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Abstract
Cyanobacteria are oxygenic photosynthetic microorganisms known for their agricultural and industrial importance. Unavail-
ability of efficient and fast isolation and purification methods of cyanobacteria has impeded our understanding of cyano-
bacterial diversity. A number of techniques for isolation and purification of cyanobacteria are available, but most of them 
are cumbersome as well as time-consuming. In the present study, we modified and validated a uni-algal isolation technique 
named as Microscope Assisted Uni-algal isolation through Dilution (MAU-D) which used dilution of mixed algal popula-
tion on slide and isolation of single type of cyanobacterial cells using light microscope. Using this technique, we obtained 
81 cyanobacterial isolates belonging to various species from 19 different genera from soil and water samples collected from 
rice fields of Uttar Pradesh, India. This technique also resulted in isolation of six distinct genera, viz., Cyanobacterium, 
Toxopsis, Desertifilum, Chroococcidiopsis, Halomicronema, and Alkalinema, which were previously not reported from rice 
fields of India. Hence, the MAU-D technique presents a simple, comparatively fast method of isolation and purification of 
cyanobacteria which can help to isolate those cyanobacteria which are difficult to isolate through routine sub-culturing.

Keywords Cyanobacteria · Diversity · Isolation · Microscopy · Purification

Abbreviations
MAU-D  Microscope Assisted Uni-algal isolation 

through Dilution

Introduction

Cyanobacteria or oxyphotobacteria have been one of the 
pioneer species of this planet and efforts have been made 
to understand its evolutionary, ecological, biochemical and 
taxonomic issues (Alvarenga et al. 2017; Wilmotte et al. 
2018). Estimates show the diversity present among micro-
algae are in the range of 2,00,000 to several millions species 

in contrast to 2,50,000 species of higher plants (Norton et al. 
1996). Among microalgae, cyanobacterial species may vary 
in number from 2780 to 4484 and may reach up to 8000 
(Guiry 2012; Nabout et al. 2013; Guiry et al. 2014; Guiry 
and Guiry 2018). There are evidences that cyanobacterial 
diversity is under-represented due to lack of robust and effi-
cient isolation techniques (Gerloff et al. 1950; Doan et al. 
2011; Lee et al. 2014). Kozlov et al. (2016) proposed that 
on the basis of 16S rRNA gene sequences, only 170 genera 
of cyanobacteria have been described in contrast to 2998 
bacterial genera (Parte 2018). With a rocky taxonomic his-
tory, cyanobacterial studies are already facing challenges 
and are undergoing scrutiny with respect to systematics of 
the phyla (Komárek et al. 2014). Cyanobacteria are widely 
distributed in diverse aquatic and terrestrial habitats rang-
ing from soil, fresh and marine waters, tree barks, rice 
fields, the Antarctica, thermal springs, desert crusts, etc., 
and are known to exhibit unicellular to filamentous forms 
(Desikachary 1959; Garcia-Pichel et al. 2009). In particu-
lar, soil and water samples contain mixed algal population 
and separating single uni-algal form out of the mixed popu-
lation is quite a tedious task. More than 70 years of algal 
research, especially in the area of isolation, purification, 
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and maintenance of cyanobacteria, have passed, but till 
date, the research in the area has not been adequate. Cyano-
bacteria have associations with the bacterial and archaeal 
counterparts which makes it more difficult to isolate axenic 
cultures of cyanobacteria from any environmental samples 
(Thompson et al. 2012; Foster and Zehr 2019). Also, the 
traditional taxonomic studies based on morphological prop-
erties do not corroborate with their respective phylogenetic 
analyses (Hugenholtz et al. 2016). Despite a long history 
cyanobacteriology, there is still no comprehensive and easy 
method to purify mixed cultures of cyanobacteria. Different 
methodologies adopted by various algologists to isolate pure 
cyanobacteria from diverse environmental samples are listed 
in Table 1, but majority of these techniques are laborious, 
complicated, time-consuming, expensive, and requires great 
patience. Many of these methods require speciality chemi-
cals and sophisticated instruments which may not be avail-
able everywhere (Elhai and Wolk 1988; Doan et al. 2011; 
Ali and Mirza 2017). Hence, much of the diversity works 
reported remain biased towards a few dominant genera of 
cyanobacteria due to lack of proper methods of cyanobacte-
rial purification.

