assigned to the observation. 

7. This process is repeated until the error function does not change, or the 

maximum limit of the number of estimators is reached. 

 Gradient Boosting: Gradient Boosting or GBM is another ensemble machine 

learning algorithm that works for both regression and classification problems. 

GBM uses the boosting technique, combining a number of weak learners to 
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form a strong learner. Regression trees used as a base learner, each subsequent 

tree in series is built on the errors calculated by the previous tree.Gradient 

boosting algorithms are great techniques that have high predictive 

performance. Xgboost, LightGBM, and CatBoost are popular boosting 

algorithms that can be used for regression and classification problems. Their 

popularity has significantly increased after their proven ability to win some 

Kaggle competitions. 

 Stacking 

Stacking, also known as Stacked Generalization,is use to improve the 

prediction accuracy of strong learners. Stacking aims to create a single robust 

model from multiple heterogeneous strong learners. 

Stacking differs from bagging and boosting in that: 

 It combines strong learners 

 It combines heterogeneous models 

 It consists of creating a Metamodel. A metamodel is a model created using 

a new dataset. 

Individual heterogeneous models are trained using an initial dataset. These 

models make predictions and form a single new dataset using those 

predictions. This new data set is used to train the metamodel, which makes the 

final prediction. The prediction is combined using weighted averaging. 

Because stacking combines strong learners, it can combine bagged or boosted 

models. 

Stackingis a method similar to boosting. It is an interesting way of combining 

different models where multiple different algorithms are applied to the 

training dataset to create a model. The Meta classifier is used to predict unseen 

data accurately. They produce more robust predictors. It is a process of 

learning how to create such a stronger model from all weak learners’ 

predictions. 

It is an ensemble technique that combines multiple classifications or 

regression models via a meta-classifier or a meta-regressor. The base-level 

models are trained on a complete training set, then the meta-model is trained 

on the features that are outputs of the base-level model. The base-level often 
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consists of different learning algorithms and therefore stacking ensembles are 

often heterogeneous. 

The models(Base-Model) in stacking are typically different (e.g. not all 

decision trees) and fit on the same dataset. Also, a single model( Meta-model) 

is used to learn how to best combine the predictions from the contributing 

models. 

The architecture of a stacking model involves two or more base models, often 

referred to as level-0 models and a meta-model. Meta-model, also referred to 

as a level-1 model combines the predictions of the base models. 

The steps of Stacking are as follows: 

1. We use initial training data to train m-number of algorithms. 

2. Using the output of each algorithm, we create a new training set. 

3. Using the new training set, we create a meta-model algorithm. 

4. Using the results of the meta-model, we make the final prediction. The 

results are combined using weighted averaging. 

The outputs from the base models used as input to the meta-model may be real 

values in the case of regression, and probability values, probability like values, 

or class labels in the case of classification. 

 

Please note that what is being learned here (as features) is the prediction from 

each model. 
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When to use Bagging, Boosting and Stacking? 

 

 If you want to reduce the overfitting or variance of your model, you use 

bagging. If you are looking to reduce underfitting or bias, you use 

boosting. If you want to increase predictive accuracy, use stacking. 

 Bagging and boosting both works with homogeneous weak learners. 

Stacking works using heterogeneous solid learners. 

 All three of these methods can work with either classification or regression 

problems. 

 One disadvantage of boosting is that it is prone to variance or overfitting. 

It is thus not advisable to use boosting for reducing variance. Boosting will 

do a worse job in reducing variance as compared to bagging. 

 On the other hand, the converse is true. It is not advisable to use bagging 

to reduce bias or underfitting. This is because bagging is more prone to 

bias and does not help reduce bias. 

 Stacked models have the advantage of better prediction accuracy than 

bagging or boosting. But because they combine bagged or boosted models, 

they have the disadvantage of needing much more time and computational 

power.   If you are looking for faster results, it’s advisable not to use 

stacking. However, stacking is the way to go if you’re looking for high 

accuracy. 
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1. Introduction 

Mining association rules is one of the most useful data mining applications. 

Association rules, were first introduced in 1993 [Agrawal1993], and are used to 

identify relationships among a set of items in a database.  These relationships are not 

based on inherent properties of the data themselves (as in the case of functional 

dependencies), but are rather based on co-occurrence of the data items. Association 

rules are mainly used to analyze transactional data.  The association rules are useful in 

management, to increase the effectiveness and/or reduce the cost associated with 

advertising, marketing, inventory, stock location on the floor etc.  Association rules 

also provide assistance in other applications such as prediction by identifying what 

events occur before a set of particular events. An association rule may be one of the 

following types: Boolean, Spatial, Temporal, Generalized, Quantitative, Interval, and 

Multiple Min-Support Association etc or a mix of them.  

Formally the association rule as stated in [Agrawal1993] and [Cheung1996] is,  

Let D be a transaction database and I = {I1, I2, …, Im} be a set of m distinct items 

(attributes) of D, where each transaction (record) T is a set of items such that TI and 

has unique identifier. A transaction T is said to contain a set of item A if and only if 

AT.  An association rule is of the form of an implication expression AB, where A, 

BI, are sets of items called itemsets, and A  B=. The rule AB holds in the 

transaction data D with support (s) where s is the ratio (in percent) of the records that 

contain A B (i.e. both A and B) to the total number of records in the database, i.e. the 

probability P(A B). The rule AB has confidence (c) in the D, the ratio (in percent) 

of the number of records that contain A B to the number of records that contain A. 

This is taken to be the conditional probability P(B | A). Mining of association rules 

from a database consists of finding all rules that meet the user-specified thresholds of 

support and confidence termed as minimum support and minimum confidence.  The 

problem of mining association rules has been decomposed into the following two 

subproblems [Agrawal1994]: 

mailto:Anshu.Bharadwaj@icar.gov.in
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1) To find all sets of items which occur with a frequency that is greater than or 

equal to the user-specified threshold support, say s.  

2) To generate the rules using the frequent itemsets, which have confidence 

greater than or equal to the user-specified threshold confidence, say c. 

The Association relationships are not based on inherent properties of the data 

themselves but rather based on co-occurrence of the data items. Application of 

association rules spans across a wide range of domains such as, business, finance, 

health, geographical information system, weather forecast and many such areas of real 

life application. The association rules in management may be handy to increase the 

effectiveness and/or reduce the cost associated with advertising, marketing, inventory, 

stock location on the floor etc.  Association rules could assist in prediction of an event 

co-occurrence of a set of events. Association rules are generally categorized in 

following types: Boolean, Spatial, Temporal, Generalized, Quantitative, and Interval 

or may be mixed of them. The above definition of association rule is also known as 

Boolean Association Rule.  

Association rule mining is: 

 Unsupervised learning 

 Used for pattern discovery 

 Each rule has form: A -> B, or Left -> Right 

For example: “70% of customers who purchase 2% milk will also purchase whole 

wheat bread.” 

Data mining using association rules is the process of looking for strong rules: 

1. Find the large itemsets (i.e. most frequent combinations of items) 

2. Generate association rules for the above itemsets. 

2. Performance Evaluation Measure of Association Rules 

How to measure the strength of an association rule?  Using support/confidence 

Support: Support shows the frequency of the patterns in the rule; it is the percentage 

of transactions that contain both A and B, i.e.  

Support = Probability(A and B) 

Support = (# of transactions involving A and B) / (total number of 

transactions). 

Confidence: Confidence is the strength of implication of a rule; it is the percentage of 

transactions that contain B if they contain A, ie. 
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Confidence = Probability (B if A) = P(B/A) 

Confidence =  

(# of transactions involving A and B) / (total number of transactions that have 

A). 

3. The Apriori Algorithm 

The Apriori Algorithm is an influential algorithm for miningfrequent itemsets for 

boolean association rules. Some keyconcepts for Apriori algorithm are: 

 Frequent Itemsets: The sets of item which hasminimum support (denoted by 

Li for ith-Itemset). 

 Apriori Property: Any subset of frequent itemset mustbe frequent. 

 Join Operation: To find Lk , a set of candidate kitemsets is generated by 

joining Lk-1 with itself. 

Very first algorithm proposed for association rules miningwas the Apriori for frequent 

itemset mining. The mostpopular algorithm for pattern mining is without a doubt 

Apriori.It is designed to be applied on a transaction database to discover patterns in 

transactions made by customers in stores. But it can also be applied in several other 

applications. A transaction is defined a set of distinct items (symbols).  

