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Abstract: The development of a two-dimensional simulation model for single regular $hegtangular contour basin irrigation layout

in southeast Australia is reported in a companion paper. Contour basin layouts as used in Southeast Australia are often irregular in sha
and laid out as multiple basin systems. Irrigation of these basins is carried out sequentially involving back flow to the supply channel anc
inter-basin flow. This paper presents the extension of the earlier model to incorporate irregular shape basins and multiple basin operatio
The governing equation is solved by adopting a “split-operator approach” using the method of characteristics coupled with two-
dimensional Taylor series expansion for interpolation and calculation of diffusion terms. The numerical solution scheme is based on a gric
of quadrilaterals for spatial discretization, to provide geometric flexibility. Infiltration is computed using either the empirical Kostiakov—
Lewis equation or the quasianalytical Parlange equation. The model was validated against field data collected from irrigation event:
monitored on a commercial laser leveled contour layout consisting of five basins.
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Introduction diverted towards the second basin. While water is supplied to the
second basin, the surplus water from the first basin is also allowed

tion of rice on soils with low infiltration rates. The banks of the to drain into the second basin through gaps in the check bank as

contour basins are erected across the slope, following the contowWeII as bacl_< |_nto the supply chann_el. When the secon_d bas'”. IS
of the land. These banks are built by borrowing soil from the completely irrigated, water supply is diverted to the third basin

outside edges of the bank. The resulting borrow pit or toe-furrow and so on until all the basins in the irrigation block are fully
serves as a supply channel as well as a drainage channel for th&Tigated. Drainage runoff from the last basin in a sequence may
basin. The water supply channels are constructed down slope inP€ diverted into storage for recycling. Normally 5-10 basins of
Order to provide a direct water Supply to each basin over the different SiZeS and ShapeS are inC|uded in an il’rigation bIOCk.
entire length of the basin inlet. A two-dimensional simulation model for single regular shape
Irrigation of these layouts is carried out progressively from the rectangular basins, is presented in a companion paper by Khanna
first basin to the bottom basin. Fig. 1 shows a typical flow pattern et al.(2003, which we refer to as Paper |. The model is based on
during the inflow-advance phase and Fig. 2 shows a typical flow a single two-dimensional advection-diffusion equation including
pattern during recession-drainage phase. Water is allowed to flowinfiltration as a sink. Infiltration can be modeled by either the
into the basin until the entire basin is flooded at which time the empirical Kostiakov—Lewis equatioriClemmens et al. 1981,
inflow is cut off and water is allowed to drain back into the supply Playan et al. 1994a)bor the quasianalytical Parlange equation
channel and into the downstream basin through gaps in the checkHaverkamp et al. 1990 The advection—diffusion equation was
bank. At the same time, SUpp'y is cut off from the first basin and solved by adopting a “Sp”t-operator approac(‘Ho”y and Pre-
issmann 1977; Glass and Rodi 1982; Holly and Usseglio-Polatera
ISenior Scientist, Water Technology Centre, Indian Agricultural Re- 1984 Holly and Toda 1985; Komatsu et al. 1985; Komatsu et al.
search Institute, New Delhi 110012, India. E-mail: mkhanna@iari.res.in lggn using the method of characteristics Coup|ed with bicubic
“Associate Professor, Dept. of Civil & Environmental Engineering, - gplines for interpolation and calculation of the diffusion compo-
University of Melbourne, Victoria 3010, Australia.  E-mail: nents. The numerical solution methodology was based on a rect-

h.malano@devtech.unimelb.edu.au | id f tial di tizati
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Contour basin irrigation layouts are used in Australia for cultiva-

Melbourne, Victoria 3010, Australia. E-mail: fenton@unimelb.edu.au In this paper, the same model was extended to irregular shape
“Senior Researcher, International Water Management Institute, P.0.basins and multiple basin systems which are typical of contour
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Note. Discussion open until March 1, 2004. Separate discussions muston the same governing equation which is solved on a grid of
be submitted for individual papers. To extend the closing date by one gyadrilateral discretisation that incorporates the geometrical flex-
month, a written request must be filed with the ASCE Managing Editor. ;i needed for irregular basins. The model also incorporates

