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Abstract
Spice crops comprise diverse, economically valuable crops with numerous applica-

tions ranging from culinary to pharmaceutical industries. Spices are an integral part

of cuisines worldwide, imparting characteristic flavor, aroma, and pungency to food.

Breeding and crop improvement efforts in spices have focused on enhancing yield and

quality parameters (essential oil, oleoresin, fiber, etc.) along with bioactive chemical

constituents. The prominent breeding strategies followed are selection, hybridiza-

tion, mutation, in vitro approaches, and transgenics. Polyploidy is one of the drivers

of speciation and evolution, increasing the biological diversity in many crops, includ-

ing spices. Polyploidy, either through natural means or artificial induction, broadens

the scope of crop improvement. The artificial induction of polyploidy is usually done

via antimitotic chemicals, duplicating the complete chromosomal set and allowing for

genetic alterations and rearrangements that result in phenotypic changes across the

board. As a result, increasing ploidy in crops often results in improved yield, biomass,

vigor, biotic and abiotic stress tolerance, and secondary metabolite production, all of

which can contribute to the economic success of these crops. This review provides an

overview of research on artificial polyploidization in spice crops, including the poly-

ploidy induction system, polyploidy generation, and screening methods to select the

polyploids of interest. Thus, we have summarized the significant applications of arti-

ficial polyploidy in crop improvement that can serve as a potent reference for future

research works in the same direction in the under-explored spice crops.

1 INTRODUCTION

Spices are widely used as flavoring agents in cuisines across
the world. They are dried portions of plants and mostly have
an aromatic nature (Vázquez-Fresno et al., 2019). More pre-
cisely, the U.S. Food and Drug Administration defines spices
as “aromatic vegetable compounds, whether whole, broken,
or ground, that primarily serve as seasonings in food rather
than as sources of nourishment” (Embuscado, 2015). These

Abbreviations: APM, amiprophos-methyl; DAPI,
4′,6-diamidino-2-phenylindole; DH, double haploid; DMSO, dimethyl
sulfoxide; DNA, deoxyribonucleic acid; EMS, ethyl methanesulfonate;
FCM, flow cytometry; MS, Murashige and Skoog.
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plant parts can range from dried buds/flowers (clove and saf-
fron), rhizomes (ginger and turmeric), fruits/berries (pepper
and chilies), bark (cinnamon), to seeds (coriander, cumin, fen-
nel, and fenugreek) (Sung et al., 2012). Spices have been used
since the dawn of human civilization. In addition to their use
as flavoring agents and preservatives, they also find applica-
tion in the pharmaceutical and cosmetic industries (Tajkarimi
et al., 2010).

International Organization for Standardization has identi-
fied 109 spices worldwide. Although spices are cultivated
worldwide, India is still regarded as the “Home of Spices”
by the entire world (Gidwani et al., 2022). On a global
scale, spice crops are grown in an area of 15.6 million ha,
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contributing 45.5 million tonnes annually (FAOSTAT, 2019).
The production of different spices in India has grown steadily
over the last few years. Being the leading producer and
exporter of spices, India produced 10.88 million tonnes of
spices from 4.42 million ha area and exported 1.53 million
tonnes worth US$4,102.29 million during 2021–2022 (Spices
Board, 2022).

Spices are a storehouse of bioactive secondary metabolites.
These comprise polyphenols, alkaloids, and terpenoids that
are found to possess antioxidant, antimicrobial, and antifungal
properties (Gottardi et al., 2016). The secondary metabo-
lites are responsible for the medicinal properties exhibited
by the spices. The broad utility spectrum of spices, with
their known and potential medicinal properties, has enhanced
the economic value of spice crops, leading to crop improve-
ment programs. Increasing the overall quality and yield is
the principal goals of crop improvement in spices (Letchamo
& Craker, 1996). The quality parameters are divided into
internal and external quality. The “external quality” of the
spice includes the size, color, and shape that influence the
consumer’s preference. Internal quality refers to nutritional
attributes such as starch, sugar, protein content, flavor, bioac-
tive phytochemicals, culinary value, cooking characteristics,
and processing features (Peter et al., 2006). Yield is gov-
erned by biomass production and the fresh or dry weight
of the plant produced. The prominent breeding methods
practiced are selection, hybridization, and mutation, along
with in vitro-based approaches such as micropropagation,
somaclonal variation, and the development of transgenics
(Babu et al., 2013). Among the various crop improvement
methods, polyploidy breeding has drawn attention as one
of the most versatile plant breeding techniques. Polyploidy,
the occurrence of more than two sets of chromosomes,
is relatively common in flowering plants. Synthetic poly-
ploidization helps to overcome sterility and incompatibility
barriers and has played a pivotal role in angiosperm evolu-
tion and diversification (Sattler et al., 2016). To trigger novel
phenotypes, whole genome duplication empowers organisms
with the ability to respond and survive (Rutland et al., 2021).
Polyploidy encourages the diversification of Allium species
through shifts in morphology, ecology, or both (Han et al.,
2020). Thus, polyploidy breeding that utilizes either natural or
induced polyploids broadens the scope of crop improvement
in spice crops through increased heterozygosity and genetic
enhancement.

