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Predicting the potential 
geographical distribution of onion 
thrips, Thrips tabaci in India based 
on climate change projections 
using MaxEnt
V. Karuppaiah 1*, R. Maruthadurai 2*, Bappa Das 2, P. S. Soumia 1, Ankush S. Gadge 1, 
A. Thangasamy 1, S. V. Ramesh 3, Dhananjay V. Shirsat 1, Vijay Mahajan 1, Hare Krishna 4 & 
Major Singh 1

Onion thrips, Thrips tabaci Lindeman, an economically important onion pest in India, poses a 
severe threat to the domestic and export supply of onions. Therefore, it is important to study the 
distribution of this pest in order to assess the possible crop loss, which it may inflict if not managed 
in time. In this study, MaxEnt was used to analyze the potential distribution of T. tabaci in India and 
predict the changes in the suitable areas for onion thrips under two scenarios, SSP126 and SSP585. 
The area under the receiver operating characteristic curve values of 0.993 and 0.989 for training and 
testing demonstrated excellent model accuracy. The true skill statistic value of 0.944 and 0.921, and 
the continuous Boyce index of 0.964 and 0.889 for training and testing, also showed higher model 
accuracy. Annual Mean Temperature (bio1), Annual Precipitation (bio12) and Precipitation Seasonality 
(bio15) are the main variables that determined the potential distribution of T. tabaci, with the suitable 
range of 22–28 °C; 300–1000 mm and 70–160, respectively. T. tabaci is distributed mainly in India’s 
central and southern states, with 1.17 ×  106  km2, covering 36.4% of land area under the current 
scenario. Multimodal ensembles show that under a low emission scenario (SSP126), low, moderate 
and optimum suitable areas of T. tabaci is likely to increase, while highly suitable areas would decrease 
by 17.4% in 2050 20.9% in 2070. Whereas, under the high emission scenario (SSP585), the high 
suitability is likely to contract by 24.2% and 51.7% for 2050 and 2070, respectively. According to the 
prediction of the BCC-CSM2-MR, CanESM5, CNRM-CM6-1 and MIROC6 model, the highly suitable area 
for T. tabaci would likely contract under both SSP126 and SSP585. This study detailed the potential 
future habitable area for T. tabaci in India, which could help monitor and devise efficient management 
strategies for this destructive pest.

Climate change is the major threat to global food security, health, livelihoods, and  economy1,2. Climate change 
affects the insect species’ abundance, developmental cycle, voltinism, dispersal, migration, distribution pattern, 
pest invasion and outbreak, habitat suitability and host expansion, and adaptability to a broader range of bio-
geographic  conditions3–6. In the coming century, the earth may warm by 1.4–5.8 °C, according to global climate 
 models7. The increase in global average temperature and atmospheric  CO2, erratic rainfall patterns, prolonged 
droughts, floods, and an increased risk or incidence of pests and diseases all indicate climate change’s adverse 
impacts on  agriculture8,9.

Onion thrips, Thrips tabaci (Thysanoptera: Thripidae) is a belligerent pest of onion reported  globally10. Karl 
Eduard Lindeman, a Russian entomologist, initially identified the pest as T. tabaci11. Initially, the species was 
reported to be present in the eastern Mediterranean region later it gradually spread throughout the  world12. 
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Globally, annual crop loss due to onion thrips is estimated to be over 1 billion US$13. Thrips tabaci is regarded 
as a pest of national  significance14 in India and its feeding damage results in an annual yield loss of 10–15% in 
the onion  crop15. Thus, T. tabaci is one of the major threats to Indian onion industry, affecting the domestic 
supply and processing of the crop as well as denting the annual foreign exchange earnings estimated worth of 
377.8 million US$ in 2020–202116. The pest attacks onions irrespective of the growing seasons but the intensity 
of damage varies depending on the season, local climatic conditions, and hosts. Both the nymphs and adults 
suck the plant sap, causing small white blister in the early stage of the attack, which later turns into a larger 
batch of the silvery blister, causing a significant reduction in  photosynthesis17, leading to the undersized onion 
 bulbs18,19. Thrips tabaci, in addition to causing leaf damage, also serves as a vector of destructive Iris yellow spot 
virus disease in  onion20 and aggravates fungal diseases in  onion21,22. The polyphagous nature, high reproductive 
rate, short life-cycle, asexual mode of reproduction and off-season survival pose major challenges in managing 
T. tabaci menace in  onion23.