The manuscript for this paper was submitted for review and possible , . L .
publication on November 27, 2001; approved on January 2, 2003. This both the empirical Kostiakov—Lewis infiltration model and the

paper is part of theJournal of Irrigation and Drainage Engineering quasi-analytical Parlange infiltration modéhanna et al. 2003 _
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Fig. 1. Water flow patterns in contour basin layouts during inflow
and advance

Fig. 3. Discretization of irregular shape domain

gular basins, as this is only a special case of irregular shape

basins.

given grid size and order of expansi@fochavi et al. 1991 This
Numerical Scheme Using Taylor Discretization method offers good geometrical flexibility by allowing the user to
for Irregular Grids choose the location of the nodal points and vary the distance

between them. The Taylor series method requires continuity at
The solution of this flow problem requires a numerical scheme each node. This, however, is unlikely to be a problem since the
that offers the maximum geometrical flexibility to accommodate governing differential equations are always continu¢8snne-
the irregular shape of the computational domain. Overlaying the mans et al. 1991 The number of neighboring nodes checked for
physical domain with a rectangular computational mesh is not continuity depends only on the order of the polynomial represent-
recommended for two reasons: First, it imposes a higher compu-ing the dependent variable in the vicinity of each node. There are
tational overhead; and second the boundary will have to be ap-no other restrictions and in principle the location and numbering
proximated by a staircase-like boundary curd€arpik and order of neighboring nodes is not important. Moreover, the com-
Crockett 1997. For these reasons, it is desirable to use a numeri- putational effort is not influenced by the order of numbering of
cal scheme that approximates more precisely the boundaries othe nodegKochavi et al. 1991 This method has been used by
irregular shape domain and which does not lead to redundantseveral researchers for the solution of ordinary differential equa-
computational nodes that result from the irregular shape of thetions (Sonnemans et al. 199And for the solution of nonlinear
domain boundary. heat transfer problem&ochavi et al. 1991; Kochavi et al. 1993

Typically, finite element models discretize a complex geom- The numerical solution of a single advection—diffusion equa-

etry into sets of triangular elements, but codes based on such &ion based on the “split-operator approach” including infiltration
mesh require the use of a complex data structure and are compli-as a sink was used to describe overland flow in rectangular con-
cated to implement. Also, the transformation of a complex physi- tour basin irrigation layouts in PapeiKhanna et al. 2003 The
cal geometry into a rectangular computational domain requires anumerical scheme proposed in this study also uses a “split-
more complex programming effort. A simpler approach is to use a operator approach” for the solution of the governing equation. A
two-dimensional Taylor series expansi@torn and Korn 1961 two-dimensional Taylor discretisation scheme is used to compute
about the nodal points in the computational domain to estimate the advection and diffusion components of the governing equa-
the internodal values of a function defined by its values at the tion. The concept behind the numerical scheme is described in
nodes. The coefficients of the series for these nodes are therFig. 3. The figure shows a hypothetical distribution of computa-
considered to be unknowns. Discrepancy between the values retional points(shown as dofsand the overlapping of computa-
sulting from Taylor expansion about distinct nodes is allowed if it tional polygons. In addition, a computational subdomain consist-
is of the same order of magnitude as the estimated error resultinging of a central node surrounded by five nodal points is also
from the discretisation. This enables considerable savings in com-described.
putational effort by avoiding the need to fit the local expansions  Consider point 0 and five neighboring points,1,2. ,5,which
with a discrepancy smaller than the error that is expected for aoutline the boundaries of a local region around it. By introducing

a local two-dimensional Taylor series about point O for the func-

tion H representing water surface elevation, the valukl aft any

o —— = point can be represented as
] smonand Second Basin Point x et 9H 9H 1 ) aZH Y aZH v aZH
\ L. Outflow = o+X§+VW+§ X2 T axay Y oy
I Recession and First Basin tee (1)
| where in the right hand side valuestdfand its derivatives are at
the reference point 0, and tixeandy are local coordinates, rela-

Supply tive to (0,0) which denote the reference point. At the reference
point, the trivial solution idH=H,. It follows that the solution of
Eq. (1) at any other point in the vicinity with coordinates ,y;)
after rearranging becomes