Artificial polyploidization, which has now become a potent
tool for plant breeding, primarily utilizes antimitotic chem-
icals for ploidy alteration (J.-T. Chen et al., 2020). The
polyploidy induction results in chromosomal duplication that
causes additional changes at the genomic, epigenetic, and
gene expression levels (Z. J. Chen & Ni, 2006). It can affect
a wide range of phenotypes due to the increase in the number
of copies of the gene (Adams & Wendel, 2005). Alterations

Core Ideas
∙ Spices have been an indispensable part of human

life since time immemorial as food and medicine
∙ The domestic and industrial usage of spices

demands an increase in overall production
∙ Polyploidization could offer rapid phenotypic

alterations and better agronomical traits
∙ Synthetic polyploidy can be instrumental in creat-

ing superior genotypes in spice crops.

in genome size can influence the developmental process, as
there is a strong correlation between genome size and cell
size. This effect of polyploidization is known as “gigas” effect
(Balao et al., 2011). However, an increase in cell size does
not necessarily guarantee an upsurge in the size or over-
all biomass of the entire organism, as the polyploids often
have a lesser number of total cell divisions (Stebbins, 1971).
In the case of plants, alterations in the ploidy levels have
an impact on morphological, physiological, and biochemical
traits. Regarding the general plant morphology; plant height;
habit; number of shoots; roots; leaf characteristics (num-
ber of leaves, leaf shape, length/width ratio, etc.); number
and size of the flowers, seeds, and pollen; and the com-
position of the cell wall are the frequently noticed changes
brought on by ploidy alteration in plants. Polyploidization
has resulted in improvement in morphological attributes,
yielding polyploids with superior characteristics compared
to diploids (Trojak-Goluch et al., 2021). In comparison with
their diploid counterparts, polyploids have larger leaves, flow-
ers, and seeds; improved photosynthetic abilities; reduced
transpiration; and higher biomass production (Miri, 2020;
Trojak-Goluch et al., 2021). Physiological changes such as
size and density of stomata have been reported in polyploids,
with stomatal density as a significant indicator of ploidy level
(McGoey et al., 2014). Studies have reported a larger stom-
atal size but a lesser stomatal density in polyploids (Bomblies,
2020; Padoan et al., 2013; Wilson et al., 2021). Polyploidiza-
tion has an effect on the developmental cycle of plants such
as delayed flowering, sluggish growth, better tolerance to
nutrient and mineral insufficiencies, improved resistance to
biotic and abiotic stress factors, and hence better adaptation
to habitat disturbance (Corneillie et al., 2019; Doyle & Coate,
2019; Tossi et al., 2022; Van de Peer et al., 2021; Vichiato
et al., 2014). The effects of polyploidization can be harnessed
for economic purposes to obtain desirable levels of metabo-
lites in plants (Gantait & Mukherjee, 2021). Hence, artificial
polyploidization offers advantages to agricultural crops by
improving their biomass, yield, vigor, and stress tolerance by
altering their anatomical, physiological, and morphological
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characteristics, all of which could be advantageous for the
economic success of the crops.

In spices, there is a significant scope for varietal improve-
ment through polyploidization. This can result in genotypes
with improved yield and quality parameters. It also has
potential application in these crops for the enhancement of
secondary metabolites, as many of these spices are valuable
sources of phytochemicals and medicinally important bioac-
tive molecules. So, in this review, we have discussed the most
significant applications of polyploidy in the improvement of
the major spice crops, which can serve as potent references
for future works in the same direction in other less explored
spice crops.

2 COMMON SYSTEMS OF
POLYPLOIDY GENERATION

Polyploids can occur naturally or created artificially. The
emergence of new polyploid lineages in plants is enabled by
several pathways, including the spontaneous doubling of chro-
mosomal sets in somatic cells and the reunion of unreduced
gametes (Otto & Whitton, 2000; Tayalé & Parisod, 2013).
Somatic chromosome doubling can occur at any point in the
life cycle of a plant, which can lead to a mixoploid organism
or the origin of polyploidy meristematic cells that eventually
give rise to new polyploid organisms (Grant, 1981). Differ-
ent meiotic defects, such as abnormal spindle formation and
orientation, absence of first or second meiotic division, or
disrupted cytokinesis that result in the formation of unre-
duced gametes have been revealed in a range of plant species
(Brownfield & Köhler, 2011). The union of diploid gametes
facilitates the formation of both auto and allopolyploids under
natural conditions. Noticeably, this sexual polyploidization
has been used successfully in the breeding processes of
several economically valuable crops such as alfalfa, potato,
yam, and rose (Ramanna & Jacobsen, 2003). Nair et al.
(1993) identified polyploidy in a cultivar of black pepper
and aneuploids in its open-pollinated seedling progenies,
giving insights into the natural incidence of autotriploidy
and inter-specific hybridization. Multiple polyploidy events
have occurred in the commercially significant genus Bras-
sica. The allotetraploid Brassica juncea (mustard) has formed
from the inter-specific hybridization of diploid species under
this genus (Baker et al., 2017). However, the rarity of these
occurrences hinders the breeding process.

Polyploidy can be artificially created primarily by antim-
itotic chemicals such as colchicine, oryzalin, and trifluralin
and is a potent tool for crop improvement. To begin with this,
efficient polyploidization systems are required. The two pri-
mary techniques for polyploidization are in vitro and in vivo
systems (Nasirvand et al., 2018). The most popular method
of polyploidization is the in vitro system, which can hasten
polyploid development in a confined and controlled space.

The establishment of effective in vitro culture protocols is a
prerequisite for the success of in vitro polyploid induction
(George et al., 2022; Touchell et al. et al., 2020). Higher
mutation rates and a lower incidence of chimeras make in
vitro autopolyploid induction more effective than in vivo
approaches (Fu et al. et al., 2019). In vitro polyploidization
can be accomplished by either treating the explant with antim-
itotic chemicals before inculcating it into the culture medium
or by directly adding aqueous solution of antimitotic agents
to either liquid or solid culture media and allowing it to
interact with the explant. This technique has been used on a
variety of spice crops, including Zingiber officinale (George
& Prasath, 2023; Smith & Hamill, 1997), Punica granatum
(Shao et al., 2003), Aframomum corrorima (Wannakrairoj
& Tefera, 2013), Trachyspermum ammi (Noori et al., 2017),
Allium cepa (Yun et al., 2021), Allium sativum (Wen et al.,
2022), and Thymus vulgaris (Navrátilová et al., 2021) for
the successful induction of polyploidy (Table 1). Conversely,
in vitro systems require technical expertise and expensive
laboratory equipment to conduct these procedures.