The occurrence, distribution, abundance, and developmental rate of onion thrips are all affected mainly by 
climatic variables, much like any other  insect24–27. Generally, thrips populations multiply in hot and dry weather, 
while heavy rains wipe the thrips off the  plants28. The water-deficit stress in plants affects plant nutrition and 
favors thrips  attack29. The extreme temperature could arrest the development of insects whereas cool weather 
with moderate temperature favours the population build-up26. Temperature affects larval development in thrips, 
as temperature between 15 and 25 °C has been found to be optimum for maximum (> 80%) hatchability, and 
adult longevity decreases with increasing temperature.

Considering the impact of environmental factors on species distribution, dispersion, and  abundance30, there 
is a concern that increasing temperature and  CO2 rise could alter the distribution pattern of T. tabaci among the 
onion-growing regions of India. The projected increase of air  temperature31–33 will accelerate T. tabaci devel-
opment cycle and prolong the period of favourable climate, which may result in multiple generations in a 
crop  season25,27. The changes observed in pest ecology are consistent with climate change predictions and their 
 impacts34. In this context, the prediction of habitat suitability of a pest under changing climate using niche models 
could help identify potential risk areas that will facilitate in framing appropriate pest mitigation strategies aimed 
at management and arresting their spread into hitherto unsuitable areas.

Using pest occurrence records and associated bioclimatic variables, ecological niche modelling (ENM) has 
been successfully harnessed to evaluate the potential distribution and spread of  pests35–37. A correlative species 
distribution model (SDM) called MaxEnt (maximum entropy modelling) has been extensively employed to assess 
the species distribution and suitable habitat for a multitude of cosmopolitan pests and invasive  species38–40. The 
present study aims to determine how climate change may impact the distribution of suitable habitats for onion 
thrips, to map the current distribution in India and quantify the changes in risk of the pest under projected cli-
mate scenarios. It will enumerate the large-scale drivers of T. tabaci distribution and assist in identifying future 
hotspots for targeted control. This study will help determine imminent hotspots for focused management by 
listing the major factors that influence the distribution of T. tabaci.

Materials and methods
Occurrence data of T. tabaci. The occurrence data of T. tabaci were obtained from pest survey conducted 
from 2017 to 2021 under All India Network Research Project on Onion and Garlic for potential occurrence 
points among the different states of India and from published  sources15,41–45. The species data were collected 
regardless of season and covered major onion-growing states of India. A total of 125 occurrence points rep-
resenting all major onion-growing regions of India were used for the modeling. The locations of occurrence 
records are shown in Fig. 6a (Refer Supplementary file 1).

Bioclimatic variables and analysis. Bioclimatic variables are biologically meaningful indicators that 
describe how climate affects ecosystems and services. They are derived from monthly temperature and rainfall 
values that then represent annual and seasonal climatic trends. Data with a spatial resolution of 2.5 arc-min 
(4.6 km resolution at the equator) and 19 bioclimatic variables retrieved from the WorldClim database (http:// 
www. world clim. org/) were utilized for the analysis (Supplementary table 2). Using the ‘ENMTools’ package in 
the R programming language, the cross-correlations among the bioclimatic variables were  evaluated46. Multi-
collinearity analysis was carried out among the predictor variables to exclude the causal variable and ensure that 
the model is statistically sound in its ability to explain variation in the response variable. The variables with cor-
relation coefficient (|r|≥ 0.8; very significant correlation), that are biologically important for T. tabaci distribution 
were  screened47. To determine the potential geographic distribution of T. tabaci, nine bioclimatic variables were 
selected such as the annual mean temperature (bio1), mean diurnal range (bio2), isothermality (bio3), tempera-
ture seasonality (bio4), annual precipitation (bio12), precipitation of the wettest month (bio13), precipitation 
of the driest month (bio14), precipitation seasonality (bio15), precipitation of the warmest quarter (bio18), and 
precipitation of the coldest quarter.