Fig. 2. Water flow patterns in contour basin layouts during recession
and drainage
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Y H at the point is determined by using a Taylor series discretiza-

4 tion. The interpolated value dfl incorporating Taylor series is
given by
H*(Xi ’yJ ,t+A):H(Xi—Ui’jA,yj_Vi,jAut)
Ho ot ( UA)aH +( VA)aH
=Ho,oT (™ v - oy
X0 Wloo
1 a%H
+§(,UA)2_2 +(—UA)
X 0.0
> X 9°H 1 9°H
. . , . _ X(=VA) o= +5(=VA)?—
Fig. 4. Location of surrounding points for interior nodes IXY|g 2 ay? 0.0

(4)

whereU andV=advected velocitieKhanna et al. 2003t=time
(); and A=time step.

For the computation of the diffusion component, the value of
the second and mixed derivative dfat the interpolated point is
required. The second and mixed derivativedHoét interpolated

oH oH 1 2azH
(Xi_xo)a_x+(Yi_y0)W+ 5 (Xi—Xo) W"'(Xi_xo)

92H 1 92 points are assumed the same as at the central (@fe These
X(Yi—VYo) XV + E(y‘ —yo)z—2 =H;—H, 2) derivatives are already available from the solution of the system
y ay of equations given by Eq3). Thus, the final solution dfl at the
Taking five such equations at five poiris2, . . . ,5 surrounding next time step will be given by the combined equati&anna

et al. 2003, which incorporates the advection, diffusion, and in-
filtration terms.

The elevation gradients at the nodal points in thandy
directions are required to be estimated for the computation of
advection velocities. The methodology based on Taylor series dis-

) o ) . cretisation is used to compute the elevation gradients at nodal
at point 0. There are no restrictions on the relative position of the points on an irregular grid from observed elevation data at five

neighboring nodes; however, it is preferable that they be selecteds, i oynding nodes which yields a set of five equations using Eq.
from the nearest vicinity of the central node. In particular, points () The elevation gradients at nodal points are determined by

on the boundary should be selected for central nodes that arésolving the system of equations given by E8) using LU de-
located near the boundary. The points are used in the Calcu'ationcomposition(Press et al. 1999

of the function and derivatives at neighboring internal nodes, but
no polynomial approximation is calculated for boundary nodes
themselves. For interior nodes, the location of surrounding points |njtial and Boundary Conditions
(1,2,....,5 is shown in Fig. 4. Systems )

This system of equations is solved using the process of lower
triangular matrix-upper triangular matrixLU) decomposition

point 0 with givenx;,y;,H; will yield a system of equations
which can be solved for the five unknowns

92H

Xy

92H

6H. _
ax2’

ox’

oH
W!

aZH.
ay?’

(Multiple Basin

The methodology used to implement the numerical solution is

(Press et al. 19890 determine the unknown coefficients. In prin-
ciple, having five equations for each nodal point ascodes
arbitrarily distributed in the domain including boundary nodes
allows a NX5N global system of equations to be written and
solved for 8N unknown coefficients. The set of five equations in
matrix form can be written as

[Hi—Hol=[X]-[A] ®3)

where[ H; —Hg]=column vector of dimension 5 that contains the
known values of the function at surrounding nodeét=matrix
of order 5<5; and[A]=five-column vector that contains five un-

known coefficients, representing the values of first, second and

mixed derivatives of the functioH at the nod€0,0). Eg.(3) can

be solved efficiently using the LU decomposition method for the

explicit in nature requiring a set of initial and boundary condi-
tions. Att=0 the land surface elevatiay(x,y) is an initial con-
dition and an input to the model. Infiltration deptht&t0 is set to
zero at all nodes. The entire computational boundary is divided
into two types of boundary conditions: Inflow boundary and out-
flow boundaries. In addition, an internal boundary condition
(Khanna et al. 2003was also imposed to overcome the problem
arising due to a node which is characterized by a bottom elevation
higher than the water surface elevation in a neighboring node. In
such a case, water would flow outward from the dry node which
is a physical impossibility.