In vivo polyploidization is achieved through the applica-
tion of an anti-mitotic agent to portions of an intact plant or
plant parts such as seeds, nodal segments, rhizome buds, and
corms, which are easy to get and manage and are frequently
used as the initial material for polyploidization (Hassanzadeh
et al., 2020; Prasath et al., 2022; Samadi et al., 2022). Chemi-
cals can be applied directly through various methods, such as
immersion of the seedling as in Agastache foeniculum (Talebi
et al., 2017), injection by syringe in Papaver somniferum
(Mishra et al., 2010), the cotton plug method in Capsicum
annuum (Kulkarni & Borse, 2010), immersion of the root tip
in Ocimum basilicum (Omidbaigi et al., 2010), and dropwise
application to the apical meristem in A. foeniculum (Talebi
et al., 2017). There is no need for skilled workers and fully
equipped laboratories for the execution of in vivo protocols,
but it has a reduced rate of polyploidy induction (Salma et al.,
2017). The major drawback of this system is that it takes
longer to establish and multiply a polyploid population.

3 FACTORS AFFECTING ARTIFICIAL
POLYPLOIDY INDUCTION

The induction of polyploidy is complicated by several ele-
ments, giving it a multi-variant, unexpected, and nondeter-
ministic character.

3.1 Plant parameters

The primary and most significant factor influencing the
development of polyploidy in plants is genotype. The respon-
siveness of several genotypes and ecotypes of a single plant
species to polyploidy induction is obviously variable (Niazian
& Nalousi, 2020). This is particularly true for a technique that
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induces polyploidy in vitro since genotypes can influence the
rate of regeneration and, consequently, the level of polyploidy
induction in relation to antimitotic agents and in vitro regen-
eration variables. Two ecotypes of the Iranian indigenous
mint (Mentha mozaffarianii) were subjected to polyploidy
induction, and the results revealed distinct effects on the two
ecotypes (Ghani et al., 2014). Moreover, Adaniya and Shirai
(2001) achieved in vitro induction of tetraploidy in Z. offici-
nale Roscoe cv. ‘Sanshu’ by treating with 0.2% colchicine for
8 days. In China, Kun-Hua et al. (2011) reported the high-
est percentage of tetraploidy in 0.2% colchicine for 30 h in Z.
officinale.

In addition to plant genotypes, plant parts such as explants
play a crucial role in polyploidy induction. The best plant
communicators are those with active cellular division, such
as somatic embryos, calluses, nodal segments, apical buds,
juvenile root tips, immature inflorescence, and germinated
seeds. Fu et al. (2019) revealed that the capacity to induce
chromosomal duplication varies among explants. Omidbaigi
et al. (2010) investigated the impact of colchicine on vari-
ous explants of O. basilicum and reported more polyploids
from the meristem tip treatment of seedlings. In A. foenicu-
lum, the highest percentage of tetraploidy (20%) was obtained
from seeds compared to the apical meristem and seedlings
(Talebi et al., 2017). The age of the explant is also crucial
for the successful establishment of the polyploids. Addition-
ally, the totipotency of the cells may vary with the age of the
explant and thus have a considerable impact on regeneration
after chemical treatment, particularly in in vitro pathways. The
ability to regenerate a whole plant from a single or a small
number of cells can enhance the formation of homogenous
polyploids and reduce the likelihood of cytochimeras, hav-
ing cells with different ploidy levels (Touchell et al., 2020).
Pre-treatments have occasionally been used to synchronize the
cell cycle to enhance the impact of antimitotic agents. Smith
et al. (2004) cultured the shoot tips of Z. officinale on half
MS media for 7 days before treating with colchicine. The cul-
ture conditions after antimitotic treatments have been found
to affect chromosomal doubling in the context of in vitro
induction.

3.2 Anti-mitotic agents

Antimitotic compounds are crucial and responsible for the
inhibition of spindle fiber formation at the metaphase stage,
which leads to the nondisjunction of chromosomes and
increases the ploidy level. A few contributing factors are con-
sidered, including type, dosage, exposure time, and mode of
application. An experiment to induce polyploidy can use a
variety of spindle blockers. Colchicine is the most frequently
used antimitotic drug in chromosomal duplication investiga-
tions. It is an established mitotic arresting alkaloid that binds
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12 NEENU ET AL.Crop Science

to tubulin and hinders the development of tubulin dimers and
cytoskeleton (Salma et al., 2017). Colchicine seems to have a
low selectivity for tubulins in plant tissue and a strong affin-
ity for tubulins in animal tissue; it is highly toxic to humans
despite its widespread use in polyploidy induction experi-
ments (Huy et al., 2019). High colchicine concentrations must
be considered to produce polyploidy in plant cells. Besides,
elevated doses of colchicine may cause mutation, malfor-
mation, and an increased rate of mortality. Thus, colchicine
results in reduced formation of polyploidy in plants (Man-
zoor et al., 2019). Hence, modest doses with long exposure
times are thought to be effective in reducing its toxic effects
and increasing the rate at which polyploids are produced. Sub-
stitutes to the colchicine which are less harmful are oryzalin,
trifluralin, flufenacet, amiprophos-methyl (APM), pronamide,
and nitrous oxide gas (Afshari et al., 2009; Alavi et al., 2022).
APM and oryzalin are reported to be better than colchicine
due to their higher selectivity for plant tubulins and lack
of affinity for animal cells (Jakše et al., 2003; Rauf et al.,
2021). Additionally, the optimum concentration is 50–250
times lower than colchicine. Wannakrairoj and Tefera (2013)
reported that the rate of in vitro polyploidy induction in A.
corrorima by oryzalin (10 M) was comparable to that of
colchicine (125 M). Oryzalin was more efficient than triflu-
ralin and colchicine in the seed treatment of A. foeniculum
(Talebi et al., 2017).