Aprioritakes as input  

(1)  a minsup threshold set by the user and  

(2)  atransaction database containing a set of transactions.  

Apriorioutputs all frequent itemsets, i.e. groups of items shared by noless than minsup 

transactions in the input database. Forexample, consider the following transaction 

data base containing four transactions. Given a minsup of twotransactions, frequent 

itemsets are“bread, butter”, “breadmilk”, “bread”, “milk” and “butter”. 

T1: bread, butter, spinach 

T2: butter, salmon 

T3: bread, milk, butter 

T4: cereal, bread, milk 

The Apriori algorithm employs the downward closureproperty if an item set is not 

frequent, any superset of it cannotbe frequent either. The Apriori algorithm performs 

a breadthfirstsearch in the search space by generating candidate k+1-itemsets from 

frequent k itemsets. 
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The frequency of an item set is computed by counting its occurrence in each 

transaction. Apriori is an significantalgorithm for mining frequent itemsets for 

Boolean associationrules. Since the Algorithm uses prior knowledge of frequentitem 

set it has been given the name Apriori. Apriori is aniterative level wise search 

Algorithm, where k- itemsets areused to explore (k+1)-itemsets. First, the set of 

frequents 1- itemsets is found. 

This set is denoted by L1. L1 is used to find L2, the set offrequent 2-itemsets , which 

is used to find L3 and so on , untilno more frequent k-itemsets can be found. The 

finding of eachLk requires one full scan of database. 

There are twosteps for understanding that how Lk-1 is usedto find Lk:- 

1) The join step: To find Lk , a set of candidate k-itemsets isgenerated by joining Lk-1 

with itself. This set ofcandidates is denoted Ck. 

2) The prune step: Ck is a superset of Lk , that is , itsmembers may or may not be 

frequent , but all of thefrequent k-itemsets are included in Ck . 

A scan of the database to determine the count of eachcandidate in Ck would result in 

the determination of Lk. Ck,however, can be huge, and so this could involve 

heavycomputation. 

To reduce the size of Ck , the Apriori property is used as follows: 

i. Any (k-1)-item set that is not frequent cannot be asubset of frequent k-item 

set. 

ii. Hence, if (k-1) subset of a candidate k item set is notin Lk-1 then the 

candidate cannot be frequent eitherand so can be removed from C. 

Based on the Apriori property that all subsets of a frequentitemset must also be 

frequent, we can determine that four lattercandidates cannot possibly be frequent. 

How? 

For example, let’s take {I1, I2, I3}. The 2-item subsets of itare {I1, I2}, {I1, I3} & 

{I2, I3}. Since all 2-item subsets of {I1,I2, I3} are members of L2, We will keep {I1, 

I2, I3} in C3. 

Let’s take another example of {I2, I3, I5} which shows howthe pruning is performed. 

The 2-item subsets are {I2, I3}, {I2,I5} & {I3,I5}. 

BUT, {I3, I5} is not a member of L2 and hence it is notfrequent violating Apriori 

Property. Thus, we will have toremove {I2, I3, I5} from C3. 
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Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after checking forall members of result of 

Join operation for Pruning. 

Example : The Titanic Dataset 

The Titanic dataset in the datasets package is a 4-dimensional table with summarized 

information on the fate of passengers on the Titanic according to social class, sex, age 

and survival. I To make it suitable for association rule mining, we reconstruct the raw 

data as titanic.raw, where each row represents a person. The reconstructed raw data 

can also be downloaded at http://www.rdatamining.com/data/titanic.raw.rdata. 

> str(titanic.raw) 

'data.frame': 2201 obs. of 4 variables: 

$ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 ... 

$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ... 

$ Age : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 ... 

$ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... 

 

Association Rule Mining 

> library(arules) 

> # find association rules with default settings 

> rules <- apriori(titanic.raw) 

> inspect(rules) 

  lhs               rhs         support   confidence lift 

1 {}             => {Age=Adult} 0.9504771 0.9504771  1.0000000 

2 {Class=2nd}    => {Age=Adult} 0.1185825 0.9157895  0.9635051 

3 {Class=1st}    => {Age=Adult} 0.1449341 0.9815385  1.0326798 

4 {Sex=Female}   => {Age=Adult} 0.1930940 0.9042553  0.9513700 

5 {Class=3rd}    => {Age=Adult} 0.2848705 0.8881020  0.9343750 

6 {Survived=Yes} => {Age=Adult} 0.2971377 0.9198312  0.9677574 

7 {Class=Crew}   => {Sex=Male}  0.3916402 0.9740113  1.2384742 

 

We then set rhs=c("Survived=No", "Survived=Yes") in appearance to make sure that 

only "Survived=No" and "Survived=Yes" will appear in the rhs of rules. 

 

> # rules with rhs containing "Survived" only 

> rules <- apriori(titanic.raw, 

  + parameter = list(minlen=2, supp=0.005, conf=0.8), 

  + appearance = list(rhs=c("Survived=No", "Survived=Yes"), 

  + default="lhs"), 

  + control = list(verbose=F)) 

> rules.sorted <- sort(rules, by="lift") 

> inspect(rules.sorted) 

http://www.rdatamining.com/data/titanic.raw.rdata
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Pruning Redundant Rules 

In the above result, rule 2 provides no extra knowledge in addition to rule 1, since 

rules 1 tells us that all 2nd-class children survived. Generally speaking, when a rule 

(such as rule 2) is a super rule of another rule (such as rule 1) and the former has the 

same or a lower lift, the former rule (rule 2) is considered to be redundant. Below we 

prune redundant rules. 

> # find redundant rules 

> subset.matrix <- is.subset(rules.sorted, rules.sorted) 

> subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA 

> redundant <- colSums(subset.matrix, na.rm=T) >= 1 

> which(redundant) 

[1] 2 4 7 8 

> # remove redundant rules 

http://www.rdatamining.com/examples/association-rules/association-rules.jpg?attredirects=0
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> rules.pruned <- rules.sorted[!redundant] 

> inspect(rules.pruned) 

 

 
Visualizing Association Rules 

Package arules Viz supports visualization of association rules with scatter plot, 

balloon plot, graph, parallel coordinates plot, etc. 

> library(arulesViz) 

> plot(rules) 

 

http://www.rdatamining.com/examples/association-rules/association-rules-pruned.jpg?attredirects=0
http://www.rdatamining.com/examples/association-rules/scatter-plot.jpg?attredirects=0
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> plot(rules, method="graph", control=list(type="items")) 

 

 
> plot(rules, method="paracoord", control=list(reorder=TRUE)) 

 

 
 

4. Frequent Pattern (FP) Growth Method 

The FP-Growth Algorithm is an alternative way to find frequent itemsets without 

using candidate generations, thus improving performance. For so much it uses a 

http://www.rdatamining.com/examples/association-rules/graph.jpg?attredirects=0
http://www.rdatamining.com/examples/association-rules/parallel-coordinates.jpg?attredirects=0
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divide-and-conquer strategy. The core of this method is the usage of a special data 

structure named frequent-pattern tree (FP-tree), which retains the itemset association 

information. 

In simple words, this algorithm works as follows: first it compresses the input 

database creating an FP-tree instance to represent frequent items. After this first step 

it divides the compressed database into a set of conditional databases, each one 

associated with one frequent pattern. Finally, each such database is mined separately. 

Using this strategy, the FP-Growth reduces the search costs looking for short patterns 

recursively and then concatenating them in the long frequent patterns, offering good 

selectivity. 

In large databases, it’s not possible to hold the FP-tree in the main memory. A 

strategy to cope with this problem is to firstly partition the database into a set of 

smaller databases (called projected databases), and then construct an FP-tree from 

each of these smaller databases. 

4.1 FP-Tree structure 

The frequent-pattern tree (FP-tree) is a compact structure that stores quantitative 

information about frequent patterns in a database [4]. 

Han defines the FP-tree as the tree structure io below [1]: 

1. One root labeled as “null” with a set of item-prefix subtrees as children, and a 

frequent-item-header table (presented in the left side of Figure 1); 

2. Each node in the item-prefix subtree consists of three fields: 

1. Item-name: registers which item is represented by the node; 

2. Count: the number of transactions represented by the portion of the 

path reaching the node; 

3. Node-link: links to the next node in the FP-tree carrying the same 

item-name, or null if there is none. 

1. Each entry in the frequent-item-header table consists of two fields: 

1. Item-name: as the same to the node; 

2. Head of node-link: a pointer to the first node in the FP-tree carrying 

the item-name. 