Inflow Boundary

unknown coefficients. This solution gives the value of first, sec- In a multiple basin system, inflow boundary conditiotime-

ond, and mixed derivative d at the central nod€),0). The first

inflow) are imposed to the first basin to simulate inflow from the

derivatives ofH are then used to calculate the advected velocities supply channel. The water surface elevation in the supply channel

in the x andy directions.

is imposed as a boundary condition on the inflow side of the

The solution of the advected component of the governing basin. The flow depth in toe-furrows derived from the solution of
equation, at a new time step, is given by the characteristic equa-the one-dimensional flow equatigikhanna et al. 2003s applied

tion (Khanna et al. 2003 The location and interpolated value of

as a boundary condition on flow nodes along the toe-furrows. A
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Fig. 5. Outflow boundary

Fig. 6. Layout of single irregular shape contour basin

check is provided in the model to determine whether the upstream
first basin is completely filled before the supply to the basin is cut flow in the supply channel. The boundary condition for this line-
off The model allows two options to specify the cut off time to outflow is given as the flow depth in the supply channel after the
reflect what normally occurs in practicgl) user-specified cut off ~ supply to the basin is cut off and drainage outflow into the supply
time and(2) inflow cut off on completion of the advance phase. In channel starts. This boundary condition is imposed on all the
the first case, if cut off time occurs before advance in the first nodes along the supply channel.
basin is completed, inflow to the first basin is cutoff and water is ~ Outflow through the check bank into the downstream basin is
allowed to flow into the next basin downstream. The computation termed point outflowdrainage runoffand typically occurs at one
then proceeds simultaneously over both basins. In the seconddr more points along the check bank of the ba@tig. 9 in a
case, if cut off occurs on completion of the advance phase, inflow multiple basin operation. Outflow from the basin is triggered by
to the upstream basin ceases at this point and inflow from thethe time of completion of irrigation in the upstream basin and the
supply channel and drainage through the check banks into thestart of irrigation in the second basin.
downstream basin is allowed to start. As in the previous case, the The rate of outflow depends on the elevation and flow depth at
computation continues simultaneously over both basins. A similar the corresponding nodes in the upstream and downstream basins.
process is applied if simultaneous irrigation occurs over addi- The boundary condition for point outflow is given as the flow
tional basins depth at the outflow node in the upstream basin. This is expressed
Point inflows are applied as boundary conditions representing as
the drainage runoff from the upstream basin in the second and _
subsequent downstream basins. The node number in the down- Hiw(Xe Y8, =N2) (X ¥ U+ 20, (Xe Y8 1 (©)
stream basin specifies the location of point inflow. The location of whereH 1,(Xg,yg,t) =water surface elevation at the point out-
the node is the same as the outflow node from the upstream basinflow node in the upstream basing,)(xg,ys ,t) =depth of flow at
The outflow discharge from the first basin becomes the inflow to the corresponding point inflow node in the downstream basin;
the second basin. The depth of flow at that node is determined byzo(l)(xB ,Yg,t)=bed elevation at the point outflow node in the
the simulation in the first basin and imposed as an inflow bound- ypstream basin; anxk andyg=values ofx andy that define the
ary condition on the downstream basin. The boundary condition |pcation of these points on the check bank.
for point inflow is then specified as depth of flow as follows:

H2)(Xg,Ys,t)=h1)(Xg,Ys ,t)+ZO'2>(XB Yet) )

whereH ,)(Xg ,Yg ,t) =water surface elevation at the point inflow
node in the downstream basihg;(Xg,Yg ,t) =depth of flow at The model was validated for a single irregular shape basin and for
the corresponding point outflow node in the upstream basin; two-basin multiple basin operating system incorporating all the
zo(z)(xB,yB,t)=bed elevation at the point inflow node in the

downstream basin; arnxk andyg=values ofx andy that define

Model Validation

the location of these points on the check bank. All inflow nodes T Observed A Prdicied
included in the system of equations are solved by the Taylor dis- ': b
cretisation scheme described earlier. %