Dimethyl sulfoxide (DMSO) is frequently added to aque-
ous solutions at 1.0%–2.0% to increase the permeability and
penetration of chemicals into cells. Two percent DMSO was
used to dissolve (APM for doubled haploid production in A.
cepa (Foschi et al., 2013). In addition to DMSO, detergents
such as Tween 20 or Triton X-100 were also used to increase
cell permeability of the mutagen in the chromosome dou-
bling of mint (Moetamedipoor et al., 2022) and onion (Jakše
et al., 2003). The mixture of explants and chemical solution is
constantly agitated using a shaker at various rpm to improve
contact, which increases the penetration of anti-mitotic chem-
icals into the cell. The shaking speed depends on the explant
type, maturity, and size. The optimum shaking speed reported
is 100 rpm for buds (Komala et al., 2022), 120 rpm for nodal
segments (Nasirvand et al., 2018), and 90 rpm for rhizome
buds (Lindayani et al., 2010). Shaking ensures the explants
receive the same exposure to an antimitotic agent, maintaining
uniformity.

The exposure time and dosage of the spindle inhibitors
are variables that are frequently examined. It is obvious that
the ideal concentration of an antimitotic drug is essential for
a positive polyploidy induction, and treating explants over
the threshold can be fatal, while modest exposure levels are
ineffective. Consequently, determining the antimitotic agent’s
minimal optimal dose is crucial (Podwyszyńska et al., 2018).
Wen et al. (2022) noticed a considerable decrease in the
explant viability and shoot regeneration capability with an

increment in colchicine concentration and treatment time in
A. sativum. There is also a substantial interaction between
the concentration and duration of the treatment on the via-
bility and induction frequency of tetraploids. In C. annuum,
0.4% colchicine for 72 h was found to be lethal (Kulkarni &
Borse, 2010). Different spice crops respond differently toward
concentrations of antimitotic chemicals and are species spe-
cific. In vitro studies of Z. officinale indicated maximum
polyploidization at 0.5% colchicine for 2 h (Smith & Hamill,
2002), whereas in Petroselinum crispum, the highest poly-
ploidy induction was obtained in 0.1% colchicine for 24 h
(Nasirvand et al., 2018).

4 IDENTIFICATION OF PUTATIVE
POLYPLOIDS AND ITS VERIFICATION

The identification of induced polyploids plays a crucial
role following treatment with antimitotic agents. The poly-
ploids can be identified either directly or indirectly. The
majority of polyploidization experiments use indirect iden-
tification strategies for the initial selection of putative poly-
ploids followed by direct identification methods for further
confirmation of their ploidy.

4.1 Indirect identification methods

Indirect strategies are simple and quick, but they may not
be accurate because they rely on changes in morphological,
physiological, and anatomical characteristics. This technique
involves a preliminary screening to pick a small population
from the initial large population. Leaf parameter, shoot diam-
eter, plant height, and floral character are the commonly used
morphological characters for the detection of putative plants
(Salma et al., 2017) (Figure 1). The leaves of polyploids fre-
quently exhibit several unusual traits, such as wider, thicker,
greener, and alterations in the leaf margin (Cheng et al.,
2012). This approach has been used as ploidy markers for
early population screening in Zingiber offcinale (Zhou et al.,
2020), A. cepa (Yun et al., 2021), and A. sativum (Yousef &
Elsadek, 2020). Marzougui et al. (2011) reported the appear-
ance of malformed leaves in Trigonella foenum-graecum after
colchicine treatment, which revealed mixoploidy as well as
tetraploidy. Pollen size was also influenced by ploidy num-
ber. The tetraploid plantlets have bigger pollen grains than
diploid plantlets (Omidbaigi et al., 2010). Selection based on
the size and shape of the pollen grain and seed size has proved
to be an efficient way to identify mixoploid plants (Dijkstra &
Speckmann, 1980; Omezzine et al., 2012). This measurement
is, however, seldom used in the ploidy screening procedure.
The use of antimitotic chemicals may also lead to alterations
in the floral morphology, such as flower size, length, and
color. Samadi et al. (2022) observed deformed flowers with

 14350653, 2024, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.21134 by L

ibrary, W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NEENU ET AL. 13Crop Science

F I G U R E 1 Schematic representation of polyploidy induction pathways and associated changes.

incomplete tepals and stigma in induced tetraploids of Crocus
sativus. All these visual cues clearly demarcate the mutated
ones from treated diploids, making it easier to recognize and
characterize polyploids from a large population of treated
plants.

Stomatal characteristics, including stomatal frequency,
length, and width as well as chloroplast count in the stomatal
guard cells, are helpful in identifying mutated plantlets (Beck
et al., 2003; Hodgson et al., 2010) (Figure 1). Polyploids

exhibit larger stomata with a lesser frequency compared to
diploids. Several studies provide convincing evidence to cor-
roborate this result (George & Prasath, 2022, 2023; Kun-Hua
et al., 2011; Mishra et al., 2010; Nasirvand et al., 2018; Noori
et al., 2017). Among the various indirect assays, those linked
to stomata (density and length) may offer a rapid method
for separating and pre-selecting suspected polyploid plants
(Wannakrairoj & Tefera, 2013). Subsequently, a considerable
increase in the number of chloroplasts in stomatal guard cells
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14 NEENU ET AL.Crop Science

was also exploited to detect this whole genome duplication
in A. foeniculum (Talebi et al., 2017). Given that the external
influences might affect morphological and physiological fea-
tures, they are not entirely accurate and dependable for ploidy
detection.