Additionally the frequent-item-header table can have the count support for an 

item. The Figure below show an example of a FP-tree. 

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Kumar2010-4
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-HanPei2000-1
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Figure 1: An FP-tree registers compressed, frequent pattern information 

Table 1: Transactional data for an AllElectronics branch. 

 

The first scan of the database is the same as Apriori, which derives the set of frequent 

items (1-itemsets) and their support counts (frequencies). Let the minimum support 

count be 2. The set of frequent items is sorted in the order of descending support 

count. This resulting set or list is denoted by L. Thus, we have L ={{I2: 7}, {I1: 6}, 

{I3: 6}, {I4: 2}, {I5: 2}}. An FP-tree is then constructed as follows. First, create the 

root of the tree, labeled with “null.” Scan database D a second time. The items in each 

transaction are processed inL order (i.e., sorted according to descending support 

count), and a branchis created for each transaction. For example, the scan of thefirst 

transaction, “T100: I1, I2, I5,” which contains three items (I2, I1, I5 in L order), leads 

to the construction of the first branch of the tree with three nodes,hI2: 1i,hI1:1i, and 

hI5: 1i, where I2islinked as a child to the root, I1islinked to I2, and I5islinked to I1. 

The second transaction, T200, contains theitems I2 and I4inLorder, whichwould result 

in a branch where I2 is linked to the root and I4 is linked to I2. However, this branch 

would share a common prefix, I2, with the existing path for T100. Therefore, we 
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insteadincrement the count of the I2 node by 1, and create a new node,hI4: 1i, which 

is linked as a child to hI2: 2i. In general, when considering the branch to be addedfor 

a transaction, the count of each node along a common prefix is incremented by 1, and 

nodes for the items following the prefix are created and linked accordingly. To 

facilitate tree traversal, an item header table is built so that each item points to its 

occurrences in the tree via a chain of node-links. The tree obtained after scanning all 

of the transactions is shown in Figure 6.7 with the associated node-links. In this way, 

the problem of mining frequent patterns in databases is transformed to that of mining 

the FP-tree. The FP-tree is mined as follows. Start from each frequent length-1 pattern 

(as an initial suffix pattern), construct its conditional pattern base (a “sub-database,” 

which consists of the set of prefix paths in the FP-tree co-occurring with the suffix 

pattern), then construct its (conditional) FP-tree, and perform mining recursively on 

such a tree. The pattern growth is achieved by the concatenation of the suffix pattern 

with the frequent patterns generated from a conditional FP-tree. 

Mining of the FP-tree is summarized in Table 2 and detailed as follows. We first 

consider I5, which is the last item in L, rather than the first. The reason for starting at 

the end of the list will become apparent as we explain the FP-tree mining process. I5 

occurs in two branches of the FP-tree of Figure 2. (The occurrences of I5 can easily 

be found by following its chain of node-links.) The paths formed by these branches 

are hI2, I1, I5: 1i and hI2, I1, I3, I5: 1i. Therefore, considering I5 as a suffix, its 

corresponding two prefix paths are hI2, I1: 1i and hI2, I1, I3: 1i, which form its 

conditional pattern base. Using this conditional pattern base as a transaction database, 

we build an I5-conditional FP-tree, which contains only a single path, hI2: 2, I1: 2i; I3 

is not included because its support count of 1 is less than the minimum support count. 

The single path generates all the combinations of frequent patterns: {I2, I5: 2}, {I1, 

I5: 2}, {I2, I1, I5: 2}. For I4, its two prefix paths form the conditional pattern base, 

{{I2 I1: 1}, {I2: 1}}, which generates a single-node conditional FP-tree, hI2: 2i, and 

derives one frequent pattern, {I2, I4: 2} 
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Table 2: Mining the FP-tree by creating conditional (sub-)pattern bases 

 

 

Figure 2: The conditional FP-tree associated with the conditional node I3 

Similar to the above analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2}, 

{I1: 2}}. Its conditional FP-tree has two branches, hI2: 4, I1: 2i and hI1: 2i, as shown 

in Figure 6.8, which generates the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 

2}}. Finally, I1’s conditional pattern base is {{I2: 4}}, whose FP-tree contains only 

one node, hI2: 4i, which generates one frequent pattern, {I2, I1: 4}. This mining 

process is summarized in Figure 6.9. The FP-growth method transforms the problem 

of finding long frequent patterns to searching for shorter ones in much smaller 

conditional databases recursively and then concatenating the suffix. It uses the least 

frequent items as a suffix, offering good selectivity. The method substantially reduces 

the search costs. 

5. Basic Association Rules: Problems, Solutions and New Applications 

Most of the research efforts in the scope of association rules have been oriented to 

simplify the rule set and to improve performance of algorithm. But these are not the 

only problems that can be found and when rules are generated and applied in different 

domains. Troubleshooting for them should also take into consideration the purpose of 

association model and data they come from. Some of the major drawbacks of 

association rule algorithms are as follows: 

 Obtaining huge number of rules 

 Obtaining non interesting rules 
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 Low algorithm performance  

 Cannot incorporate domain/ user defined knowledge 

 Not suitable for supervised learning 

Some of the recent studies have focused on overcoming these limitations. Many 

algorithms for obtaining a reduced number of rules with high support and confidence 

have been produced. However these measures are insufficient to determine if 

discovered associations are really useful.  An important property of discovered 

association rules is that they should be interesting and useful.  Though 

interestingness of rule is a subjective aspect, many researchers have tried to come up 

with some ways of measuring of interest.  It has been suggested that the rules are 

interesting if they are unexpected (unknown to user) and actionable (users can do 

something with them to their advantage). Further some other measures namely: any-

confidence, all confidence and bond has been suggested as alternative measures of 

interestingness. Some authors have considered alternative measures of interest as : 

gini index, entropy gain or chisquared for database or a measure of implication 

called conviction. Most of the approaches for finding interesting rules require user 

participation to articulate his knowledge or to express what rules are interesting for 

him. Systems have been developed to analyze the discovered rules against user’s 

knowledge. Discovered rules can be pruned to remove redundant and insignificant 

rules and further user’s evaluation can be used to rank the rules. Unexpected patterns 

discovered may represent “holes” in domain knowledge which needs to be resolved. 

These patterns can thus be used to refine already existing beliefs.  

Traditionally, association analysis has been considered as an unsupervised technique, 

so it has been applied for knowledge discovery tasks. Recent studies have shown that 

knowledge discovery algorithms such as association rule mining can be successfully 

applied for prediction in classification problems. In such cases the algorithms used for 

generating association rules must be tailored to peculiarities of predictions in order to 

build effective classifiers. Some work has been done, where association mining 

algorithms have been extended so that they can be used for classification/ prediction. 

A proposal of this category is Classification Based on Association (CBA) algorithm. 

The algorithm consists of two parts, a rule generator for finding association rules and 

a classifier builder based on these rules. Main contribution of this algorithm is 
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possibility of making prediction on any attribute in database. Moreover, new 

incomplete observations can be classified.  

In conclusion we can say that association rule mining is an important area of data 

mining research and a comparatively a younger member of data mining community. 

In addition to finding co-occurrence relation between items, which is basic objective, 

the algorithm has been applied for diverse applications. Many extensions of standard 

methods have been proposed. A major research area on association rules is 

interestingness of discovered rules. In fact its potential has still to be tapped, so that it 

can be tailored to solve different types of data mining problems.  
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1. Introduction 

SPSS (Statistical Package for the Social Sciences) is a widely used software program 

for statistical analysis and data management. It provides a comprehensive set of tools 

and features that enable researchers, data analysts, and students to perform various 

data-related tasks efficiently. SPSS is known for its user-friendly interface and 

powerful capabilities, making it a popular choice in both academia and industry. 

Originally developed in 1968 by Norman H. Nie, C. Hadlai "Tex" Hull, and Dale H. 

Bent. The original SPSS manual (Nieet al., 1970) has been described as one of 

"sociology's most influential books" for allowing ordinary researchers to do their own 

statistical analysis. Originally it is an acronym of Statistical Package for the Social 

Science but now it stands for Statistical Product and Service Solutions. The current 

versions are officially named IBM SPSS Statistics. Long produced by SPSS Inc., it 

was acquired by IBM in 2009. During 2009 and 2010 it was called PASW (Predictive 

Analytics Software) Statistics.SPSS has evolved over the years and is now owned by 

IBM Corporation. The software has undergone several versions, with each release 

bringing new functionalities and enhancements to meet the ever-growing demands of 

statistical analysis. 