70

‘?; s

Outflow Boundary E h

30
During the recession phase after the supply to the upstream basin =
is cut off, excess water drains from the basin back into the supply 10
channel as well as from a few other points on the check bank into e 2 4 s f 10
the downstream basifiFig. 5). Time (hour)

The backflow into the supply channel is termed line-outflow
since it occurs along the full length of the basin inlet. The amount
and rate of outflow to the supply channel depends on the depth o

Fig. 7. Waterfront advance trajectory for single irregular shape con-
<tour basin with line inflow
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Table 1. Comparison of Final Water Balance Components in First
Basin

First basin
Water balance componenObservedML) PredictedML) Error (%)

Inflow volume 4.27 3.85 10
Outflow volume 2.52 2.19 13
h = ™ s o Py o 50 Infiltrated volume 1.27 1.18 7
Distance (m) Evaporation 0.48 0.48 —
e

Fig. 8. Waterfront configuration after 30 min in first basin during
first irrigation

was cut off and diverted to the second basin downstream. Infil-
tvpi ; tration was described by the Kostiakov—Lewis equation and its
ypical features of this type of layouts. The data used for the 026 o_ i -
validation of the basin model was collected from field experi- parameters t_aken as=0.055 m/5™, a.— 0.026; anob—_O.(’) m/s
ments conducted during the irrigation season 1999-2000 at(M_aheshwan and Jayawardane 19923 Hume 199&nning's co-
Wyanda, New South Wales, Australia. The layout of the field trial efﬁmgnt was taken as 0.2¥aheshwari anq McMahon ;992nd
and the location of measuring flumes fitted with flow meter are the field was co_mpletely_ dry gnd the soil was heavily cra_ck_ed.
shown in Fig. 6. Data for model validation was collected by The co_ntou_r basin was _dlscret_lzeq ina12.5and 12.8 m grid n
monitoring two irrigation events on commercially laser leveled andy directions respectively yielding a total of 256 nodes, 32 in
farmer’s fields. Field and grid nodes were mapped using a global thex Q|rect|or_1 and 8 in the direction. The soill s_urfa}ce elevations
positioning systeniGPS. The GPS was also used to monitor the USed in the simulation were measured on a grid size 0P42258
advance of the waterfront over the field by an operator regularly ™ " th_e field. The simulation model was run for total time of
walking along the advancing waterfront. Additional soil data on Simulation of 49 h.
surface irrigation parameters were collected from the studies pre-
viously conducted on similar soil types. The variables used for
model validation were cumulative wetted area, waterfront ad- Advance Phase
vance and basin water balance. As indicated above, the model can
handle infiltration using either the Kostiakov—Lewis infiltration  cymulative Wetted Area During Advance
equation or the Parlange infiltration equatigkhanna et al.
2003. For the purpose of validating the performance of the model Fig. 7 shows the comparison between observed wetted area dur-
for irregular shape basins, only the Kostiakov—Lewis equation ing the advance phase and wetted area predicted by the model.
was used. Performance of the model to handle Parlange infiltra-The predicted results shown in Fig. 7 satisfactorily match the
tion equation was demonstrated in a companion p&kbanna observed values indicating that the model is capable of simulating
et al. 2003. advance wetted area in basins of irregular shape. The maximum
deviation between observed and modeled advanced area which
occurs in the middle range of the advance trajectory between 4
Model Validation for Single Irregular Shape Basin and 8 h is 17% of theneasured values. This variation between
may be due to variation in local topography, soil characteristics
Data collected during the first irrigation of the season from the and inflow rates. Despite some departure between measured and
first basin, which is of irregular shape was used for validation of modeled values during the advance phase, good agreement is ob-
the model. The basin had been laser levelled in both directionsserved in the final stages of the irrigation event when most of the
about five years earlier although still has local undulations due to basin area has been covered.
movement of sheep and vehicles. The field was currently sown to
subclover at the time of the experiment.
The basin was irrigated from the supply channel with an aver-
age discharge rate of 0.1%m for 11.5 h, after which the supply