Owing to the large number of industrial bioactive prod-
ucts produced by cyanobacteria like lipids, pigments, vita-
mins, polysaccharides, antibiotics, restriction enzymes, 
etc., it becomes critical to develop an easy, time saving, and 
cost-effective method to tap into the realm of cyanobacte-
rial world (Chakdar et al. 2012; Pagels et al. 2019; Patel 
et al. 2019). Importantly, discovery of new oxyphotobacteria 
may help ecologists in understanding the exact role of these 
microbes in the biogeochemical cycle of our planet which 
could address several climate change-related issues gripping 
the globe (Kulasooriya 2011; Banack et al. 2012 ; Walter 
et al. 2017).

Under this background, the present work was aimed at 
developing a method that would not only save time but also 
much effort and cost which goes into the isolation studies 
of cyanobacteria. While working on the improvement of the 
existing isolation methods, we have come up with an easy, 
time saving, cost-effective and reliable modified technique 
to isolate uni-algal cyanobacterial cultures. Using this tech-
nique, we obtained diverse genera of cyanobacteria includ-
ing few not reported earlier from similar ecological niches 
from India.

Materials and methods

Sampling sites

Soil and water samples were collected from two different 
locations of India (Table 2). Water and soil samples were 
stored in sterile plastic bottles at 4 °C and further used for 

isolation and purification of cyanobacteria. Physicochemical 
parameters like pH and EC were recorded following standard 
procedure for each sample type (Jackson 1959).

Sample enrichment

BG11 media were used for sample enrichment and isola-
tion of cyanobacteria from different soil and water sample. 
The pH of the medium was set 8.0 to 8.5 before autoclav-
ing. 1 g of soil from each sample was suspended in sterile 
BG11 medium (100 ml) with and without nitrogen source 
and mixed to homogenise. 10 ml of water sample was dis-
solved as such in 90 ml of sterile BG11 medium. The sus-
pension containing soil and water was allowed to grow in 
algal growth chamber (Atlanta Drugs & Chemicals, Kolkata, 
India) under 50–55 µmol photons  m−2  s−1 light intensity 
and 16:8 light and dark cycle at 27 ± 1 °C for 10–15 days 
(Stanier et al. 1971).

Standardization of the isolation technique 
and morphological characterization

It was conceptualized that serial dilution of mixed culture 
followed by microscopic observation can result in isolation 
of higher number of uni-algal isolates. Routinely followed 
methods of serial dilution and incubation theoretically lower 
the chance of getting diverse uni-algal cultures due to over 
population of dominant species resulting in competition for 
nutrients. However, allowing the cyanobacteria present in 
sample to proliferate in number for a first phase of growth 
followed by dilution and microscope assisted pick up of cells 
will allow isolation of diverse uni-algal cyanobacteria.

To achieve this, the process was tested as follows- 20 µl 
of mixed culture (obtained after 10–15 days of growth) was 
pipetted out with micropipette and placed on slide (which 
was wiped with 70% ethanol). The slide was observed at 
100X magnification under light microscope (Olympus, 
Japan). A number of sterile water droplets (15 µl) was placed 
on the slide. 5 µl of culture suspension was picked up from 
culture droplet and mixed to one of the 15 µl of sterile water 
droplet and the process was followed for series of dilutions 
and was observed under 100X magnification. The droplet 
containing uni-algal form was pipetted out from slide and 
collected into sterile glass tube containing 2 ml of BG 11 
medium. A few repetitions of the slide dilution of the mixed 
algal growth, observation under microscope, and pipetting 
out uni-algal droplets were carried out to isolate maximum 
possible diversity. The tubes containing single alga were 
incubated under same conditions mentioned above. After 
10–15 days, the uni-algal forms were observed under micro-
scope (400 and 1000X), and morphological observations 
were recorded and provisionally characterized according to 
the keys described by Desikachary (1959). The frequency 
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(%) of obtaining uni-algal cultures from each sample was 
calculated as (No. of tubes found to have uni-algal culture as 
observed under microscope after complete incubation/No. of 
tubes inoculated with tentative uni-algal cultures) × 100. The 
isolates were deposited at National Agriculturally Important 
Microbial Culture Collection (NAIMCC), ICAR-NBAIM, 
Mau, India and accession numbers were obtained.