SPSS allows users to import, manipulate, and analyze data from a wide range of 

sources, including spreadsheets, databases, and other statistical formats. The software 

supports both structured and unstructured data, making it versatile for different types 

of research and analysis. Whether you are working with survey data, experimental 

data, or observational data, SPSS provides the necessary tools to handle and explore 

your datasets effectively. 

One of the key strengths of SPSS is its extensive range of statistical procedures. The 

software offers a vast array of statistical techniques, ranging from basic descriptive 

statistics to advanced multivariate analysis. Users can easily generate frequencies, 

descriptive statistics, cross-tabulations, and explore relationships between variables. 

Moreover, SPSS provides options for regression analysis, analysis of variance 

(ANOVA), factor analysis, cluster analysis, and many other techniques that allow for 

in-depth data exploration and hypothesis testing. 

mailto:raju.kumar@icar.gov.in
http://en.wikipedia.org/wiki/SPSS_Inc.
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SPSS also provides a variety of graphical tools for visualizing data. Users can create 

charts, histograms, scatterplots, and other visual representations to better understand 

their data and communicate findings effectively. The software supports customization 

options, enabling users to format and design visuals to suit their specific needs. 

In addition to its analytical capabilities, SPSS offers data management features to 

assist users in preparing and cleaning datasets. With SPSS, users can merge, subset, 

transform, and recode variables, ensuring data quality and consistency. This helps 

researchers save time and effort in data preparation, allowing them to focus more on 

analysis and interpretation. 

SPSS is known for its user-friendly interface, making it accessible to users with 

varying levels of statistical knowledge and programming skills. The software offers a 

menu-driven interface, where users can perform tasks by selecting options from 

dropdown menus. However, for more advanced users, SPSS also supports a syntax-

based approach, allowing for greater flexibility and automation in data analysis. 

Furthermore, SPSS provides options for integration with other statistical software and 

programming languages. Users can import and export data in various formats, such as 

Excel, CSV, and SQL, facilitating seamless data exchange between different software 

tools. SPSS also supports integration with R and Python, allowing users to leverage 

the power of these programming languages for custom analyses and extensions. 

In conclusion, SPSS is a powerful and versatile software program for statistical 

analysis and data management. With its user-friendly interface, extensive statistical 

procedures, and data visualization capabilities, SPSS enables researchers and data 

analysts to explore, analyze, and interpret data efficiently. Its wide range of features 

and compatibility with other software tools make SPSS a valuable asset in various 

fields, including social sciences, market research, healthcare, and more. 

Some versions of SPSS released in recent years are 

• SPSS Statistics 17.0.1 - December 2008 

• PASW Statistics 17.0.3 - September 2009 

• PASW Statistics 18.0, 18.0.1, 18.0.2, 18.0.3 

• IBM SPSS Statistics 19.0 - August 2010 

• IBM SPSS Statistics 19.0.1, 20.0, 20.0.1, 21.0, 22.0, 23.0, 

24.0,25.0,26.0,27,28,29 
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Companion products in the same family are used for survey authoring and 

deployment (IBM SPSS Data Collection), data mining (IBM SPSS Modeler), text 

analytics, and collaboration and deployment (batch and automated scoring services). 

2.Opening SPSS 

 Depending on how the computer you are working on is structured, you can open 

SPSS in one of two ways.  

1. If there is an SPSS shortcut like   this on the desktop, simply put the cursor on 

it and double click the left mouse button.  

2. Click the left mouse button on the button on your screen, then put your cursor on 

Programs or All Programs and left click the mouse. Select SPSS 17.0 for Windows 

or IBM SPSS STATISTICS20  by clicking the left mouse button. Either approach 

will launch the program. 

3. Key Featuresof SPSS 

Some of the key features of SPSS are 

 It is easy to learn and use with its pull-down menu features 

 It includes a full range of data management system and editing tools 

 It offers comprehensive range of plotting, reporting and presentation features. 

 It provides in-depth statistical analysis capabilities 

In addition to statistical analysis, data management (case selection, file reshaping, 

creating derived data) and data documentation (a metadata dictionary stored in 

the datafile) are features of the base software. There are varieties of statistics included 

in the base software. Some of the important statistics are: 

Descriptive statistics: Cross tabulation, Frequencies, Descriptives, Explore, 

DescriptiveRatio Statistics etc. 

Bivariate statistics: Means, t-test, ANOVA, Correlation (bivariate, partial, distances), 

nonparametric tests etc. 

Prediction for numerical outcomes: Linear regression, Multiple Regression 

Prediction for identifying groups: Factor analysis, Cluster analysis (two-step, K-

means,hierarchical),Discriminant analysis etc. 

4. Layout of SPSS 

Data Editor: This graphical user interface displays the contents of the data file. One 

can create new data files or modify existing ones. The Data Editor window opens 

automatically when an SPSS session is started. The Data Editorwindow has two views 

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Text_mining
http://en.wikipedia.org/wiki/Text_mining
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Descriptive_statistics
http://en.wikipedia.org/wiki/Cross_tabulation
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Hierarchical_clustering
http://en.wikipedia.org/wiki/Graphical_user_interface
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that can be selected from the lower left hand side of the screen. Data Viewis where 

you see the data you are using. Variable Viewis where you can specify the format of 

your data when you are creating a file or where you can check the format of a pre-

existing file. The data in the Data Editoris saved in a file with the extension .sav.The 

data editor offers a simple and efficient spreadsheet-like facility for entering data and 

browsing the working data file. To invoke SPSS in the windows environment, select 

the appropriate SPSS icon.  

 

One can have only one data file open at a time. This editor has two views which can 

be toggled by clicking on one of the two tabs in the bottom left of the SPSS window. 

 Data view: Displays the actual data values or defined value labels. The 'Data 

View' shows a spreadsheet view of the cases (rows) and variables (columns). 

Unlike spreadsheets, the data cells can only contain numbers or text, and 

formulas cannot be stored in these cells. One can modify data values in the 

Data view in many ways like change data values; cut, copy and paste data 

values; add and delete cases; 

 Variable view: Displays variable definition information contained or metadata 

dictionary where each row represents a variable and shows the variable name, 

variable label, value label(s), print width, measurement type, and a variety of 

other characteristics. One can modify variable properties in the Variable view 

for example, add and delete variables, change the order of variables etc. 

http://en.wikipedia.org/wiki/Spreadsheet
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Cells in both views can be manually edited, defining the file structure and allowing 

data entry without using command syntax. This may be sufficient for small datasets. 

Larger datasets such as statistical surveys aremore often created in data 

entry software, or entered during computer-assisted personal interviewing, by 

scanning and using optical character recognition and optical mark 

recognition software, or by direct capture from online questionnaires. These datasets 

are then read into SPSS. Extension of the saved data file will be “.sav”. 

Viewer: All results, tables, and charts performed by different statistical analysis are 

displayed in the Viewer. Extension of the saved output file will be “.spv”. One can 

use the Viewer to browse results, show or hide selected tables and charts, change the 

display order of results by moving selected items or move items between 

the Viewer and other applications. The output presented in Viewer can be edited and 

saved for later use. A Viewer window opens automatically the first time a procedure 

is run that generates output. The Viewer is divided into two panes: 

 The left pane contains an outline view of the contents. One can click an item 

in the outline to go directly to the corresponding table or chart. 

 The right pane contains statistical tables, charts, and text output. 

Syntax Editor: The pull-down menu interface generates command syntax: this can be 

displayed in the output. These command syntax can also be pasted into a syntax file in 

a syntax window using the "paste" button present in each menu. One can then edit the 

command syntax toutilize special features of SPSS not available through dialog 

boxes. These commands can be saved in a file for use in subsequent SPSS sessions. 

Extension of the saved syntax file will be “.sps”. Command syntax programming has 

the benefits of reproducibility, simplifying repetitive tasks, and handling complex 

data manipulations and analyses. Additionally, some complex applications can only 

be programmed in syntax that are not accessible through the menu structure.  

Pivot Table Editor: The results from most statistical procedures are displayed in 

pivot tables. These pivot tables outputs can be modified in many ways with pivot 

table editor. One can edit text, swap data in rows and columns, create 

multidimensional tables, and selectively hide and show results. Changing the layout 

of the table does not affect the results. Instead, it's a way to display information in a 

different or more desirable manner. 

http://en.wikipedia.org/wiki/Statistical_survey
http://en.wikipedia.org/w/index.php?title=Data_entry_program&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Data_entry_program&action=edit&redlink=1
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Online_questionnaires
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Text Output Editor: Text output not displayed in pivot tables can be modified with 

the Text Output Editor. One can edit the output and change font characteristics (type, 

style, colour, size). 

