Technical Bulletin

Rhizobium Biofertilizer for 7amil Nadu Pulses

Ensures nitrogen requirement of the pulses.

Improves the root and shoot length, biomass, and grain yield of legumes.

Reduces the chemical fertilizer usage and thereby enhances the farm profit.

Improves soil nitrogen through green manure, cover crop, and intercrop and legume crop rotation.

Improves the soil microbial activity and thereby ensures soil health.

Reduce the soil-borne pathogens of legume crops.

Department of Agricultural Microbiology Directorate of Natural Resource Management Tamil Nadu Agricultural University Coimbatore 641003 S. R. Mohanty

ICAR - All India Network Project on Soil Biodiversity & Biofertilizers Indian Institute of Soil Science Bhopal 462038

Introduction

Rhizobium is a symbiotic bacterium that fixes atmospheric nitrogen in root nodules of plants and has a mutually beneficial relationship with their host plant. The Rhizobia comprises five genera: Rhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium (now renamed as Ensifer), and Azorhizobium. Neorhizobium and Pararhizobium are two more genera recently added to the rhizobial group. Nearly 125 different species of rhizobia form a symbiotic association with specific legume plants and fix the nitrogen. Due to high-efficient nitrogen fixation, the legumes rely less on the inorganic nitrogen fertilizer. Further, the legume adds nitrogen to the soil through their biological nitrogen fixation. The biological nitrogen fixation by legumes is now being explored for soil fertility and nitrogen management for other non-legume crops through green manures, legume-based crop rotation, legume as intercrop.

Rhizobia Biofertilizer

Though Indian soils are sufficient with rhizobia to nodulate diverse legume crops, the native rhizobia often fail to make high N turn over through biological nitrogen fixation due to less efficiency. This might be due to sensitive and inefficient nitrogenase present in these strains. Hence, high-efficient rhizobia as biofertilizer should be inoculated to the legume crops through seed to enhance the BNF efficiency.

TNAU Rhizobia

Legume	Organism	Strain	-
Redgram	Rhizobium sp.	CC1, CoC1	-
Groundnut	Rhizobium sp.	TNAU14	Through extensive research, TNAU
Blackgram	Rhizobium sp.	CRU7	center under ICAR's AINP SBB
Greengram	Rhizobium sp.	BMBS47, CoC10	developed legume-specific Rhizobial
Bengalgram	Rhizobium sp.	CoB1	strains as biofertilizer mother cultures.
Tree legumes	Rhizobium sp.	ALM10	
Soybean	Bradyrhizobium japonicum	CoS1	

TNAU Rhizobium Biofertilizers

Rhizobium biofertilizer is commercially produced as the carrier (lignite) based and liquid formulations at TNAU.

Carrier-based biofertilizer: This lignite-based carrier formulation will have 10⁷ cells per g with three months shelf-life.

Liquid biofertilizer: The liquid formulation of Rhizobia is with 10⁸ cells per ml without any contaminants and can be stored for one year.

Liquid biofertilizer:

Seed treatment: 250 ml/ha of seeds

Soil application: 500 ml/ha

Carrier-based biofertilizer

Seed treatment: 1 kg/ha of seeds

Soil application: 2 kg/ha •

Technology adoption and impact analysis

Adoptive research trials, milti-location trials and front-line demonstration trials have been conducted to identify the potential rhizobial strains and to popularize the rhizobial biofertilizer for the pulses.

Legume	Strain	Period	Inoculated	Control	Percent
			(kg/ha)	(kg/ha)	increase
Groundnut	TNAU14	1991-2010	1977	1651	18.50
Soybean	CoS1	1991-2000	1680	1424	17.53
Blackgram	BMBS47	2018-2021	1044	820	27.31
Greengram	CoG15	2018-2021	954	741	28.75

Rhizobial inoculation through seed treatment ensures 15-30% higher yield than uninoculated control.

Economic Analysis

Crop	Total area	Benefit (Rs)	Benefit per ac
Groundnut	100 acres	53,095	Rs. 5,310
Pulses	100 acres	59,800	Rs. 5,980

The yield increase and fertilizer savings were accounted for yield increase and marginal benefit of legumes due to Rhizobium biofertilizer application. By using Rhizobium biofertilizer alone, nearly Rs. 5000-6000 could be the monetary benefit being obtained by the farmers.