Inflow
l/ Flume :F“m
89m
Q-
=Y First basin Outflow ‘L
2 Flume
g 3m
£ [ [Inflow /Outflow A
-E Flume
4 || 4o Second basin 78m
. . v Outflow
0 50 100 150 200 250 300 350 [_(;:l;.t:,],?: Flumey i
Distance (m)
nxl Downstream basin v
———  384m ‘-l
Fig. 9. Waterfront configuration in first basin aft@ h during first
irrigation Fig. 10. Layout of multiple basins for validation
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Table 2. Values of Model Parameters Used for Simulation

Infiltration parameters

Line Time of Drainage Manning’s

inflow irrigation inflow Number roughness k b
Basin (m¥s) (h) (m¥s) of nodes coefficientn (Ml a (m/s)
First 0.1 9 — 256 0.17 0.037 0.03 0.0
Second 0.12 6 0.025 224 0.17 0.037 0.021 0.0

Waterfront Advance Pattern

Figs. 8 and 9 show the comparison of the waterfront advance

pattern as observed and predicted by the model after 30 min and”
2 h of advance time. The results predicted by the model compare

reasonably well with the observed waterfront pattern. All devia-
tion are within 17% of the observed advance distance. On the
basis of this comparison, the model exhibits a good capability to
simulate advance considering that the spatial variability of infil-
tration and local microtopography are not considered at this scale
of modeling.

Prediction of waterfront advance along the toe-furrows is very
close to actual advance. In this type of basin layouts, the toe-
furrows get filled first subsequently allowing the water to move
inward. This behavior is depicted in Figs. 8 and 9 where the
waterfront in the toe furrow is moving ahead of waterfront in the
center of the basin.

Basin Water Balance

The water balance predicted by the model after the completion of
the irrigation event was compared with the field measured volume

balance. The water balance quantities predicted by the model aré

inflow, outflow, and infiltration volume. The observed infiltration
volume was determined by taking pre- and postirrigation moisture
measurements adjusted by evaporation obtained from direct mea:

surement during the experiment. The water balance componenté

are shown in Table 1.

The errors in the predicted water balance components were
10% for inflow, 13% for outflow, and 7% for infiltration. Simi-
larly to other validation variables, the possible reasons for the
minor deviation observed are local undulations, and spatial vari-
ability of infiltration which are not accounted within the level of
resolution adopted in the model for these variables.

Validation for Multiple Basin Systems

The simulation model for irregular shape contour basins was also
validated for an extended system that incorporates multiple ba-

—o—Observed —8—Predicted
100
80
o
53
E’ 60
; ©
20
0
0 1 2 3 4 5 6 7 8 9 10
Time (hour)

Fig. 11. Comparison of wetted area during advance for first basin

sins. The objective of this validation is to evaluate the simulation
model that incorporates all the key geometric features of multiple
ontour basin layouts as practiced in southeast Australia.

Data collected during the field experiments conducted during
the second irrigation of season 1999-2000 at Wyanda, New
South Wales, Australia was used for validation of the model. In
this irrigation, the first basin was supplied from the head channel
along the entire length of the inl¢line inflow) while the second
basin was supplied from the head channel and drainage runoff
from the first basin. The layout, dimensions of the two basins and
the location of different flumes with flow meter are shown in Fig.
10. Inflows and outflows were measured by flumes fitted with
flow meters which were installed in the supply channel to mea-
sure basin inflowline inflow boundary and basin outflow, and in
the check bank to measure drainage outflow through the check
bank (point inflow to downstream basinBoth basins had been
laser levelled in both directions about 5 years earlier although
they still have local undulations due to movement of sheep and
vehicles. The basins were sown to sub-clover at the time of the
experiment.

The set of basins shown in Fig. 10 comprises one basin of
rregular shape and one basin of rectangular shape. The first basin
was first irrigated from the supply channgine inflow); after
which the supply was then cutoff and diverted to the second basin
downstream. During this time, the inflow to the second basin
ncluded both the normal flow in the supply channel plus the
drainage backflow from the first basin. In addition, the second
basin received drainage outflow from the first basin through gates
in the check bank.