Chart Editor: High-resolution charts and plots can be modified in chart windows. 

One can change the colours, select different type of fonts and sizes, switch the 

horizontal and vertical axes, rotate 3-D scatterplots, and even change the chart type.  

Script Window: It provides the opportunity to write full-blown programs, in a 

BASIC-like language. It is a text editor for syntax composition. Extension of the 

saved script file will be “.sbs” 

Many features of SPSS Statistics are accessible via pull-down menus or can be 

programmed with a proprietary 4GL command syntax language. Many of the tasks 

that are to be performed with SPSS start with menu selections. Each window has its 

own menu bar with menu selections appropriate for that window type. The various 

menu options available in SPSS are 

 

Most menu selections open dialog boxes. One can use dialog boxes to select variables 

and options for analysis. Since most procedures provide a great deal of flexibility, not 

all of the possible choices can be contained in a single dialog box. The main dialog 

box usually contains the minimum information required to run a procedure. 

Additional specifications are made in sub-dialog boxes. All these above mentioned 

options have further sub-options. To see what applications there are, we simply move 

the cursor to a particular option and press, when a drop-down menu will appear. To 

cancel a drop-down menu, place the cursor anywhere outside the option and press the 

left button. 

The three dots after an option term (...) on a drop-down menu, such as Define 

Variable...option in Data option, signifies that a dialog box will appear when this 

option is chosen. To cancel a dialog box, select the Cancel button in the dialog box. A 

right-facingarrowhead after an option term indicates that a further submenu will 

appear to the right of thedrop-down menu. An option with neither of these signs 

means that there are no further dropdownmenus to select. There are five standard 

command pushbuttons in most dialog boxes. 

OK:It runs the procedure. After the variables and additional specifications are 

selected, clickOK to run the procedure. 

http://en.wikipedia.org/wiki/4GL
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Paste:It generates command syntax from the dialog box selections and pastes the 

syntax into a syntax window. 

Reset:It deselects any variables in the selected variable list and resets all 

specifications in the dialog box. 

Cancel:It cancels any changes in the dialog box settings since the last time it was 

opened and closes the dialog box. 

Help:It contains information about the current dialog box. 

5.  Entering and Editing Data 

The easiest way of entering data in SPSS is to type it directly into the matrix of 

columns and numbered rows in the Data Editor window. The columns represent 

variables and the rows represent cases. The variables can be defined in the variable 

view. Variable name must be no longer than eight characters and the name must begin 

with a letter. 

Saving data 

To be able to retrieve a file, the file must be saved with a proper name. The default 

extension name for saving files is sav. To save this file on a floppy disk, we carry out 

the following sequence: 

→File →Save As... [opensSave Data As dialog box]→box under File 

Name:delete the asterisk and type file name →OK 

The output file can also be printed and saved. The extension name for output file is 

.spo. 

Retrieving a saved file 

To retrieve this file at a later stage when it is no longer the current file, use the 

following procedure: 

File→Open→Data...[opens the Open Data File dialog box] →choose drive 

from options listed →type name under File Name: →file name → OK 

Basic Steps in Data Analysis 

• Get your data into SPSS. You can open a previously saved SPSS data file, read a 

spreadsheet, database, or text data file, or enter your data directly in the Data Editor. 

• Select a procedure. Select a procedure from the menus to calculate statistics or to 

create a chart. 

• Select the variables for the analysis. The variables in the data file are displayed in 

a dialog box for the procedure. 

• Run the procedure. Results are displayed in the Viewer. 
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6. Statistical Procedures 

After entering the data set in Data Editor or reading an ASCII data file, we are now 

ready to analyse it. The Analyse option has the following sub options: 

Reports, Descriptive Statistics, Tables, Compare means, General Linear model, 

Mixed Models, Correlate, Regression, Loglinear, Neural Networks, Classify, 

Dimension Reduction, Scale, Non parametric tests, Forecasting, Time Series, 

Survival, Multiple response, Missing value analysis, Multiple imputation, Complex 

samples, Quality control, ROC curve. 

 

6.1Reports:  

This submenu provides techniques for reporting the results. The various sub-sub 

menus under this are as follows: 

Codebook reports the dictionary information such as variable names, variable labels, 

value labels, missing values and summary statistics for all or specified variables and 

multiple response sets in the active dataset. For nominal and ordinal variables and 

multiple response sets, summary statistics include counts and percents. For scale 

variables, summary statistics include mean, standard deviation, and quartiles. 

OLAP (Online Analytical Processing) Cubes procedure calculates totals, means, and 

other univariate statistics for continuous summary variables within categories of one 

or more categorical grouping variables. A separate layer in the table is created for 

each category of each grouping variable. 

Case Summaries calculates subgroup statistics for variables within categories of one 

or more grouping variables. All levels of the grouping variable are cross tabulated. 

One can choose the order in which the statistics are displayed. Summary statistics for 

each variable across all categories are also displayed. With large datasets, one can 

choose to list only the first n cases. 
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Report Summaries in Rows produces reports in which different summary statistics 

are laid out in rows. Case listings are also available from this command, with or 

without summary statistics. 

Report Summaries in Columns produces reports in which different summary 

statistics are laid out in separate columns. 

6.2 Descriptive Statistics:  

This submenu provides techniques for summarizing data with statistics, charts, and 

reports. The various sub-sub menus under this are as follows: 

Frequencies  provides information about the relative frequency of the occurrence of 

each category of a variable. This can be used it to obtain summary statistics that 

describe the typical value and the spread of the observations. To compute summary 

statistics for each of several groups of cases, Means procedure or the Explore 

procedure can be used. 

Descriptivesis used to calculate statistics that summarize the values of a variable like 

the measures of central tendency, measures of dispersion, skewness, kurtosis etc. 

Explore produces and displays summary statistics for all cases or separately for 

groups of cases. Boxplots, stem-and leaf plots, histograms, tests of normality, robust 

estimates of location, frequency tables and other descriptive statistics and plots can 

also be obtained. 

Crosstabs is used to count the number of cases that have different combinations of 

values of two or more variables, and to calculate summary statistics and tests. The 

variables you use to form the categories within which the counts are obtained should 

have a limited number of distinct values. 

P-P plots provides the cumulative proportions of a variable's distribution against the 

cumulative proportions of the normal distribution. 

Q-Q plots provide the quantiles of a variable's distribution against the quantiles of the 

normal distribution. 

6.3 Tables: 

Custom Tables submenu provides attractive, flexible displays of frequency counts, 

percentages and other statistics. 

6.4 Compare Means:  

This submenu provides techniques for testing differences among two or more means 

for both independent and related samples. 
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Means computes summary statistics for a variable when the cases are subdivided into 

groups based on their values for other variables. 

One-Sample tTest procedure tests whether the mean of a single variable differs from 

a specified constant. For each test variable: mean, standard deviation, and standard 

error of the mean.  

Independent Sample t test is used if two unrelated samples come from populations 

with the same mean. The observations should be from two unrelated groups, and for 

testing, the mean must be an appropriate summary measure for the variable to be 

compared in the two groups. For more than two independent groups, the One-way 

ANOVA option could be used. 

Paired Sample t test is used to compare the means of the same subjects in two 

conditions or at two points in time i.e. to compare subjects who had been matched to 

be similar in certain respects and then to test if two related samples come from 

populations with the same mean. The related, or paired, samples often result from an 

experiment in which the same person is observed before and after an intervention. If 

the distribution of the differences of the values between the members of a pair is 

markedly non-normal you should consider one of the nonparametric tests. 

One-Way ANOVA is used to test that several independent groups come from 

populations with the same mean. To see which groups are significantly different from 

each other, multiple comparison procedures can be used through Post Hoc Multiple 

Comparison option which consist of the options like Least-significant difference, 

Duncan’s multiple range test, Scheffeetc. The contrast analysis can also be performed 

in order to compare the different groups or treatments by using the Contrast option. 

The data obtained using completely randomised design can be analysed through this 

option. 

6.5 General Linear Model 

This submenu provides techniques for testing univariateand multivariate Analysis-of-

Variance models, including repeated measures.  