Comparison of MAU‑D method with other methods 
for isolation of cyanobacteria

Comparison of MAU-D method was done with other fre-
quently used isolation techniques such as: Repeated sub-
culturing method as described by Gerloff et al. (1950), 
Single cell isolation method as described by Andersen and 
Kawachi (2005), and Streaking method as discussed by Lee 
et al. (2014) using the soil sample collected from paddy field 
of Alipur, Mau, U.P., India. Growth medium and conditions 
were same as described in the section Sample Enrichment. 
Purified cyanobacterial isolates obtained from different iso-
lation techniques were identified as described in the subse-
quent sections.

Molecular characterization and sequencing

Total genomic DNA was isolated using Nucleo-pore® 
gDNA Fungal/Bacterial kit (Genetix Biotech Asia Pvt. Ltd, 
Delhi, India) following the manufacturer’s protocol with 
slight modifications. The primer pairs used were Cya 359F- 
(5’GGG GAA TYT TCC GCA ATG GG3’) and Cya 781R(a)- 
(5’GAC TAC TGG GGT ATC TAA TCC CAT T3’) targeting 16S 
rRNA gene (Nübel et al. 1997). Amplification of 16S rRNA 
gene was achieved as described by Nubel et al. (1997). 
Bacteria-specific universal primers 27F and 1492R were 
also used to cross-check ten random samples of the puri-
fied cultures for the presence of signal from contaminating 
bacteria using PCR amplification (Edwards et al. 1989; Rai 
et al. 2015). Sequencing of the amplified PCR product was 
done by outsourcing the samples to Biokart India Pvt Ltd. 

The sequence electropherograms (.abi files) were analyzed 
through FinchTV (https:// www2. le. ac. uk/ offic es/ itser vices/ 
ithelp/ my- compu ter/ progr ams/ finch tv) for the presence of 
contaminating sequence and quality of sequencing results. 
Curated sequences were used for BLAST search using EzBi-
ocloud server (http:// www. eztax on. org) for determination 
of identity (Yoon et al. 2017). The partial 16S rRNA gene 
sequences were submitted to NCBI GenBank.

Results

Cyanobacterial isolation and characterization

As the technique used microscopy and dilution of algal pop-
ulation on slides, it was named as Microscope Assisted Uni-
algal isolation through Dilution (MAU-D) method. Figure 1 
represents a schematic diagram of the MAU-D technique for 
isolation of uni-algal form from mixed culture. The isola-
tion technique resulted in 81 uni-algal cyanobacterial cul-
tures from various samples containing mixed cyanobacterial 
population (Fig. 2a–c). The frequency of obtaining uni-algal 
cultures for each sample was as follows: (1) Soil from paddy 
field, Kushmaur, U.P.: 80%; (2) Soil from pigeon pea field, 
Kushmaur, U.P.: 85.7%; (3) Soil from garden, Kushmaur, 
U.P.: 80%; (4) Soil from paddy field, Alipur, U.P.: 92.85%; 
(5) Water from pond, Mau, U.P.: 83.3%; (6) Soil from paddy 
field, Ri Bhoi, Meghalaya: 92.30%. Table S1 presents the 
different morphotypes belonging to various species of 19 
different genera, identified on the basis of 16S rRNA gene 
homology and morphological features. Distinct ecological 
niches have been detailed in this table along with respective 
diversity tapped. Table S2 presents details of various cul-
tural and morphological attributes of the isolates. Using the 
MAU-D technique, both unicellular and filamentous types 
of cyanobacteria were isolated (Fig. 3a–f). Unicellular forms 
included: Cyanobacterium, Chroococcidiopsis, Geminocys-
tis, Chlorogloeopsis, Limnococcus, Aphanothece, and Gloe-
othece, while the filamentous forms included: Desertifilum, 

Table 2  Different sampling sites, geographical location, and physicochemical properties

Sr. No Sampling sites Source of samples Geographical location of sampling sites Physicochemical 
Properties of the 
Sampling Sites

pH EC (µScm−1)