A lower value of Manning’s roughness coefficient was used
for both basins compared to the first irrigation. At the time of the
second irrigation, the soil was relatively wet and all the cracks
were closed. Prior research carried out by Maheshwari and Mc-
Mahon (1992 shows a similar change in the roughness coeffi-
cient under this soil condition. Different infiltration parameters
were used for the first and second basin to test the capability of
model to handle varying parameters for different basins. The val-
ues of all these parameters used for the model simulation for both
the basins are shown in Table 2. Infiltration parameters for the
Kostiakov—Lewis equation were taken from studies conducted on

Distance (m)
X

Fig. 12. Waterfront advance pattern after 30 min in first basin
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Fig. 13. Waterfront advance pattern aft2 h in first basin
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the similar type of soils in the aréMaheshwari and Jayawardane ,’ {
1992; Hume 1_99)3 Th_e ground elevation o_f both basins was sur- 00 ‘150 260‘ 250 300 3;0
veyed on a grid spacing of 128.2.8 m which was also used for Distance (m)
discretisation of the computational grid. — X

Fig. 15. Waterfront advance pattern in second basin after 30 min
Cumulative Wetted Area During Advance (First Basin) (arrows indicate direction of flow

Fig. 11 shows the comparison of observed and predicted wetted
area during advance phase in the first basin. The figure indicate
that the observed and modeled wetted area differ slightly during
the initial period of advance but matches satisfactorily the second
half of the irrigation period.

The deviation in the prediction of wetted area during the first Cumulative Area Wetted During Advance (Second
half of irrigation event was due to the effect of toe-furrows which Basin)
had been cleaned and deepened at the start of the 1999-200
season. The simulation model does not allow water onto the
nodes adjacent to the toe-furrows until the furrows are completely
filled. This approach tends to cause a rapid increase in the wette
area when the toe-furrows have just begun to overflow onto the
interior of the basin. This effect is more pronounced in the pre-

diction of wetted area for the simulation of irrigation events in the upstream basin. Fig. 14 shows the comparison of the cumu-

1.999_00 season. However, once the toe-furrows are ComIOIetelylative wetted area predicted by the model and observed wetted
filled, the predicted and observed wetted area matches Veryarea during the advance phase for the second basin

Shat the model predicts the cumulative variables with better accu-
racy that the intermediate values.

PJpon completion of irrigation of the first basin, water supply was
diverted to the second basin from the supply channel together
ith drainage runoff from the first basin which becomes point
nflow for the second basin. This allowed the collection of data
for validation of the model under dual inflow boundary condi-
tions: line inflow from the supply channel and point inflow from

closely. The predicted wetted area during advance matches very
closely the observed data for the entire duration of advance phase.
Waterfront Advance Pattern (First Basin) The prediction of cumulative wetted area also shows the effect of

Figs. 12 and 13 show the comparison of waterfront advance pat-
terns in the first basin after 30 min &2 h of elapsed time,

Observed: ------- Predicted:
respectively. Minor variations in the predicted and observed ad-
vance pattern can be attributed to local topographic irregularities ) ' ’ ’ ' o
which are not captured by the grid size used in the simulation. It 70
is possible that the finer discretisation grid will result in a more
accurate waterfront pattern as found in an earlier model validation 60
of rectangular shape basifSingh 1996. It can also be observed 50
yE-—>
8 40
—o—Observed —8—Predicted &
100 I A30t
—t>
T 20}
$w
g . 10}
3 0 R N N VAV BT APE RS L
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Fig. 16. Waterfront advance in second basin after (atrows indi-

Fig. 14. Comparison of wetted area during advance for second basin cate direction of flow
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Table 3. Comparison of Observed and Simulated Water Balance

First basin Second basin
Observed Predicted Error Observed Predicted Error
Parameter (ML) (ML) (%) (ML) (ML) (%)
Inflow volume 3.56 3.57 0.2 3.74 2.96 21
Outflow volume 2.23 2.17 3 2.33 1.9 18
Infiltrated volume 1.01 1.08 7 1.11 0.77 30
Evaporation 0.32 0.32 — 0.30 0.30 —