Univariatesub-option could be used to analyse the experimental designs like 

Completely randomised design, Randomised block design, Latin square design, 

Designs for factorial experiments etc. The covariance analysis can also be performed 

and alternate methods for partitioning sums of squares can be selected. If only some 

of the interactions of a particular order are to be included, the Custom procedure 
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should be used. If there is only one factor then One-Way ANOVA procedure should 

be used. 

Multivariate analyses analysis-of-variance and analysis-of-covariance designs when 

you have two or more correlated dependent variables. Multivariate analysis of 

variance is used to test hypotheses about the relationship between a set of interrelated 

dependent variables and one or more factor or grouping variables. For example, you 

can test whether verbal and mathematical test scores are related to instructional 

method used, sex of the subject, and the interaction of method and sex. This 

procedure should be used only if there are several dependent variables which are 

related to each other. For a single dependent variable or unrelated dependent 

variables, the Univariate ANOVA procedures can be adopted. If the same dependent 

variable is measured on several occasions for each subject, the Repeated Measures 

procedure is to be used. 

Repeated Measures is used to test hypotheses about the means of a dependent 

variable when the same dependent variable is measured on more than one occasion 

for each subject. Subjects can also be classified into mutually exclusive groups, such 

as males or females, or type of job held. Then you can test hypotheses about the 

effects of the between-subject variables and the within-subject variables, as well as 

their interactions. 

6.6 Correlate  

This submenu provides measures of association for two or more variables measured at 

the interval level. 

Bivariate calculates matrices of Pearson product-moment correlations, and of 

Kendall and Spearman nonparametric correlations, with significance levels and 

optional univariate statistics. The correlation coefficient is used to quantify the 

strength of the linear relationship between two variables. The Pearson correlation 

coefficient should be used only for data measured at the interval or ratio level. 

Spearman and Kendall correlation coefficients are nonparametric measures which are 

particularly useful when the data contain outliers or when the distribution of the 

variables is markedly non-normal. Both the Spearman and Kendall coefficients are 

based on assigning ranks to the variables. 

Partial calculates partial correlation coefficients that describe the relationship 

between two variables, while adjusting for the effects of one or more additional 

variables. If the value of a dependent variable from a set of independent variables is to 



  

 
 

276 

be predicted then the Linear Regression procedure may be used. If there are no 

control variables then the Bivariate Correlations procedure can be adopted. Nominal 

variables should not be used in the partial correlation procedure. 

Distances calculates statistics measuring either similarities or dissimilarities 

(distances), either between pairs of variables or between pairs of cases. These 

similarity or distance measures can then be used with other procedures, such as factor 

analysis, cluster analysis, or multidimensional scaling, to help analyze complex 

datasets. Dissimilarity (distance) measures for interval data are Euclidean distance, 

squared Euclidean distance, Chebychev, block, Minkowski, or customized; for count 

data, chi-square or phi-square; for binary data, Euclidean distance, squared Euclidean 

distance, size difference, pattern difference, variance, shape, or Lance and Williams. 

Similarity measures for interval data are Pearson correlation or cosine; for binary 

data, Russel and Rao, simple matching, Jaccard, etc. 

6.7 Regression 

This submenu provides a variety of regression techniques, including linear, logistic, 

nonlinear, weighted, and two-stage least-squares regression. 

Linear is used to examine the relationship between a dependent variable and a set of 

independent variables. If the dependent variable is dichotomous, then the logistic 

regression procedure should be used. If the dependent variable is censored, such as 

survival time after surgery, use the Life Tables, Kaplan-Meier, or proportional 

hazards procedure. 

Curve Estimation produces curve estimation regression statistics and related plots 

for 11 different curve estimation regression models. A separate model is produced for 

each dependent variable. One can also save predicted values, residuals, and prediction 

intervals as new variables. 

Logistic estimates regression models in which the dependent variable is dichotomous. 

If the dependent variable has more than two categories, use the Discriminant 

procedure to identify variables which are useful for assigning the cases to the various 

groups. If the dependent variable is continuous, use the Linear Regression procedure 

to predict the values of the dependent variable from a set of independent variables. In 

recent versions there are two options Binary Logistic as well as Multinomial 

Logistic. 

Probit performs probit analysis which is used to measure the relationship between a 

response proportion and the strength of a stimulus. For example, the probit procedure 
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can be used to examine the relationship between the proportion of plants dying and 

the strength of the pesticide applied or to examine the relationship between the 

proportion of people buying a product and the magnitude of the incentive offered. The 

Probit procedure should be used only if the response is dichotomousbuy/not buy, 

alive/dead--and several groups of subjects are exposed to different levels of some 

stimulus. For each stimulus level, the data must contain counts of the totals exposed 

and the totals responding. If the response variable is dichotomous but you do not have 

groups of subjects with the same values for the independent variables you should use 

the Logistic Regression procedure. 

Nonlinear estimates nonlinear regression models, including models in which 

parameters are constrained. The nonlinear regression procedure can be used if one 

knows the equation whose parameters are to be estimated, and the equation cannot be 

written as the sum of parameters times some function of the independent variables. In 

nonlinear regression the parameter estimates are obtained iteratively. If the function is 

linear, or can be transformed to a linear function, then the Linear Regression 

procedure should be used. 

Weight Estimation estimates a linear regression model with differential weights 

representing the precision of observations. This command is in the Professional 

Statistics option. If the variance of the dependent variable is not constant for all of the 

values of the independent variable, weights which are inversely proportional to the 

variance of the dependent variable can be incorporated into the analysis. This results 

in a better solution. The Weight Estimation procedure can also be used to estimate the 

weights when the variance of the dependent variable is related to the values of an 

independent variable. If you know the weights for each case you can use the linear 

regression procedure to obtain a weighted least squares solution. The linear regression 

procedure provides a large number of diagnostic statistics which help you evaluate 

how well the model fits your data. 

2-Stage Least Squares performs two-stage least squares regression for models in 

which the error term is related to the predictors. This command is in the Professional 

Statistics option. For example, if you want to model the demand for a product as a 

function of price, advertising expenses, cost of the materials, and some economic 

indicators, you may find that the error term of the model is correlated with one or 

more of the independent variables. Two-stage least squares allows you to estimate 

such a model. 
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The Loglinear submenu provides general and hierarchical log-linear analysis and 

logit analysis. 

6.8 Classify 

This submenu provides cluster and discriminant analysis. 

Two Step Cluster performs Two Step Cluster Analysis procedure which is an 

exploratory data analysis tool designed to reveal natural clustering within a dataset 

that would otherwise not be apparent. The algorithm employed by this procedure has 

several desirable features that differentiate it from traditional clustering techniques. 

The Log-likelihood and Euclidean Distance Measures are used as the similarity 

measure between two clusters. 

K-means Cluster performs cluster analysis using an algorithm that can handle large 

numbers of cases, but that requires you to specify the number of clusters. The goal of 

cluster analysis is to identify relatively homogeneous groups of cases based on 

selected characteristics. If the number of clusters to be formed is not known, then 

Hierarchical Cluster procedure can be used. If the observations are in known groups 

and one wants to predict group membership based on a set of independent variables, 

then the Discriminant procedure can be used. 

Hierarchical Cluster combines cases into clusters hierarchically, using a memory-

intensive algorithm that allows you to examine many different solutions easily. 

Discriminant is used to classify cases into one of several known groups on the basis 

of various characteristics. To use the Discriminant procedure the dependent variable 

must have a limited number of distinct categories. Independent variables that are 

nominal must be recoded to dummy or contrast variables. If the dependent variable 

has two categories, Logistic Regression can be used. If the dependent variable is 

continuous one may use Linear Regression. 

Nearest Neighbor performs Nearest Neighbor Analysis for classifying cases based 

on their similarity to other cases. In machine learning, it was developed as a way to 

recognize patterns of data without requiring an exact match to any stored patterns, or 

cases. Similar cases are near each other and dissimilar cases are distant from each 

other. Thus, the distance between two cases is a measure of their dissimilarity. 

6.9 Dimension Reduction 

This submenu provides factor analysis, correspondence analysis, and optimal scaling. 
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Factor is used to identify factors that explain the correlations among a set of 

variables. Factor analysis is often used to summarize a large number of variables with 

a smaller number of derived variables, called factors. 

Correspondence Analysis analyzes correspondence tables (such as cross-tabulations) 

to best measure the distances between categories or between variables. This command 

is in the Categories option. 

Distances computes many different measures of similarity, dissimilarity or distance. 