The identification of plant ploidy is now frequently per-
formed via flow cytometric (FCM) analysis, which is signifi-
cantly quicker and more precise than conventional techniques.
FCM analysis involves the estimation of nuclear DNA con-
tent with high precision (Doležel et al., 2007). Following
the extraction of cell nuclei using a razor blade chopping
(Galbraith et al., 1983) or a bead beating method (Roberts,
2007), DNA is then labeled with fluorochrome and evaluated
using a flow cytometer. The stained nuclei are exposed to laser
rays to emit fluorescence. The intensity can be measured with
a flow cytometer, which is directly correlated with the ploidy
level (Doležel et al., 2007). Sample preparation often takes a
few minutes, requires only a small amount of tissue for anal-
ysis, and is typically nondestructive (Sattler et al., 2016). The
fact that tissues containing dividing cells are not necessary
for ploidy calculation is a significant benefit. This analysis
can be performed at any growth stage without compromising
the entire plant. A sample of known ploidy can be used as a
standard to determine the ploidy status of an unknown sample
(Doležel & Bartoš, 2005). FCM is effective at separating poly-
ploids from diploids and distinguishing mixoploids within the
treated population. Sometimes, the typical approaches might
not work with certain samples for several reasons. Proce-
dure optimization should be conducted on various plants to
produce trustworthy results (Suda & Trávnícek, 2006). The
freshness of the sample, the presence of cytosolic chemicals,
and the lack of globally accepted DNA reference standards
can all have an impact on the precision and accuracy of FCM
analysis (Doležel & Bartoš., 2005). This method of ploidy ver-
ification is extensively used in spice breeding programs by
researchers over all other indirect methods as it gives more
accurate results much more quickly (George & Prasath, 2022,
2023; Hassanzadeh et al., 2020; Keshtkar et al., 2019; Prasath
et al., 2022).

4.2 Direct identification methods

The most effective direct method for determining the proper
ploidy level is chromosome counting (Maluszynska, 2003).
Nevertheless, the classical chromosome counting technique
allows the visual verification of the exact number of somatic
chromosomes in a dividing cell at its metaphase stage.
Although chromosome counting can be done on a variety of
plant parts, root tips have been the most widely employed
(Eng & Ho, 2019). It is a laborious process that involves
the following three major steps: (1) material preparation and
pre-treatment, (2) fixation, and (3) preparation and stain-

ing (Mirzaghaderi, 2010; Ochatt et al., 2011). Moreover,
tissues with actively dividing cells are necessary for clear
and countable imaging and necessitate unique protocols for
each species. As a result, it is a challenging procedure to
quickly assess ploidy levels, which also requires extremely
skilled operators (Niazian & Nalousi, 2020). Polyploidy in
a black pepper cultivar was identified with the help of the
chromosome counting technique (Nair et al., 1993). Noori
et al. (2017) used the chromosome counting method to verify
the ploidy status of colchicine-treated ajowan plants. Purbiya
et al. (2021) analyzed the pollen mother cell to visualize the
meiotic chromosomes and the segregation process in both
diploids and colchicine-induced tetraploids of coriander. This
fundamental method of ploidy detection is still practiced by
researchers for determining the ploidy of treated spice crops
(Alavi et al., 2022; Bharati et al., 2023; Prasath et al., 2022).

5 EFFECTS OF POLYPLOIDY

As it is widely known, polyploidization has inherent and obvi-
ous genomic consequences. The most obvious of them is
the increased genome size of the organism. This increase in
genome size is followed by dynamic changes in the genetic
landscape, altering the genetic architecture and gene expres-
sion profiles (Wang et al., 2021). This includes alteration
in chromatin topology which affects chromatin accessibil-
ity and can contribute to changes in the gene expression
pattern. At the allelic or locus level, major changes are an
increased number of alleles and an increased heterozygos-
ity (in allopolyploids and heterozygous autopolyploids) which
can result in heterosis (Birchler et al., 2010). These dramatic
genomic changes can have repercussions in the cellular and
biochemical interactions that drive morphogenesis, affecting
the morphological attributes of the organism. Although the
whole developmental processes are robust to change until
these changes cross a threshold level, these can result in the
alteration of morphogenesis and developmental events and
thus produce novel phenotypes (Madlung, 2013).

5.1 Polyploidization effects in spices

Even though spices encompass a diverse array of plants
from different families, widely varying in ploidy levels and
propagation means, polyploidization-based breeding strate-
gies offer tremendous potential across spice crops. Regardless
of the mode of propagation, polyploidy breeding continues
to serve as a faster and more efficient method to meet the
ends of crop improvement (Table 1). There have been stud-
ies altering the ploidy level in many spice crops, leading to
morphological, biochemical, and physiological changes
which is summarised below.
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NEENU ET AL. 15Crop Science