1 Kushmaur, Mau, U.P Soil from Paddy Field 25°53.942’N and 83°29.257’E 9.5 190
2 Kushmaur, Mau, U.P Soil from Pigeon pea Field 25°54.017’N and 83°29.300’E 9.6 135
3 Kushmaur, Mau, U.P Soil from Garden 25°53.815’N and 83°29.303’E 10.5 99.7
4 Alipur, Mau, U.P Soil from Paddy Field 25°90.619’N and 83°47.860’E 8.7 248
5 Mau, U.P Water from Pond 25°95.183’N and 83°55.231’E 8.6 1500
6 New Jirang, Ri Bhoi, Meghalaya Soil from Paddy Field 25°55.077’N and 91°34.605’E 7.7 56

https://www2.le.ac.uk/offices/itservices/ithelp/my-computer/programs/finchtv
https://www2.le.ac.uk/offices/itservices/ithelp/my-computer/programs/finchtv
http://www.eztaxon.org
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Lyngbya, Phormidium, Hapalosiphon, Aulosira, Toxopsis, 
Trichormus, Halomicronema, Nostoc, Alkalinema, Leptol-
yngbya, and Scytonema. The present study also reported a 
few distinct genera (Cyanobacterium, Toxopsis, Desertifi-
lum, Chroococcidiopsis, Geminocystis, Halomicronema, 
Chlorogloeopsis, Alkalinema, Limnococcus) those were not 
frequent or not reported earlier from their respective niche in 
India. All the cultures were deposited at National Agricul-
turally Important Microbial Culture Collection (NAIMCC), 
Maunath Bhanjan, India.  

Comparison of MAU‑D method with other methods 
for isolation of cyanobacteria

From the soil sample collected from paddy field of Alipur, 
Mau, U.P., highest (13) number of cyanobacterial isolates 
was retrieved following MAU-D method, followed by 
Streaking method (07), Single cell isolation method (05), 
and Repeated sub-culturing method (04). The cyanobacteria 
belong to Nostoc, Limnococcus, and Lyngbya which could 
be obtained through MAU-D method; however, those could 
not be isolated by other methods. On the other hand, iso-
late belonging to Fortiea contorta obtained through streak-
ing and single cell isolation method could not be obtained 

by MAU-D method (Table 3; Table S3). The frequency 
of obtaining uni-algal cultures using other three methods 
ranged from 36 to 70% in comparison to ~ 93% for MAU-D 
method.

Test of axenicity for pure isolates

Ten purified random cultures which were cross examined by 
bacteria-specific 16S rRNA gene primers (27F and 1492R) 
and the analyses showed the absence of any bacterial 16S 
rRNA gene sequence signal (Fig. S1). Electropherograms 
confirmed the presence of only cyanobacteria as bacterial 
contamination would have been reflected by mixed peaks 
upon sequencing with bacteria-specific universal primers. 
The identities also matched with the results obtained with 
cyanobacteria-specific primers used earlier (Table 4).

Discussion

Earlier, groundbreaking works were done in this field 
during the 1950s and 60s by Gerloff et al. (1950); Allen 
(1952); Kratz and Myers (1955); Hughes et  al. (1958); 
Van Baalen (1962); Jones et al. (1973); Allen and Gorham 

Fig. 1  Illustration of Microscope Assisted Uni-algal isolation through Dilution (MAU-D) technique for isolation and purification of cyanobacte-
ria
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(1981). These methods were able to yield axenic cultures 
and really accelerated the algological research, but majority 
of them required very long time (months!!) just to isolate 
a few cultures of cyanobacteria. The use of antibiotics like 
imipenem, neomycin, cycloheximide, etc. also worked up 
to some extent, but only a selected group of bacterial con-
taminants could be eliminated (Ferris and Hirsch 1991; Choi 
et al. 2008). Moreover, the time and cost remained an issue 
with such isolation methods. Streaking methods were easy 
to perform, but it took weeks and sometimes months to get 
uni-algal axenic cultures and, at the same time, agar posed 
as hurdle due to inability of many cyanobacteria to grow on 
agar (Ferris and Hirsch 1991; Lee et al. 2014). Many other 

isolation techniques required the use of special equipments 
or materials like nylon filtration tubes, vacuum-driven filtra-
tion apparatus, flow cytometer, ultra-sonicators, etc. (Elhai 
and Wolk 1988; Vázquez-Martínez et al. 2004; Doan et al. 
2011; Shiraishi 2015). All these issues together impeded 
the pace of advancement in algological studies. From our 
own professional experiences, we have observed that in 
India, very few people (in comparison to other microbial 
groups!!) are working on cyanobacteria and the major issue 
is the lengthy work to purify cultures and maintaining their 
axenicity.