New Technologies with Rhizobium

Co-inoculation with other inoculants

Phosphorus is the major nutrient-limiting factor for effective nodulation and nitrogen fixation. To improve the BNF-efficiency of Rhizobia in legume, Phosphobacteria and mycorrhizal biofertilizers were recommended as co-inoculant with Rhizobium. The co-inoculant ensures sufficient phosphorus requirement for the legume – rhizobial symbiosis.

Biofertilizer	Strain	Grain yield (kg/ha)	Percent increase
Rhizobium	CRU7	429	11.3
Phosphobacteria	Pb1	304	2.8
Rhizobium + Phosphobacteria	CRU7 + Pb1	570	92.9
Control		297	

Riofertilizer

Blackgram

Horsegram

Divier unizer	Strain	Grain yielu	reicent	
		(kg/ha)	increase	
Rhizobium	BMBS14	690	25.4	
Phosphobacteria	Pb1	630	14.5	
Rhizobium + Phosphobacteria	BMBS14 + Pb1	715	30.0	
Control		550		

	Blackgram		Redgram	
Biofertilizer	Grain yield (kg/ha)	Percent increase	Grain yield (kg/ha)	Percent increase
Rhizobium	730	15.32	792	4.92
Rhizobium + AMF	795	25.60	1011	34.26
Control	633		753	

Grain vield Percent

Co-inoculation with antagonistic bacteria

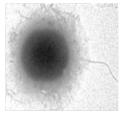
An antagonistic bacteria compatible with Rhizobium and Phosphobacteria was developed as an inoculant to improve Rhizobium's colonization efficiency and nitrogen-fixation in redgram.

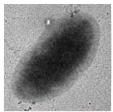
Biofertilizer	Strain	Grain yield (kg/ha)	Percent increase
Rhizobium	CoC10	655	38.7
Phosphobacteria	Pb1	483	2.3
Rhizobium + Phosphobacteria	CoC10 + Pb1	612	29.6
Rhizobium + Phosphobacteria + Antagonistic bacteria	CoC10 + Pb1 + KB133	760	48.7
Control		472	

Rhizobium sp. (CoC10); Bacillus megaterium var. phosphaticum (Pb1); Pseudomonas sp. (KB133)

Co-inoculation with Sulphur bacteria

Sulfur nutrition limits the oil content of groundnut like oil crops. Sulfur-oxidizing bacteria, compatible with Rhizobium as co-inoculant, was developed at TNAU to ensure enhanced yield and oil content of groundnut.


Biofertilizer	Strain	Yield(Kg/ha)	Oil (%)
Rhizobium sp.	TNAU14	1760.0	45.13
Thiobacillus sp.	LCH	1940.0	52.16
Rhizobium + Thiobacillus sp.	TNAU14 + LCH	2006.7	52.58
Control		1700.1	44.11


Non-rhizobial endophytes

Two non-rhizobial endophytes developed as co-inoculants of Rhizobium.

Bacillus tequilensis (NBB13) Pantoea dispersa (YBB19B)

- Co-inoculation showed significant improvement in Rhizobial nodulation and nitrogen fixation in groundnut.
- These endophytes improve the nodule occupancy of inoculated rhizobial strain and enhance its efficiency.

Seed coat formulation of Rhizobium

Crop	FLDs	Yield (kg/ha)			B:C ratio	
		Seed-coat Control % increase			Regular	Seed-coat
Red gram	2	245	205	20	1.20	1.30
Groundnut	24	1225	892	37	1.81	2.17

Seed coat formulation using lyophilized powered Rhizobia along with biopolymer can coat the seed surface uniformly. The cell load will be 1010 per g, and the shelf-life is one year.

Seed coating: Legume seed (per ha), 25 g of high-concentrated rhizobia and 20 ml of binder (biopolymer) per kg of seed should be coated on the surface of the seed through a seed coating machine.

For more details, Contact us:

D. Balachandar, Professor, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003. Email: dbalu@tnau.ac.in
 S. R. Mohanty, Principal Scientist & Project Coordinator, ICAR All India Network Project on Soil Biodiversity Biofertilizers, Indian Institute of Soil Science, Bhopal 462038. Email: santosh.mohanty@icar.gov.in