Many different measures can be used to quantify how much alike or how different 

two cases or variables are. Similarity measures are constructed so that large values 

indicate much similarity and small values indicate little similarity. Dissimilarity 

measures estimate the distance or unlikeness of two cases. A large dissimilarity value 

tells that two cases or variables are far apart. In order to decide which similarity or 

dissimilarity measure to use, one must consider characteristics of the data. Special 

measures are available for interval data, frequency counts, and binary data. If the 

cases are to be classified into groups based on similarity or dissimilarity measures, 

one of the Cluster procedures should be used. 

6.10 Scale 

This submenu provides reliability analysis and multidimensional scaling. 

Reliability analysis allows to study the properties of measurement scales and the 

items that compose the scales. The Reliability Analysis procedure calculates a number 

of commonly used measures of scale reliability and also provides information about 

the relationships between individual items in the scale. This provides several statistics 

like descriptives for each variable and for the scale, summary statistics across items, 

inter-item correlations and covariances, reliability estimates, ANOVA table, intraclass 

correlation coefficients, Hotelling's T2, and Tukey's test of additivity. 

6.11 Nonparametric Tests:  

This submenu provides nonparametric tests for one sample, or for two and more 

paired or independent samples. Legacy dialogs sub-submenu consists following tests 

Chi-Square is used to test hypotheses about the relative proportion of cases falling 

into several mutually exclusive groups. For example, if one wants to test the 

hypotheses that people are equally likely to buy six different brands of cereals, one 

can count the number buying each of the six brands. Based on the six observed counts 

Chi-Square procedure could be used to test the hypothesis that all six cereals are 
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equally likely to be bought. The expected proportions in each of the categories don't 

have to be equal. The hypothetical proportions to be tested should be specified. 

Binomial is used to test the hypothesis that a variable comes from a binomial 

population with a specified probability of an event occurring. The variable can have 

only two values. For example, to test that the probability of an item on the assembly 

line is defective is one out of ten (p=0.1), take a sample of 300 items and record 

whether each is defective or not. Then use the binomial procedure to test the 

hypothesis of interest. 

Runs is used to test whether the two values of a dichotomous variable occur in a 

random sequence. The runs test is appropriate only when the order of cases in the data 

file is meaningful. 

1-Sample K-S is used to compare the observed frequencies of the values of an ordinal 

variable, such as rated quality of work, against some specified theoretical distribution. 

It determines the statistical significance of the largest difference between them. In 

SPSS, the theoretical distribution can be Normal, Uniform or Poisson. Alternative 

tests for normality are available in the Explore procedure, in the Summarize submenu. 

The P-P and Q-Q plots in the Graphs menu can also be used to examine the 

assumption of normality. 

2-Independent Samples is used to compare the distribution of a variable between 

two non-related groups. Only limited assumptions are needed about the distributions 

from which the sample are selected. The Mann-Whitney U test is an alternative to the 

two sample t-test. The actual values of the data are replaced by ranks. The 

Kolmogorov-Smirnov test is based on the differences between the observed 

cumulative distributions of the two groups. The Wald-Woflowitz runs tests sorts the 

data values from smallest to largest and then performs a runs test on the group’s 

numbers. The Moses Test of Extreme Reaction is used to test for differences in range 

between two groups. 

K-Independent Samples is used to compare the distribution of a variable between 

two or more groups. Only limited assumptions are needed about the distributions from 

which the samples are selected. The Kruskal-Wallis test is an alternative to one-way 

analysis of variance, with the actual values of the data replaced by ranks. The Median 

tests counts the number of cases in each group that are above and below the combined 

median, and then performs a chi-square test. 
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2 Related Samples is used to compare the distribution of two related variables. Only 

limited assumptions are needed about the distributions from which the samples are 

selected. The Wilcoxon and Sign tests are nonparametric alternative to the paired 

samples t-test. The Wilcoxon test is more powerful than the Sign test. McNemar's 

testis used to determine changes in proportions for related samples. It is often used for 

"before and after" experimental designs when the dependent variable is dichotomous. 

For example, the effect of a campaign speech can be tested by analysing the number 

of people whose preference for a candidate changed based on the speech. Using 

McNemar's test you analyse the changes to see if change in both directions is equally 

likely. 

K Related Samples is used to compare the distribution of two or more related 

variables. Only limited assumptions are needed about the distributions from which the 

samples are selected. The Friedman test is a nonparametric alternative to a single-

factor repeated measures analysis of variance. You can use it when the same 

measurement is obtained on several occasions for a subject. For example, the 

Friedman test can be used to compare consumer satisfaction of 5 products when each 

person is asked to rate each of the products on a scale. Cochran's Q testcan be used to 

test whether several dichotomous variables have the same mean. For example, if 

instead of asking each subject to rate their satisfaction with five products, you asked 

them for a yes/no response about each, you could use Cochran's test to test the 

hypothesis that all five products have the same proportion of satisfied users. Kendall's 

W measuresthe agreement among raters. Each of your cases corresponds to a rater, 

each of the selected variables is an item being rated. For example, if you ask a sample 

of customers to rank 7 ice-cream flavours from least to most liked, you can use 

Kendall's W to see how closely the customers agree in their ratings. 

6.12 Forecasting 

This submenu provides create models, seasonal decomposition, spectral analysis, 

autocorrelations, cross-correlations etc. 

Autocorrelations calculates and plots the autocorrelation function (ACF) and partial 

autocorrelation function of one or more series to any specified number of lags, 

displaying the Box-Ljung statistic at each lag to test the overall hypothesis that the 

ACF is zero at all lags. 

Cross-correlations calculates and plots the cross-correlation function of two or more 

series for positive, negative, and zero lags. 



  

 
 

282 

Spectral analysis calculates and plots univariate or bivariate periodograms and 

spectral density functions, which express variation in a time series (or covariation in 

two time series) as the sum of a series of sinusoidal components. It can optionally 

save various components of the frequency analysis as new series. 

6.13 Survival: 

The submenu provides techniques for analyzing the time for some terminal event to 

occur, including Kaplan-Meier analysis and Cox regression. 

6.14Multiple Response: 

This submenu provides facilities to define and analyze multiple-response or multiple-

dichotomy sets. 

Quality Control submenu provides facilities to for obtaining control charts and 

Pareto charts. 

Complex Samples submenu provides procedures for Sampling from Complex 

Designs. The Sampling Wizard guides through the steps for creating, modifying, or 

executing a sampling plan file. Before using the Wizard, one should have a well-

defined target population, a list of sampling units, and an appropriate sample design in 

mind. 

Other than this Analyze menu there are several other important menus available in 

SPSS. 

6.15 Transform 

Compute calculates the values for either a new or an existing variable, for all cases or 

for cases satisfying a logical criterion. 

Random Number Seed sets the seed used by the pseudo-random number generator 

to a specific value, so that you can reproduce a sequence of pseudo-random numbers. 

Count creates a variable that counts the occurrences of the same value(s) in a list of 

variables for each case. 

Recode into Same Variables reassigns the values of existing variables or collapses 

ranges of existing values into new values. 

Recode into Different Variables reassigns the values of existing variables to new 

variables or collapses ranges of existing values into new variables. 

Rank Cases creates new variables containing ranks, normal scores, or similar ranking 

scores for numeric variables. 

Automatic Recode reassigns the values of existing variables to consecutive integers 

in new variables. 



  

 
 

283 

Create Time Series creates a time-series variable as a function of an existing series, 

for example, lagged or leading values, differences, cumulative sums. This command 

is in the Trends option. 

Replace Missing Values substitutes non-missing values for missing values, using the 

series mean or one of several time-series functions. This command is in the Trends 

option. 

Run Pending Transforms executes transformation commands that are pending due 

to the Transformation Options setting in the Preferences dialog. 

6.16 Utilities 

Command Index take you to the dialog box for a command if you know its name in 

the SPSS command language. 

Fonts lets you choose a font, style, and size for SPSS Data Editor, output, and syntax 

windows. 

Variable Information displays the Variables window, which shows information about 

the variables in your working data file, and allows you to scroll the data editor to a 

specific variable, or copy variable names to the designated syntax window. 

File Information displays information about the working data file in the output 

window. 

Output Page Titles lets you specify a title and subtitle for output from SPSS. They 

appear in the page header, if it is displayed. (Preferences in the Edit menu controls the 

page header.) 

Define Sets defines sets of variables for use in other dialog boxes. 

Use Sets lets you select which defined sets of variables should appear in the source-

variable lists of other dialog boxes. 

