PATHOGENIC VIBRIOS OF PUBLIC HEALTH AND AQUATIC ANIMAL HEALTH

T. Muthulakshmi and T. Rajaswaminathan
 Microbiology, Fermentation \& Biotechnology Division, E-mail: muthuocean @gmail.com

Classification of Vibrios

Domain - Bacteria
Phylum - Proteo bacteria
Class - Gamma Proteobacteria
Order - Vibrionales
Family - Vibrionaceae
Genus - Vibrio

Vibrios are the diverged group of organism and mostly had the history of pandemics. They are inhabitants of natural aquatic ecosystem like ocean, River, wells and ponds. They are gram negative facultative anaerobes motile by using single polar flagella. Vibrios do not form spores and capsules. Most of the Vibrios are not fastidious and they tolerate high alkaline pH . Vibrios can do both Oxidative and fermentative utilization. They are distributed throughout the world with more occurrences in the tropical region. Vibrio occurrence in the temperate regions is more in hotter months. They have the peculiar ability to go to viable but non-culturable state in adverse environmental conditions. Vibrio can be classified in to cholera causing and noncholera vibrios. Cholera causing vibrios can produce the cholera-toxin and they are Vibrio cholera and Vibrio mimicus. The important non-cholera pathogenic vibrios are Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio harveyiand Vibrio alginolyticus.

Vibrios are zoonotic in nature and with the fish they can affect the higher vertebrates also. Aquaculture is the food production sectors from water. So any inhabitant in water can affect the production adversely.

The sudden onset of diseases, especially by Vibrio spp. is becoming a great concern in larval and juvenile penaeids, and fishes. Hence, the monitoring of aquaculture environments for pathogenic Vibrios is essential to control the spread of Vibrio infections. The members of the genus Vibrio are the most important food-borne and aquatic pathogens which are responsible for illness in humans and cause large-scale mortality in the aquaculture sector. Nowadays in the international trade of marine fishes, testing of Vibrio species has become a criterion of
microbiological testing. Even though Vibrio species are a common inhabitant of the aquatic environment, some species are emerging as pathogens which can cause up to more than 50% of deaths of all clinical cases. Major Vibrio sp. viz. V. harveyi, V. parahaemolyticus, V. alginolyticus, V. anguillarium, V. vulnificus, V. mimicus, and V. splendidus are usually associated with shrimp diseases. V. harveyi is associated with luminescent vibriosis in shrimps e.g., Litopenaeus vannamei and Penaeus monodon and it is the most important etiological agent for mass mortality in P. monodon. The mode of infection in fish mainly consists of penetration of bacterium to the host tissue mainly by the chemo tactic activity, followed by deployment of the iron sequestering system and eventually damages the fish through extracellular products i.e., hemolysin and protease. Gram negative, curved, comma shaped bacilli

Traditional method of detection of pathogenic Vibrio species

There are well-established isolation and biochemical confirmation procedures for pathogenic Vibriospp. Which were described in ISO and BAM protocol for Vibrios. First stage in traditional detection methods exploits the ability of Vibriospecies to grow rapidly at relatively high pH values. Media containing sodium chloride and with a pH of about 8.6 , such as alkaline saline peptone water (ASPW), are used for enrichment. Typically, a 6 -hour preliminary enrichment (at $41.5^{\circ} \mathrm{C}$ for fresh products, or $37^{\circ} \mathrm{C}$ for frozen or salted products) is followed by a second enrichment in ASPW at $41.5^{\circ} \mathrm{C}$ (for V. cholerae and V. parahaemolyticus) or $37^{\circ} \mathrm{C}$ (for other species) for 18 hours. Preliminary identification based on colony appearance on TCBS agar is traditionally confirmed using classical biochemical tests. The second enrichment culture is inoculated onto thiosulphate citrate bile salts sucrose (TCBS) agar and one other optional selective medium and incubated at $37^{\circ} \mathrm{C}$ for 24 hours. On TCBS agar, V. mimicus colonies are green, V. parahaemolyticus colonies appear blue-green and V. harveyi colonies are green in color. Selective chromogenic agar media specifically designed for the differentiation of pathogenic Vibrio species are also available.

Vibrio cholera as a human pathogen and aquatic pathogen

Cholera is a severe diarrheal disease that can lead to rapid dehydration and death if left untreated. It is primarily transmitted through the consumption of contaminated water or food, especially seafood from contaminated waters. Cholera outbreaks often occur in areas with poor sanitation and inadequate access to clean water.