Data sets of bioclimatic factors for the current (1970–2000), 2050 (2041–2060), and 2070 (2061–2080) sce-
narios were used to determine the present and future potential distribution. New future trajectories based on 
socio-economic assumptions were built using Shared Socioeconomic Pathways (SSPs) reflecting various socio-
economic growth  levels48. Three types of SSPs are categorized: SSP126 for low-forcing scenarios, SSP245 for 
medium-forcing scenarios and SSP585 for high-forcing scenarios. To represent low and high emission scenarios, 
respectively, the SSP126 and SSP585 were used. In order to fit these two new scenarios, future climate data for 
the years 2050 and 2070 were downscaled from the BCC-CSM2-MR (Beijing Climate Center Climate System 
Model), CNRM-CM6-1 (Centre National de Recherches Meteorologiques, Centre Europeen de Recherche et de 
Formation Avancee en CalculScientifque), canESM5 (Canadian Earth System Model 5), and MIROC6 (Model 
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for Interdisciplinary Research on Climate) from the CMIP6 of the sixth assessment report (AR6) of the Inter-
governmental Panel on Climate Change (IPCC).

MaxEnt modeling. The distribution of T. tabaci was predicted using MaxEnt (maximum entropy species 
distribution modelling), version 3.4.0, which is accessible at http:// biodi versi tyinf ormat ics. amnh. org/ opens 
ource/ maxent/. The feature classes (FCs) and regularization multipliers (RMs) are parameters that impact the 
MaxEnt model’s complexity. The overfitting of the model is managed by the RMs. The original data set of envi-
ronmental variables are transformed into FCs, particularly linear (L), quadratic (Q), product (P), threshold 
(T), and hinge (H)49,50. In the current study, all possible combinations of FCs taking one, two, three, four and 
five features at a time with RMs varying between 0.5 and 5 with an interval of 0.5 were tested using “ENMEval” 
 package51 in R statistical software Version 4.2.052. Optimizing FC and RM was carried out using tenfold random 
cross-validation of the total occurrence dataset. Akaike’s Information Criterion with small sample size correc-
tion (AICc) was used for selection of optimum MaxEnt model parameters. The model parameter combination 
with the smallest AICc (delta.AICc = 0) was used for further analysis. The final settings for the MaxEnt model 
were as follows: maximum iterations = 5000, convergence threshold = 0.0001, maximum number of background 
points = 10,000, format of the model output = Cloglog, random test percentage = 25, regularization multiplier = 2, 
feature classes = linear, hinge and threshold features (LHT). The MaxEnt model is a popular method for forecast-
ing a species’ geographic distribution with presence-only data, and it still exhibits good performance with small 
sample  sizes53,54.

Model fitting and evaluation. Nine bio-climatic factors, which are significant distributional drivers, were 
utilized to run the model, and 125 sites with T. tabaci presence-only data were examined. Thrips tabaci occur-
rence data was randomly split into two quasi-independent  subsets55, each containing 75% and 25% of the data 
for the model’s training and testing, respectively. The average values of the area under the curve (AUC) represent 
the significance of the factors influencing T. tabaci. To quantify the errors and assess the consistency of the 
model, the model was also fitted on the data set using tenfold cross-validation56. To measure the model’s accu-
racy, the area under the receiver operating characteristic (ROC) curve was  selected57,58. The continuous Boyce 
index (CBI) and the true skill statistic (TSS) were also used for model evaluation. TSS was calculated using the 
maximum training sensitivity plus specificity Cloglog threshold.

The Jackknife test was performed to measure a variable with high importance in predicting the potential 
species distribution. To predict the suitability of future habitat of T. tabaci, the output of the MaxEnt model was 
further projected onto a spatial map for the chosen climate change scenarios (SSP126 and SSP585) downscaled 
from BCCCSM2-MR, CNRM-CM6-1, canCSM5, and MIROC6. ArcGIS 9.1 software was used for spatial map-
ping in order to create maps of suitability for both present and future climate change scenarios. The distribution 
of T. tabaci in the future was extrapolated from the base map of India. On the map, degrees of habitat suitability 
were classified into five classes based on ‘maximum training sensitivity plus specificity Cloglog threshold’ as the 
high habitat suitability area (0.778–1), the optimum habitat suitability (0.584–0.778), the medium habitat suit-
ability (0.389–0.584), the low habitat suitability (0.195–0.389), and the unsuitable habitat (0.0–0.195)5.