5.2 Morphological effects of
polyploidization in spices

The most obvious and direct consequences of polyploidy
induction include an increase in ploidy level and cellular
changes in many spice crops, followed by a gigas effect for
most of the morphological traits. The most common mor-
phological changes observed upon ploidy induction across
spice crops are in the leaves, shoots, roots, flowers, and
fruits. Here, polyploidization has resulted in larger and thicker
green leaves in garlic (Dixit & Chaudhary, 2014; Hailu et al.,
2020, 2021; Wen et al., 2022), onion (Ren et al., 2018; Yun
et al., 2021), fenugreek (Marzougui et al., 2011; Shambulin-
gappa et al., 1965), ginger (Adaniya & Shirai, 2001; Prasath
et al., 2022; Ramachandran & Nair, 1992; Smith & Hamill,
1997; Zhou et al., 2020), hot pepper (Kulkarni & Borse,
2010; Tammu et al., 2021), thyme (Navrátilová et al., 2021),
and ajowan (Noori et al., 2017). In addition to large green
leaves, polyploids exhibit gigas characteristics for plant height
(Navrátilová et al., 2021), floral characters (Noori et al., 2017;
Shambulingappa et al., 1965), larger stem size (Noori et al.,
2017; Shambulingappa et al., 1965; Smith & Hamill, 1997;
Zhou et al., 2020), large rhizomes with higher yield (Smith
& Hamill, 1997; Zhou et al., 2020), size and density of tri-
chomes (Zhao et al., 2022), larger bulb size (Hailu et al.,
2020), peduncle and seed length (Dijkstra & Speckmann,
1980; Gupta et al., 2021), and so on. Nair and Ravindran
(1992) observed thick leaf and stem with vigorous growth in
tetraploid black pepper. Even the root system embodies the
gigas effect, as observed in the roots of tetraploid plants of hot
pepper with increased root size and a higher number of lateral
roots (Kulkarni & Borse, 2010). Regarding fruit characters,
polyploids had an increased fruit size than diploids in hot
chilies (Pliankong et al., 2017). In coriander, a considerable
increase in the size of flowers, fruits, and umbel was noticed
(Purbiya et al., 2021; Sharma & Datta, 1957). In addition, it
is common observation that there is a characteristic reduction
in the number of branches or shoots along with polyploidiza-
tion, in addition to the gigas characteristics (Shambulingappa
et al., 1965; Smith & Hamill, 1997). Some researchers
reported reduced plant height or dwarfing (Komala et al.,
2022; Wen et al., 2022) and shortened internodes after
polyploidization.

5.3 Physiological and biochemical effects

Polyploid induction alters gene expression or physiological
processes. Enhanced genetic activity, along with increased
cell size, improved water interactions, and hormonal condi-
tions can lead to an increase in the rate of photosynthesis
in each cell (Lavania, 2005). The complex interplay of these

aspects is responsible for the generation of bio-active phyto-
chemicals from secondary metabolism (Dhawan & Lavania,
1996). Like in other crops, studies in spices also show that
polyploidization can result in an increase in the chlorophyll
index (due to an increased chloroplast number in most cases),
which can lead to an enhancement in the photosynthesis rate
or sometimes slow down the photosynthesis rate (Talebi et al.,
2017). Bharati et al. (2023) noticed high chlorophyll content
in the oryzalin-treated hexaploid Mentha spicata. Takizawa
et al. (2008) revealed the effect of polyploidy on the physiol-
ogy of capsicum and indicated that tetraploids have increased
water and nutrient uptake, resulting in an improved photosyn-
thetic rate. A similar result was observed in fenugreek with
increased mineral contents (Marzougui et al., 2009). There
was a substantial variation in stomatal characteristics and the
number of chloroplasts in guard cells between triploid and
hexaploid mojito mint (Moetamedipoor et al., 2022). Changes
in stomatal density upon polyploidization have also been
reported in many plant species. Here, most studies report a
lower stomatal density in polyploids compared to diploids due
to the increased size of stomata per leaf area (Foschi et al.,
2013; Hailu et al., 2021). This may be due to an increase in
the mean length and width of stomatal guard cells and the
mean leaf area with an increase in ploidy level (Nasirvand
et al., 2018; Zhao et al., 2017). Various studies, such as those
conducted by George and Prasath (2023), Talebi et al. (2017),
Yun et al. (2021), and Zhou et al. (2020), have reported these
findings in spices.

Physiological processes such as flowering and pollen ger-
mination are affected by polyploidization. Even though the
entire mechanism underlying the delayed growth response is
unclear, it is closely associated with whole genome duplica-
tion. The increased cell size that occurs in neopolyploids may
induce substantial physiological shift, suggesting the reduced
growth rate (Roddy et al., 2020). This gigas effect neces-
sitates the synthesis and deposition of additional cell wall
material during flowering, pollen germination, and pollen
tube growth (Bomblies, 2020). For instance, polyploidization
has resulted in delayed flower and leaf emergence in saf-
fron (Zaffar et al., 2003). While some of the studies report
low pollen fertility in polyploids that can have adverse effects
on fruit yield (Kulkarni & Borse, 2010), other works report
polyploids with restored and high pollen fertility of more
than 80% (Ramachandran & Nair, 1992) and increased pollen
viability (Adaniya & Shirai, 2001; Jakše et al., 2003). The
morphological, anatomical, and physiological traits associ-
ated with ploidy change can favor abiotic stress tolerance
in plants. Polyploids with bigger, darker green, and thicker
leaves, as well as greater resistance to abiotic stresses, have
been recorded in chili (Kulkarni et al., 2008). Marzougui
et al. (2010) reported improved salt tolerance in tetraploid
fenugreek.
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The effects of polyploidization on biochemical charac-
teristics are well studied, most of which often manifest
as alterations in the production pattern of plant secondary
metabolites (Bagheri & Mansouri, 2015; Cao et al., 2018;
Caruso et al., 2013; Madani et al., 2021). These changes
in the metabolic profile of plants are attributed to altered
genetic activity that follows genomic rearrangements. Stud-
ies across spice crops report an increase in the protein content
and enzyme activity per cell in response to the increased DNA
content (Marzougui et al., 2010; Talebi et al., 2017). On the
other hand, studies also reported stable or even decreased
enzyme levels (Zhou et al., 2020). Several studies have
found that polyploidization can affect the yield and compo-
sition of essential oils. For example, Dijkstra and Speckmann
(1980) and Prasath et al. (2022) reported an increase in oil
yield, while Bertea et al. (2005) found changes in com-
position. The amount of essential oil in tetraploid Carum
carvi has increased by 60%–85% (Zderkiewicz, 1962, 1964,
1971) and 30% in Mentha arvensis (Janaki Amal & Sobti,
1962) compared to diploids. However, some studies have
reported a decrease in oil content (Ramachandran & Nair,
1992). Polyploidy induction can result in an alteration in bio-
chemical composition and the metabolic profile. Increased
secondary metabolites have also been reported in spices, some
of which are an increased allicin concentration in onion (Dixit
& Chaudhary, 2014) and enhanced capsaicin in hot chili
(Pliankong et al., 2017). Besides, even the mixoploids gen-
erated through colchicine treatment exhibited variations in
the chemical composition and plant parameters (Omezzine
et al., 2014; Tammu et al., 2021). Amplification in sec-
ondary metabolite production including alkaloids, phenolics,
and flavonoids can accelerate medicinal and pharmacological
properties associated with it (Marzougui et al., 2012).