The bacteria produce a toxin known as cholera toxin, which is responsible for the severe watery diarrhea characteristic of the disease. The toxin triggers the loss of fluids and electrolytes from the body, leading to dehydration. Vibrio cholerae is the organism responsible for the disease cholera, an acute illness. The diarrhea cause by cholera is specific with rice water stool. The body will become dehydrate and mortality can occur in hours. This can be cultured with alkaline peptone water enrichment and Thiosulphate citrate bile salt sucrose
agar streaking. After 24 h the TCBS will have yellow round flat colonies of 2-3 mm size. Vibrio cholerae has more than 200 serotypes with O antigens. Only serogroup 01 and 0139 are found to cause cholera epidemics. The 01 serogroup is divided into two biotypes, Classical and El tor, both of which can cause epidemics. The classical bio-types susceptible to Polymyxin, VP negative and do not produce hemolysin to lysed hepatocytes. Whereas, El-tor biotype insusceptible to Polymyxin, VP positive and produce hemolysin to lysed hematocytes. So far 6 pandemics are caused by Cholera bacteria classical biotype now the cholera occurrences are by $7^{\text {th }}$ pandemic are from Eltor biotype. But this is relatively less fatal and it will survive in human body for more days. Human cholera infection starts with ingestion of the cholera bacterium through food or water. It colonizes the small intestine and produce cholera-toxin in to the host cells. This cause rapid efflux of chloride ions and water to the intestinal lumen. This causes the diarrhea and dehydration.

Vibrio cholera is not causing any apparent cholera disease to fish and shrimp. According to Koch postulate it is not causing any disease. But it can be isolated from aquaculture environment and fish gut. Aquatic environment is the major reservoir of Vibrio cholerae before and after the outbreak. Recent evidences support the theory of the fish and water birds can be vectors of cholera outbreak. Most of the Vibrio cholera outbreaks are caused by under cooked fish consumption. The Eltor biotype infection in Bengal was brought by Hilsa which acted as a reservoir.

Vibrio parahaemolyticus as a human pathogen and aquatic pathogen

This species can cause gastroenteritis, often associated with consuming raw or under cooked seafood, particularly shellfish. Symptoms include watery diarrhea, abdominal cramps, nausea, vomiting, and fever. Infections are typically self-limiting and resolve within a few days in healthy individuals, but they can be more severe in people with compromised immune systems.

The first reported occurrence of Vibrio parahaemolyticus is in Japan in 1950, where the under-cooked bacteria affected 272 patients and killed more than 20 people. Until then the Vibrio parahaemolyticus was not much considered as a pathogen. Vibrio parahaemolyticus is a non-cholera Vibrio which cause gastro-enteritis. This is a halophilic Vibrio which can live in water of $0.5-8 \%$ salt. The infections are caused by consumption of under-cooked or raw shellfish. It can cause extra intestinal infections also. It can also cause infection to the cooked product from the uncooked product. The occurrence is there in almost all water bodies with necessary sodium requirement. The major virulence factors are hemolysin (TDH, TRH) and cytolysin. The TDH is the major toxin present in 95% of the Vibrio parahaemolyticus and it can be seen as hemolysin in wagatsuma agar. Thermolabile hemolysin also reported from Vibrio parahaemolyticus. This also causes similar result in heme supplemented blood agar. The toxins are having cardio-toxicity, cell toxicity and center toxicity. The toxins are releases as
monomers to extra-bacteria space and they become oligomer to make pore in the host cells. This can also spread through open wounds and cause septicemia. The toxin production is correlated with Urease production in the Vibrio parahaemolyticus. The disease propagation in cells needs ammonia which can be produced by the Urease positive Vibrio parahaemolyticus. More than 800 food-borne disease outbreaks were reported in china, 40% are from Vibrio parahaemolyticus alone.
The Vibrio parahaemolyticus is a deadly pathogen for shrimp which cause early mortality syndrome. It causes hepatopancreatic necrosis and sloughing of intestinal epithelium. The Vibrio parahaemolyticus infections have caused major losses in aquaculture industry.
Food poisoning due to Vibrio parahaemolyticus occurs in warmer months. It is associated with Fish, crab, shrimp, lobsters and oysters. If consumers eat the under cooked seafood contaminated with Vibrio parahaemolyticus the disease occurrence is confirmed. The feces of patients are contaminated with this bacteria and it mostly follow the fecal oral route. It causes fever, chills. Nausea and water like stools. The shock from the toxin sometime gives death.

Vibrio vulnificus as a human pathogen and aquatic pathogen

This bacterium can cause serious wound infections and bloodstream infections, especially in individuals with pre-existing health conditions or weakened immune systems. Wound infections can occur when open wounds are exposed to seawater or raw seafood from contaminated waters. Bloodstream infections can occur when the bacteria enter the bloodstream through a wound or by consuming contaminated seafood.