Results
Model performance and validation. The output matrices of feature class (FC) and regularization mul-
tiplier (RM) combinations are depicted in Fig.  1. The best FC combination had linear, hinge and threshold 
features (LHT) with RM of 1 (delta.AICc = 0, AICc = 2647.177, AUC.val.avg = 0.708, AUC.diff.av = 0.106, or.10P.
avg = 0.19) and was based on the delta.AICc. The MaxEnt model predicted that throughout the 10 cross-valida-
tion iterations, the average testing AUC and training AUC were 0.990 and 0.992, respectively, and the TSS and 
CBI for the test and training were 0.820 and 0.973, respectively (Table 1). The higher average training AUC and 
a test AUC value suggested high predictive accuracy of the MaxEnt model, which performs better than random 
models in predicting the potential distribution of T. tabaci. The relative contribution of each bioclimatic vari-
able in predicting potential species distribution shows that the Annual Mean Temperature (bio1; 33.3%) was the 
foremost important environmental variable in defining the insects’ potential distribution followed by Annual 
Precipitation (bio12; 19.6%) and Precipitation Seasonality (bio15; 15.4%) (Fig. 2). All these factors together con-
tributed 68.3% and found to be strongest predictors for T. tabaci distribution in India. The variables including 
Isothermality (bio3), Mean Diurnal Range (bio2), Precipitation of the Warmest Quarter (bio18), Temperature 
Seasonality (bio4), Precipitation of the Coldest Quarter (bio19), and Precipitation of the Driest Month (bio14), 
also contributed 12.5%, 6.9%, 5.1%, 4.0%, 3.0%, and 0.1%, respectively.

Jackknife test revealed that Annual Mean Temperature (bio1) followed by Temperature Seasonality (bio4) and 
Isothermality (bio3) as the most influencing predictors, with high regularized training gain (Fig. 3). The likeli-
hood of T. tabaci occurrence based on each factor’s response curve for the major bioclimatic parameters depicted 
in Fig. 4. The probability of T. tabaci occurrence increased with the rise in Annual Mean Temperature (bio1) from 
20.0 to 25.0 °C, and subsequently showed a decrease until 30 °C, before becoming steady between 30 and 40 °C. 
Likewise, the probability of species occurrence shows a negative correlation with increasing Annual Precipitation 
(bio12), where the species presence increased until 800 mm Annual Precipitation; after that, it showed a sharp 
downward. The curve of seasonal Precipitation revealed that the probability of occurrence increased from 50, 
was maximum at 80, then remained constant until 160, and after that exhibited a sharp decline.

Potential current geographical distribution of T. tabaci in India under CMIP6 projection. The 
potential geographical distribution of the onion thrips’ current habitat is shown in Fig. 6b. The MaxEnt predicted 
that 1.17 ×  106  km2 (36.4%) of India’s total land area is highly suitable for T. tabaci establishment (Table 2). The 

http://biodiversityinformatics.amnh.org/opensource/maxent/
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highly suitable habitable areas in central India include the states of Maharashtra, Karnataka, Madhya Pradesh, 
Gujarat, and parts of Rajasthan. In the North, the parts of Uttar Pradesh, Bihar, Jharkhand, Chhattisgarh, Delhi, 
Haryana, Punjab and Uttarakhand and parts of northeastern states. Karnataka, Andhra Pradesh, Telangana 
and Tamil Nadu are highly suitable areas in southern India. The area under optimum suitability category was 
7.44 ×  105  km2 which is 23.1% of total land area (Table 2). Approximately, 3.79 ×  105  km2 accounting for 11. 8% of 
land area calculated as moderately suitable and 1.95 ×  105  km2 (6.10%) as low suitable. Some areas that were low 
and moderately suitable at the current habitat were highly or optimally suitable for the future potential distribu-
tion of T. tabaci, specifically at higher latitudes.

Potential future geographical distribution of T. tabaci under CMPI6 projection. The MaxEnt 
prediction for the scenarios SSP126 and SSP585 for the 2050s and 2070s are depicted in Figs. 7a-d, and 8a–d. 