toe-furrows filling whereby the simulated advance is faster irrigation of contour basin layouts in southeast Australia. The
shortly after the tow-furrows fill and water begins advancing to- model is based on the zero-inertia approximation to the shallow
wards the center of the basin. The final predicted advance how-water flow equations, leading to a two-dimensional advection—
ever matches the observed advanced very closely. diffusion equation that includes infiltration as a sink term. The
model incorporates all the key geometric features of contour lay-
outs and calculates infiltration using either the empirical
Kostiakov—Lewis equation or quasianalytical Parlange equation.
The prediction of waterfront advance was compared periodically ~ The two-dimensional advection—diffusion equation was found
with observed data to test the model’s capability to incorporate to be capable of describing the shallow water flow in contour
line inflow as well as point inflow in multiple basin scenarios. basin irrigation systems. This single equation was solved by the
Figs. 15 and 16 show the comparison of observed and predictedmethod of characteristic coupled with a two-dimensional Taylor
waterfront advance pattern after 30 minute and 1 h, respectively.series expansion for irregular grids. The numerical schemes were
Time here is measured as the elapsed time from the start of inflowfound to be accurate, and easy to implement.
into the second basin. As expected, the observed advance frontis The model’s capability for simulating irregular shape basins
more irregular than the model prediction as a result of the surfacewas tested by contrasting predicted and observed results of cumu-
irregularities in the basin. Nevertheless the computer predictedlative advance wetted area, waterfront advance pattern and water
waterfront depicts the overall advance pattern very accurately. balance. These variables were evaluated in a single basin of ir-
regular shape irrigated from the supply channel and a second
basin conjunctively supplied from the supply channel and drain-
Overall Water Balance age runoff from the upstream basin. While the model can describe
infiltration by the Kostiakov—Lewis infiltration and the quasiana-

Waterfront Advance Pattern (Second Basin)

The final water balance for the irrigation event was computed by """ ’ TR
simulating the behavior of the composite system comprising the Iy.tlcal Parlange equgtlon, all the validation tests were conducted
two basins included in the experiment. Table 3 shows the sum-With Kostiakov—Lewis parameters.

mary of predicted and observed water balance in each basin. Both 1€ model prediction of cumulative wetted area and water-
the predicted and observed quantities were adjusted by the sam&©nt advance compared well with the observed data. The model
evaporation amount measured during the field experiment. was also capable of simulating advance of the waterfront includ-

The predicted inflow volume for the first basin matches very INd the effect of boundary toe-furrows. The predicted overall

closely the observed volume of inflow. The error in prediction basin water balance after the completion of the irrigation event
ranges from 0.2% for the first basin to 21% for the second basin. matches the observed values within 7 and 30% for the first basin

It should be noted here that the observed volume was based orff"d second basin, respectively.

the average flow measured in the supply channel during the irri-
gation event. The predicted inflow volume consists of the sum of
overland depth and infiltrated depth calculated by the model at the
time of shutting off the water supply to the basin.

The comparison of infiltrated volume predicted by the model
during the irrigation event shows that the water balance simula-
tion is superior for the first basin than for the second basin. The
error in prediction ranges from 7.0% for the first basin to 30% for
the second basin. The greater closure error in the second basin can
be ascribed in part to less accurate measurement of imerbaSirNotation
drainage runoff due to some leakage during the experiment and to

fluctuations in the supply channel discharge during the experi- The following symbols are used in this paper:
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ment. Flow fluctuations in the supply channel were not replicated a = infiltration empirical constant;
in the model simulation. The outflow volume includes the back- b = infiltration empirical constant;
flow into the supply channel and the drainage runoff through the g = acceleration due to gravitym/s);
check bank into the second basin. In both cases the comparison of | — \ater surface elevation above datm);
outflow volume predicted by the model with the observed values h = water depth(m);
indicates that the model can simulate inter-basin flow with rea- k = empirical infiltration constant;
sonable accuracy. t = time (s):
. U = advected velocity irx direction(m/s);
Conclusions V = advected velocity iry direction(m/s);

A two-dimensional mathematical computer simulation model was Xy = Cartesian coordinatesn);
developed to simulate the hydraulic processes involved in the xg,yg = value ofx andy on fixed boundary;
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Zo = bottom elevation above datufm); and
A = time step(s).
Subscripts
B = boundary nodes;
i,j = location of node on computation grid; and
xy = Cartesian coordinates.
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