Vibrio vulnificus is a halophilic aquatic Vibrio which has relatively low occurrence compared to Vibrio cholerae and Vibrio parahaemolyticus. It can occur worldwide from temperature ranging from $9-35^{\circ} \mathrm{C}$ and salinities ranging from $0.5-35$. It cause diseases such as necrotizing fasciitis, Gastroenteritis and wound infections. This mostly infects person with underlying medical conditions such as liver diseases, immune- compromization and iron storage disorders. The bacteria posses cytolysin, hemolysin and specialized siderophores (Vulnibactin) as immune factors. This can produce amine putrescence and cadavarine from ornithine and Lysine. They can neutralize the gut acid and can cause gastro-enteritis. Vibrio vulnificus produces superoxide dismutase and nullify the peroxide present in the neutrophils. So the infection can also travel through the neutophils. The bacteria have 3 bio types. Biotype one is arginine negative, ornithine Indole and lysine positive. The biotype two is Indole and ornithine negative. The first biotype is known to cause disease to the human. And second biotype is known to cause fish diseases. Third biotype has the mixed characteristics and its geographical distribution restricted to Israel.
The contamination of Vibrio vulnificus will not cause any odour or appearance change. It is present in warm waters and can be accumulated in filter feeding bivalves. The fatality is very high compared to the bio-safety level 3 and 4 pathogens such as plague, anthrax and Ebola. In
immuno compromised persons the consumption can cause gastro-enteritis which if untreated can enter bloodstream and can be fatal. The wound infections could start after the handling of infected fish and seafood, especially shellfish and after the practice of aquatic activities such as swimming.More than 50% of primary septicaemia due to Vibrio vulnificus result in death within the first 72 h of hospitalization. If there is infection diagnosed due to Vibrio vulnificus, immediate and appropriate antibiotic treatment with surgical intervention if necessary.
The vulnificus is known to cause Gastroenteritis, primary sepsis, and wound infection. Rare cases of spontaneous bacterial peritonitis, Pneumonia, Endometritis, Meningitis, Septic arthritis, Osteomyelitis, Endophthalmitis, Keratitis to human beings.

An aquatic Vibrio Disease - Early mortality syndrome

The AHPND Acute Hepatopancreatic Necrosis Disease is caused by Vibrio parahaemolyticus, Vibrio punensis, V. harveyi, and shewanella sp with the disease causing plasmid pVA1. The plasmid code for the Pir toxin A and Pir toxin B (Photorhabdus /uminous insect related) this is one of the reason behind shrimp aquaculture collapsed in South-Asian countries. Develops quickly, starting approximately 8 days post stocking and severe mortality (up to 100%) occur within 20-30 days. The toxins can cause opaqueness, organ liquefaction and death.
Some examples of Vibrio species that can act as exclusive aquatic pathogens include:

Vibrio anguillarum:

This bacterium is a well-known pathogen in fish, particularly in marine and brackish water species like salmon, trout, and eels. It causes a condition known as vibriosis, characterized by symptoms such as skin lesions, hemorrhaging, and systemic infections. Vibriosis outbreaks can lead to high mortality rates among affected fish populations, causing economic losses in aquaculture operations.

Vibrio harveyi

Vibrio harveyi is associated with diseases in marine and freshwater animals, including fish, shrimp, and crustaceans. It can cause vibriosis like luminescent vibriosis in larval stages of shrimps. In hatcheries this is a big threat for the larval stages. This diseases leads to symptoms like lethargy, loss of appetite, and eventual death V. harveyi infections can spread rapidly within aquaculture facilities and have a negative impact on production.

Control method for zoonotic Vibrio diseases in aquatic food production sectors

* Water quality parameters should be maintained optimum
* Fish source should be disease free.
* Farm should have bio-security measures
* The disease farm water should be treated with bleaching powder before release
* The handlers should wear gloves while handling diseased fishes
* To reduce the risk of Vibrio infections, it's important to practice proper food safety and hygiene measures, especially when handling and consuming seafood.
* Thoroughly cooking seafood can help kill Vibrio bacteria. Avoid consuming raw or undercooked seafood, especially if you have underlying health conditions.
* If you have open wounds or cuts, avoid exposing them to seawater or brackish water, particularly in areas where Vibrio infections are more common.
* Access to clean and safe drinking water, proper sanitation, and good hygiene practices are crucial for preventing cholera and other waterborne diseases.