In general, the effects of artificial polyploidy induction can
be unpredictable as it depends on intrinsic and extrinsic fac-
tors. In saffron (Samadi et al., 2022), increased expression
levels of the prominent biosynthetic genes were not repro-
duced at the level of the metabolite. Further, these effects
appear more complex, as evident from another study wherein
the levels of most phytohormones were significantly lower in
tetraploid garlic compared to diploid controls. This resulted
in dwarfism in tetraploids due to altered hormonal regulation,
but the prominent secondary metabolites showed an increased
production level (Wen et al., 2022). All these studies thus
point to a complex crosstalk between hormonal and metabo-
lite production following genetic changes in polyploidization
that finally result in altered phenotypes. The knowledge of
these intrinsic molecular and biochemical mechanisms is cru-
cial to achieving desirable polyploidization effects in crops of
our interest.

6 POLYPLOIDY AS A BREEDING
STRATEGY FOR SPICES

The search for compounds extracted from natural resources
that are pharmacologically potent and have few to no side
effects for application in preventive medicine, cosmetics, and
the food business has recently gained more attention on a
global scale. Spices are an incredible source of phytochem-
icals, which makes them money-grubbing in the worldwide
market. Since ancient times, it has been an integral part of
world cuisines and pharmaceutics (Jiang, 2019). The demand
for spices is dependent on the quality and quantity of the
essential oil, oleoresins, and other secondary metabolites,
which can be immensely affected by several factors, such as
biotic and abiotic stresses, agro-climatic conditions, nutrition,
and manuring (Askary et al., 2018; Selmar et al., 2017). The
utilization of biotechnological approaches to accomplish the
above through commercial propagation and the creation of
novel kinds has increased dramatically over the past few years
(Babu et al., 2015). Polyploids of ornamental and horticul-
tural crops have been successfully developed in recent decades
(Manzoor et al., 2019). Synthetic polyploidy has emerged as
a vital technique for plant breeding, and the use of antimitotic
drugs results in whole genome doubling, leading to profound
phenotypic alterations.

For crops that are vegetatively propagated and tree spices,
traditional breeding is difficult, as it takes several years
for hybridization and selection processes, and it is impossi-
ble in self-incompatible and pollen-infertile lines. Therefore,
additional breeding techniques like polyploid breeding and
mutation are needed to produce breeds with enhanced genet-
ics. Synthetic polyploidy can produce novel genotypes with
improved morphological, physiological, and biochemical
characteristics by altering plant genetic material. In 1937, the
discovery by Blakeslee and Avery (1937) that treatment with
colchicine can induce chromosome doubling in plant cells was
a breakthrough in plant breeding, leading to the emergence
of synthetic polyploidy. Although in vitro and in vivo poly-
ploidy induction methods have been used for many years in
breeding techniques, attempts to induce polyploidy in spices
date back to the late 1930s. An initial report on polyploidy
induction in spices was published by Pal and Ramanujam
(1939). They studied the influence of colchicine on chili by
immersing the seeds in different concentrations for different
time intervals. Few of the treated plants exhibited various
abnormalities in growth, such as slow growth, thickening of
leaves, and doubling of flowers, and they were identified as
tetraploid and triploid using chromosome counting. There
were other reports on the colchicine treatment of chili seeds
to induce polyploidy (Pal et al., 1941; Panda et al., 1984;
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Raghuvanshi & Joshi, 1964). It is unusual to see octoploids
produced directly from diploids. Panda et al. (1984) reported
octaploid chilies from the colchicine treatment, where the
size and vigor of the plants significantly decreased compared
to tetraploids, indicating that an increase in the ploidy level
is not necessarily accompanied by gigas effects. Similarly,
Kulkarni and Brose (2010) demonstrated the potential use
of colchiploidy to generate novel alterations in root systems.
Colchicine treatment influenced the thickness and number of
fruits in capsicum (Tammu et al., 2021). Hybridization of
these novel polyploids with other materials with commer-
cially important traits may provide promising avenues in the
breeding procedure.

Ramachandran published the first study on induced poly-
ploidy in ginger in 1982 (Ramachandran, 1982). Later,
Ramachandran and Nair (1992) developed autotetraploids of
ginger by treating rhizome buds with 0.25% colchicine solu-
tion. They reported more vigorous growth, high yield, and
bold rhizomes in tetraploids. The tetraploid induction in Z.
officinale has been the subject of numerous research (Adaniya
& Shirai, 2001; Kun-Hua et al., 2011; Prasath et al., 2022;
Ratnambal & Nair, 1982; Zhou et al., 2020). Smith and
Hamill (1997) initiated an intriguing systematic research to
increase the knob size of the ginger rhizome in Queensland,
Australia. This group developed autotetraploids with large
rhizomes, and one of the autotetraploids was chosen for com-
mercial release as “Buderim Gold” after several seasons of
field testing (Smith & Hamill, 2002; Smith et al., 2004).