Figure 1.  The output of MaxEnt models optimization using different combinations of regularization multipliers 
and feature classes.

Table 1.  Evaluation statistics i.e., value for area under the curve (AUC), true skill statistic (TSS), continuous 
Boyce index (CBI) values of ten-fold cross-validation and random sampling using training and test dataset.

Replicates and data partitioning

Training Test

AUC TSS CBI AUC TSS CBI

Replication 1 0.992 0.954 0.987 0.993 0.797 0.959

Replication 2 0.992 0.943 0.982 0.993 0.962 0.961

Replication 3 0.992 0.958 0.979 0.994 0.894 0.982

Replication 4 0.993 0.944 0.954 0.989 0.963 0.444

Replication 5 0.992 0.946 0.986 0.992 0.818 0.894

Replication 6 0.992 0.959 0.960 0.992 0.969 0.873

Replication 7 0.993 0.958 0.958 0.981 0.968 0.887

Replication 8 0.992 0.959 0.976 0.990 0.887 0.654

Replication 9 0.992 0.957 0.965 0.994 0.967 0.708

Replication 10 0.993 0.953 0.980 0.976 0.963 0.842

Average 0.992 0.953 0.973 0.990 0.919 0.820

Random sampling (75:25) 0.993 0.944 0.964 0.989 0.921 0.889
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Figure 2.  Relative contribution of bioclimatic variable to MaxEnt model for T. tabaci.

Figure 3.  Relative importance of bioclimatic variables based on Jackknife test in MaxEnt. Horizontal bar shows 
the contribution of each variables to (a) Area under the (AUC) receiver operating characteristic curve (ROC) 
and (b) regularized test gain.
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Under SSP126, 77.3% (2.49 ×  106   km2) of India’s total area was predicted to be suitable habitat in 2050 and 
2070. The highly, optimum, moderately and low suitable habitable area under SSP126 (2050) was 1.00 ×  106  km2, 
7.71 ×  105  km2, 4.44 ×  105  km2 and 2.75 ×  105  km2, respectively (Table 2). The model showed that 29.1%, 14.5%, 
and 3.3% increase in low, moderate, and optimum suitable habitat areas (Fig.  5). Furthermore, a reduction 
of 17.4% areas among the regions which are highly suitable under the current situations was projected under 
SSP126 (2050).

The highly, optimum, moderately and low suitable areas for 2070 under SSP126 was 9.73 ×  105   km2, 
7.70 ×  105  km2, 4.78 ×  105  km2 and 2.74 ×  105  km2, respectively. The model projected a 28.2% increase in a low 
suitable area and a 0.4% decrease in unsuitable habitats for T. tabaci distribution compared to the current habitat 
under this scenario. Further, the increase of 20.3% and 3.3% in a moderately and optimum suitable area, respec-
tively, were found to occur under SSP126 (2070) (Fig. 5). About 20.9% reductions in the highly suitable area 
was projected under SSP126 (2070). These are predicted mainly in eastern Maharashtra, Chhattisgarh, Bihar, 
Jharkhand and Telangana states of India.

Under the scenarios SSP126 (2050) and SSP126 (2070), the model showed that certain areas that are pres-
ently low and moderately suitable for the habitat of T. tabaci might become highly suitable for future potential 

Figure 4.  Response curves of top three environmental variables determining the T. tabaci distribution (a) 
bio1, (b) bio12 and (c) bio15. The red lines represent the mean, while the blue borders represent the SD for 10 
replications.

Table 2.  Current and future potential habitat predicted for T. tabaci under low (SSP126) and high (SSP585) 
emissions scenario  (km2).