Enrichment of soil and water sample results in isolation 
of distinct cyanobacterial isolates. Rippka (1988) reported 
that if crude material contained a high percentage of larger 
filamentous forms, it would be better to separate the later. 
Kostikov et al. (2001) found that inoculation and cultivation 
of small portion of the soil sample (initial sample) in nutri-
ent media resulted in obtaining mixed cultures of cyano-
bacteria which were further purified. It has been suggested 
that aqueous samples those are too dilute to isolate colo-
nies directly on agar plates should be enriched in a liquid 
medium before isolation (Waterbury 2006). Basically, all 
these method suggested that an initial enrichment is quite 
necessary to increase the population size of cyanobacteria 
before isolating and purifying them. So keeping these in 
mind, in the present study, we have developed Microscope 
Assisted uni-algal isolation through Dilution (MAU-D) tech-
nique (involving an initial enrichment followed by isolation 
of uni-algal cells under microscope) which is a simple, time 
saving, and inexpensive modification of single cell isola-
tion method to isolate uni-algal cyanobacterial cultures. 
The range for the frequency of obtaining uni-algal cultures 
using MAU-D was 80–92% which was quite high. Andersen 
and Kawachi (2005) reported a single cell isolation method 
using glass capillary or Pasteur pipette where the cells were 
sequentially washed in sterile droplets and observed under 
microscope to find droplets containing single cells. When 
three other methods, viz., repeated sub-culturing, single cell 
isolation, and streaking method, were compared to MAU-D, 
it was found to be more advantageous in terms of number 
of different cyanobacteria retrieved from the same sample 
and frequency of obtaining uni-algal cultures. Many of the 
cyanobacteria like Aulosira, Hapalosiphon, Alkalinema, 
Halomicronema, and Aphanothece could be isolated using 
all the techniques, but a few cyanobacteria like Limnococ-
cus, Lyngbya sp. could be obtained from the same sample 
using the MAU-D method only. This may be due to the ini-
tial enrichment which might have helped to populate such 
cyanobacteria which were otherwise low in number in the 
original sample. Although MAU-D method, is quite similar 

Fig. 2  Mixed cyanobacterial population present in a Paddy field 
(Kushmaur) soil; b Garden soil; c Pigeon pea field soil
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to the method described by Andersen and Kawachi (2005), 
MAU-D method is distinctly different in few aspects like (1) 
serial dilution is used; (2) auto pipettes are used which are 
easy to handle, and (3) chances of cell injury is low (as the 
droplet generally contains many cells of single type) leading 
to high probability of revival in fresh medium, while in case 
of single cell isolation using capillary, the chances of cell 
injury due to capillary forces are high. Series of dilution with 
microscopic observations offer greater chances to obtain uni-
algal cultures. Less number of sub-culturing associated with 
MAU-D increases the probability of getting the cyanobac-
teria which are otherwise difficult to isolate through rou-
tinely followed repeated subcultures. Recently, Šulčius et al. 
(2017) reported a single cell pick up method which involved 
a setup having a micromanipulator attached with an inverted 
microscope. Though effective, this method involved complex 
instrumentation making the method costly along with the 
intricacies in handling an invert microscope–micromanipu-
lator system. However, the MAU-D method did not require 
an inverted microscope; instead, a simple light microscope 
can be used. Another single cell sorting technique was avail-
able which used the fluorescence of chlorophyll present in 
cyanobacterial populations which could be monitored by 
flow cytometry (Reckermann 2000; Crosbie et al. 2003). 
But such techniques require knowledge of flow cytometry, 
trained man power. MAU-D technique follows simple rule 
of dilution and observation under microscope. It is worthy 

to mention that it is never possible to tap the entire cyano-
bacterial diversity following a single method of isolation, 
medium, or growth conditions. It is evident from the pre-
sent study that using different isolation methods with same 
medium and growth conditions, it is possible to isolate dif-
ferent types of cyanobacteria.