The creation of synthetic polyploids enables quick genetic
advancement in plants, making polyploidization one of the
most significant and common technologies employed in plant
breeding. The chances of being chosen for agronomical uses
are augmented due to morphological and physiological traits
coupled with polyploidy induction (Osborn et al., 2003). Sci-
entists experimented with inducing autoploidy in the Allium
genus. The genetic potential of A. sativum has been enhanced
in vitro by the use of colchicine treatment and gives a
potential key advancement for the enhancement of Allium
species in the future (Hailu et al., 2020, 2021; Wen et al.,
2022). Dixit and Chaudhary (2014) demonstrated that their
tetraploids displayed an increase in bulb size and allicin pro-
duction and expected an improvement in garlic production
and yield. The size of the vegetative parts in A. cepa was
similarly increased by anti-mutagenic treatment (Ren et al.,
2018; Yun et al., 2021). Synthetic polyploidy is also exploited
to develop double haploids (DH) in A. cepa (Alan et al.,
2004, 2007; Campion et al., 1995; Fayos et al., 2015; Fos-
chi et al., 2013; Geoffriau et al., 1997; Grzebelus & Adamus,
2004; Jakše et al., 2003) using an in vitro regeneration sys-
tem. DH lines exhibited unexpectedly vigorous growth, and
the resulting bulbs were big and homogeneous in morphology.
The formation of gynogenic doubled haploids would result in
perfect homozygous lines, permitting the evaluation of genet-

ically complicated traits through multiple rounds of screening
(Khan et al., 2020).

Saffron (C. sativus) is one of the most expensive spices,
valued for its red stigma. The vital compounds are produced
and stored in the thread-like flower stigma (Yue et al., 2020).
Samadi et al. (2022) documented the effects of chemical
mutagens (colchicine and EMS) on the floral characters and
revealed the variation in the expression of genes involved in
the biosynthesis of apocarotenoids. Polyploidy breeding can
bypass challenges faced during C. sativus breeding programs
as a sterile triploid.

Numerous researchers have also discussed the impact and
influence of polyploidization on the synthesis of primary and
secondary metabolites (Gantait & Mukherjee, 2021; Hailu
et al., 2020; Samadi et al., 2022). Polyploidy induction in
ajowan (T. ammi L.) has led to an increase in the thymol
content of the induced tetraploids compared to the diploids,
so this ploidy induction protocol can be used to accelerate
the thymol content of ajowan, the major bioactive com-
pound of this medicinal spice (Noori et al., 2017). Authors
reported an increase in the yield of essential oil in T. vul-
garis (Shmeit et al., 2020) and Mentha piperita (Zhao et al.,
2022). Conversely, Navrátilová et al. (2021) could not find
any differences in the total terpene content of thyme between
tetraploids and diploids; however, they did vary in the relative
amounts of each of the different terpenes. Similarly, no signif-
icant difference was observed in the gingerol content between
the tetraploid ginger and its diploid parent (Wohlmuth et al.,
2005). A significant increase in the morphine content and
opium yield was exhibited by the tetraploid P. somniferum
(Mishra et al., 2010). Nevertheless, the essential oil of the
tetraploid cytotype of Acorus calamus contained up to 96%
β-asarone, whereas diploid was distinguished by the lack of
β-asarone (Bertea et al., 2005). Higher ploidy resulted in
increased enzyme activity as well as phenolic and flavonoid
levels in Salvia officinalis (Hassanzadeh et al., 2020), Nigella
sativa (Gupta et al., 2021), and T. foenum-graecum (Mar-
zougui et al., 2009). The method for creating polyploidy is
well established in most of the spice crops (Table 1). Although
there are certain areas yet to be explored, they provide new
opportunities for spice crop improvement and breeding. The
health benefits, economic worth, and industrial uses of spice
crops have led to an upsurge in their demand on a global scale
in recent years. Consequently, to satisfy consumer demand
and prevent the extinction of certain spices, sustainable and
continuous production techniques are needed.

7 CONCLUSION

Spices, which are primarily cultivated through vegetative
propagules, often exhibit limited genetic diversity. Artificial
polyploidization has emerged as an effective technique in
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spices breeding and crop improvement to enhance the charac-
teristics of desirable traits by altering their genomic content.
Mainly done with the help of various antimitotic agents, arti-
ficial polyploidy induction leads to the generation of higher
ploidy levels in spices with changes in general morphol-
ogy, physiology, and biochemical nature. The enhanced gene
expression after polyploidization has resulted in increased
secondary metabolite production in many spice crops. The
selection, concentration, and duration of application of antim-
itotic agents for polyploidization vary depending on the
species. When it comes to antimitotic chemicals for in vivo
and in vitro methods, colchicine has traditionally been the
preferred choice. However, it is worth exploring other options
that may offer better polyploidization abilities while being less
harmful to both plants and humans. In addition, techniques
such as embryo culture have shown promise in achieving
whole genome doubling in a simple and convenient manner
through in vitro methods.

Earlier studies in other plant species have shown that the
relationship between polyploidization and plant character-
istics may not be as linear as it seems but may involve
complex molecular and epigenetic mechanisms resulting in
either enhancement or repression of gene expression, result-
ing in an altered phenotype. Hence, a deeper understanding
of these mechanisms, along with the experimental improve-
ments in polyploidy induction systems and protocols, enables
us to better harness the polyploidization effects. The rapid
advance of molecular approaches, such as multi-omics, high-
throughput biology, and CRISPR genome editing, will speed
up the understanding of artificial polyploidy biology and, in
turn, result in novel mechanistic insights and novel polyploids
in spices for cultivation.
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