Grid Lines turns grid lines on and off in the Data Editor window. This command is 

available when the Data Editor is active. 

Value Labels turns on and off the display of Value Labels (instead of actual values) 

in the Data Editor window. When Value Labels are displayed you can edit data with a 

pop-up menu of labels. This command is available when the Data Editor is active. 

Auto New Case turns on and off the automatic creation of new cases by cursor 

movement below the last case in the Data Editor window. This command is available 

when the Data Editor is active. 

Designate Window designates the active window to receive output from SPSS 

commands (if it is an output window); or to receive commands pasted from dialog 
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boxes (if it is a syntax window). You can also designate a window by clicking the 

!button on its icon bar. This command is available when an output or syntax window 

is active. 

6.17 Graphs 

The Chart Builder available in Graph menu allows to build charts from predefined 

gallery charts or from the individual parts (for example, axes and bars). You build a 

chart by dragging and dropping the gallery charts or basic elements onto the canvas, 

which is the large area to the right of the Variables list in the Chart Builder dialog 

box.  

Legacy Dialogs submenu provides following graph submenus 

Bar generates a simple, clustered, or stacked bar chart of the data. 

3-D Bar Charts allows to generate bar graph in 3-dimensional axis. 

Line generates a simple or multiple line chart of the data. 

Area generates a simple or stacked area chart of the data. 

Pie generates a simple pie chart or a composite bar chart from the data. 

High-Low plots pairs or triples of values, for example high, low, and closing prices. 

Boxplot generates boxplots showing the median, interquartile range, outliers, and 

extreme cases of individual variables. 

Error Bar Charts plot the confidence intervals, standard errors, or standard 

deviations of individual variables. 

Scatter/dot generates a simple or overlay scatter plot, a scatter plot matrix, or a 3-D 

scatter plot from the data. 

Histogram generates a histogram showing the distribution of an individual variable. 

Practical exercise using SPSS. 

Exercise 1: The following data was collected through a pilot sample survey on 

Hybrid Jowar crop on yield and biometrical characters. The biometrical characters 

were average Plant Population (PP), average Plant Height (PH), average Number of 

Green Leaves (NGL) and Yield (kg/plot). 

S.No. PP PH NGL Yield S.No. PP PH NGL Yield 

1 142.00 0.525 8.2 2.470 24 55.55 0.265 5.0 0.430 

2 143.00 0.640 9.5 4.760 25 88.44 0.980 5.0 4.080 

3 107.00 0.660 9.3 3.310 26 99.55 0.645 9.6 2.830 

4 78.00 0.660 7.5 1.970 27 63.99 0.635 5.6 2.570 
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5 100.00 0.460 5.9 1.340 28 101.77 0.290 8.2 7.420 

6 86.50 0.345 6.4 1.140 29 138.66 0.720 9.9 2.620 

7 103.50 0.860 6.4 1.500 30 90.22 0.630 8.4 2.000 

8 155.99 0.330 7.5 2.030 31 76.92 1.250 7.3 1.990 

9 80.88 0.285 8.4 2.540 32 126.22 0.580 6.9 1.360 

10 109.77 0.590 10.6 4.900 33 80.36 0.605 6.8 0.680 

11 61.77 0.265 8.3 2.910 34 150.23 1.190 8.8 5.360 

12 79.11 0.660 11.6 2.760 35 56.50 0.355 9.7 2.120 

13 155.99 0.420 8.1 0.590 36 136.00 0.590 10.2 4.160 

14 61.81 0.340 9.4 0.840 37 144.50 0.610 9.8 3.120 

15 74.50 0.630 8.4 3.870 38 157.33 0.605 8.8 2.070 

16 97.00 0.705 7.2 4.470 39 91.99 0.380 7.7 1.170 

17 93.14 0.680 6.4 3.310 40 121.50 0.550 7.7 3.620 

18 37.43 0.665 8.4 1.570 41 64.50 0.320 5.7 0.670 

19 36.44 0.275 7.4 0.530 42 116.00 0.455 6.8 3.050 

20 51.00 0.280 7.4 1.150 43 77.50 0.720 11.8 1.700 

21 104.00 0.280 9.8 1.080 44 70.43 0.625 10.0 1.550 

22 49.00 0.490 4.8 1.830 45 133.77 0.535 9.3 3.280 

23 54.66 0.385 5.5 0.760 46 89.99 0.490 9.8 2.690 

Source: Design Resources Server. Indian Agricultural Statistics Research 

Institute(ICAR), New Delhi 110 012, India. www.iasri.res.in/design (accessed lastly 

on <05-05-2015>). 

1. Find mean, standard deviation, minimum and maximum values of all the 

characters. 

2. Find correlation coefficient between each pair of the variables. 

3. Give a scatter plot of the variable PP with dependent variable yield. 

4. Fit a multiple linear regression equation where yield is dependent variable 

whereas all other characters as independent variables. 

At first enter the entire data in the data editor as given below, 
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There are several ways to answer Q no. 1 in SPSS. Commands following first way is 

as follows, 

Analyze → Descriptive Statistics → Descriptives…→ Put PP, PH, NGL, YLD in 

the variables list→ Choose appropriate options from Options 

tab→PressContinue→Ok 

 

Output: 

 

Another way: 

Analyze → Descriptive Statistics → Explore…→ Put PP, PH, NGL, YLD in the 

Dependent list→ Choose both Statistics and plot→Press Ok 
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Output: 

 

To answer Q no 2 follow the following steps 

Analyze → Correlate → Bivariate→ Put PP, PH, NGL, YLD in the Valiables 

list→ Choose Pearson’s correlation coefficient→Press Ok 

 

Output: 
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To give the scatter plot of the variable PP with dependent variable yield use following 

steps: 

Graphs → Legacy dialogs→ Scatterplot→ Put PP at Y axis and YLD at X axis→ 

Press Ok 

 

 

Output: 

 

To fit a multiple linear regression equation taking yield as dependent variable and all 

other characters as independent variables perform following steps 

Analyze → Regression → Linear → Put Yld in Dependent variable and PP, PH, 

NGL in independent variable list → Press Ok 
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Output: 

 

Exercise 2. An experiment was conducted to study the hybrid seed production of ottle 

gourd under open field conditions. The main aim of the investigation was to compare 

natural pollination. The pollination is performed at noon (1-3pm)} under field 

conditions. The data were collected on 10 randomly selected plants from each of 

natural pollination and hand pollination. The data were collected on number of fruit 

set for the period of 45 days, fruit weight (kg), seed yield per plant (g) and seedling 

length (cm). The data obtained is as given below: 

Group No. of fruit 

Set(45days) 

Fruit weight 

(kg) 

Seed yield/plant (g) Seedling length (cm) 

1 8 2.0 148.6 17.0 

1 7 1.9 137.7 16.9 

1 6 1.8 150.9 16.4 

1 8 1.9 173.4 18.4 

1 7 1.8 145.3 18.0 

1 8 1.9 139.1 17.1 

1 7 1.9 151.5 18.3 

1 7 1.8 141.8 19.0 

1 6 1.9 141.4 18.5 

1 7 1.9 139.2 18.7 

2 6.3 2.6 225.6 18.3 

2 6.7 2.8 198.7 18.2 
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2 7.3 2.6 231.7 19.2 

2 8 2.6 218.4 19.1 

2 8 2.7 235.2 18.1 

2 8 2.6 217.8 18.6 

2 7.7 2.4 213.2 17.6 

2 7.7 2.7 211.6 19.1 

2 7 2.5 201.1 19.4 

2 8 2.5 215.6 19.5 

 

1. Test whether the mean of the population of Seed yield/plant (g) is 200 or not. 

2. Test whether the natural pollination and hand pollination under open field 

conditions are equally effective or are significantly different. 

Test Procedure in SPSS 

1. To test whether the mean of the population of Seed yield/plant (g) is 200 or not use 

the following steps. Select Analyze → Compare Means → One-Sample T Test 

 

This selection displays the following screen 
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Select syp and send it to the test variable(s): box and define the Test Value as 200. 

Click ok. 

2. To Test whether the natural pollination and hand pollination under open field 

conditions are equally effective or are significantly different. 

Steps: 

1. selectAnalyze → Compare Means → Independent-Samples T Test. 

2. Select group and send it to the Grouping Variables box. 

3. nfs45, fw, syp,  sl under Test Variables(s) box. 

4. Select Define Groups in the Independent-Samples T Test dialog box. 

5. Use Specified values→ Define Groups as 1 and 2. 

6. Click OK. 
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