Most significant observation we made after using this 
technique for isolation was the presence of genera like 
Cyanobacterium, Toxopsis, Desertifilum, Chroococcidiop-
sis, Halomicronema, and Alkalinema which have not been 
reported from rice fields of India yet (Anand and Kumar 
Hopper 1987; Nayak et al. 2004; Nayak and Prasanna 2007; 
Prasanna et al. 2009; Selvi and Sivakumar 2012; Singh 
et al. 2014; Adhikari and Baruah 2015; Srivastava et al. 
2015; Vijayan and Ray 2015; Borah et al. 2016; Dash et al. 
2017; Debnath et al. 2017). A recent study of cyanobacte-
rial diversity from rice fields of Maharashtra reported 137 
species from 35 genera with Anabaena and Oscillatoria as 
predominant genera (Ghadage and Karande 2019). However, 
none of the six newly reported genera in the present study 
were documented by them. Srivastava et al. (2009) charac-
terized the molecular diversity of cyanobacteria from the 
rice fields of eastern Uttar Pradesh (Azamgarh, Mirzapur, 
Jaunpur, Chandauli, and Varanasi) which is well known to 
be affected with salinity problem. In this study, they mainly 
reported Anabaena, Nostoc, Aulosira, Tolypothrix, Hapa-
losiphon, Oscillatoria, Phormidium, Lyngbya, Rivularia, 

Fig. 3  Some of the cyanobacterial isolates obtained using MAU-D technique a Aulosira laxa K58; b Nostoc sp. K60; c Lyngbya hieronymusii 
K81; d Limnococcus sp. K71; e Hapalosiphon sp. K50; and f Scytonema sp. K55
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Fischerella, Gloeothece, and Aphanothece with Nostoc 
and Aulosira predominant in saline soils. In another study, 
Tiwari et al. (2001) showed that rice fields of Allahabad, 
Varanasi, Pratapgarh, Bareilly, and Basti were inhabited 
by members of Pseudanabaena, Limnothrix, Phormidium, 
Microcoleus, Oscillatoria, Lyngbya, and Plectonema. Litera-
ture survey suggested that majority of the above -cited stud-
ies used routine sub-culturing techniques with or without 
minor modifications. In this study, we report six additional 
genera from the paddy fields of salinity affected areas of 
Mau- a district of eastern Uttar Pradesh, India. It is worthy 
to mention that majority (Cyanobacterium, Desertifilum, 
Halomicronema, and Alkalinema) of the six new genera 
reported in this study were tolerant to high salinity and have 
originally been reported from saline/hypersaline habitats 
(Abed et al. 2002; Moro et al. 2007; Dadheech et al. 2012; 
Vaz et al. 2015). This finding highlights the fact that the 
MAU-D method could isolate diverse cyanobacteria which 
were otherwise difficult to obtain through routine sub-cul-
turing techniques leading to isolation of only few dominant 
cyanobacterial groups. Another interesting aspect of the 
MAU-D method was revealed by the molecular analyses 
of cyanobacterial isolates sequenced with bacteria-specific 
primers. The absence of bacteria-specific signals in the 
cyanobacterial DNA indicated the axenicity of the ten ran-
dom samples. Molecular analyses can become ambiguous 
and complicated for the identification of uni-algal cyano-
bacteria due to DNA contamination and its unusual degree 
of genomic streamlining with its associated microorganisms, 
particularly bacteria (Erwin and Thacker 2008; Ran et al. 
2010; Tripp et al. 2010).

Although we did not carry out any optimization, the 
mixed algal population was diluted by fivefold at every dilu-
tion step instead of tenfold dilution which could also be done 
if the algal growth was very high. Dilution at micro-volumes 
actually resulted in higher probability to get single cyano-
bacterial cultures in droplets. Despite framing the meth-
odology conceptually, we could successfully establish and 
validate a simple method with much precision than many 
of the earlier reported methods. The present method had 
three distinct advantages: (1) simplicity for execution; (2) 
comparatively fast (may be completed in two cycles (15 days 
each) of growth); (3) ability to yield uni-algal cultures with 
a better representation of existing diversity which is difficult 
to with routine sub-culturing techniques. (4) Revival rate 
of cultures in fresh medium is comparatively higher as the 
method can also result in axenic cultures, but we believe 
that it may not be the case always. Although, we have tested 
this method on soil and water samples, it should be equally 
applicable for other samples too.
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