Suitability class Present SSP126 (2050) SSP126 (2070) SSP585 (2050) SSP585(2070)

Unsuitable (0.0–0.195 7.39 ×  105 7.40 ×  105 7.37 ×  105 7.38 ×  105 7.58 ×  105

Low (0.195–0.389) 1.95 ×  105 2.75 ×  105 2.74 ×  105 3.07 ×  105 3.67 ×  105

Moderately (0.389–0.584) 3.79 ×  105 4.44 ×  105 4.78 ×  105 4.85 ×  105 5.80 ×  105

Optimum (0.584–0.778) 7.44 ×  105 7.71 ×  105 7.70 ×  105 7.54 ×  105 7.54 ×  105

Highly (0.778–1) 1.17 ×  106 1.00 ×  106 9.73 ×  105 9.47 ×  105 7.73 ×  105
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distribution. Central and Southern states and some parts of northern India are classified as highly suitable for 
T. tabaci under the SSP126 scenario in 2050 and 2070.

The suitable area under SSP585 for 2050 and 2070 were 2.49 ×  106  km2 and 2.47 ×  106  km2, accounting 
for 77.3% and 76.8%, respectively, of the land area of India (Table 2). The highly, optimum, moderately and 
low suitable habitable area for T. tabaci distribution under SSP585 (2050) was 9.47 ×  105  km2, 7.54 ×  105  km2, 
4.85 ×  105  km2, and 3.07 ×  105  km2, respectively. About 7.38 ×  105  km2 area was projected as unsuitable under 
SSP585 (2050).

The model predicted an increase of low suitability (35.8%) under a high emission scenario, SSP585 (2050), 
compared to current conditions (Fig. 5). The moderate and optimum suitable area was found to increase by 
21.3% and 1.3%, respectively compared to the current condition. A 24.2% and 51.7% reduction in highly suitable 
habitats were projected under SSP585 (2050) and SSP585 (2070), respectively. The highly, optimum, moderately 
and low suitable area for 2070 under SSP585 was 7.73 ×  105  km2, 7.54 ×  105  km2, 5.80 ×  105  km2 and 3.67 ×  105  km2, 
respectively (Table 2). Likewise, the model projected a 46.5% increase in low-suitability habitat areas and a 2.6% 
increase in unsuitability areas under SSP585 (2070). Amongst habitat classes, the highly suitable habitat for T. 
tabaci is predicted to contract by 24.2% and 51.7% under SSP126 and SSP585, respectively (Fig. 5). These were 
mainly in Jharkhand, Bihar, Chhattisgarh, eastern Maharashtra and Telangana states of India. Overall, under 
SSP126 and SSP585, the bioclimatic suitability for T. tabaci is projected to turn down in India’s central and south-
ern states, which are currently highly suitable. Moreover, under both scenarios, high and optimum suitability 
habitat areas are predicted to increase in some of the northern states located at high latitudes.

The multi-model prediction of suitable area for T. tabaci according to BCC-CSM2-MR, CanESM5, CNRM-
CM6-1 and MIROC6 climate data under low SSP126 and high emission SSP585 scenarios were given in Sup-
plementary table 3. The analysis of the prediction of BCC-CSM2-MR under low emission (SSP126) and high 
emission (SSP585) showed that the maximum highly suitable area for T. tabaci attained under SSP585 (2050) 
than the SSP126. However, under SSP585 (2070), it tends to contract mainly in central India, and an increase of 
highly suitable areas is predicted mainly in Jharkhand and Bihar states of India. The optimum suitability found 
to decrease under SSP585 (2050), with a slight increase in 2070, mainly in western Maharashtra. Conversely, the 
prediction of the CanESM5 model under different SSPs revealed that the highly suitable area attained maximum 
under SSP126 (2070), and the minimum under SSP585, which was the same as the prediction of the BCC-CSM2-
MR model. In contrast, the optimum suitable area reached the maximum under SSP126 (2050).

Likewise, the prediction of CNRM-CM6-1 shows that the highly suitable area attained maximum under 
SSP126 (2050) and SSP585 (2050), whereas much loss of suitability area likely under SSP585 (2070). Similarly, 
in the prediction of MIROC6, the maximum highly suitable area was attained under low-forcing SSP126 (2050), 
with a marginal reduction in high-forcing SSP585 (2070). The decrease in high suitability is projected mainly in 
Maharashtra and Telangana states of India.

The prediction of all the four models revealed that under a high forcing scenario, the highly suitable habitat 
for T. tabaci tends to decrease marginally (Supplementary table 4). The prediction of the BCC-CSM2-MR model 
under a low-forcing scenario revealed that there would be a loss of 1.27 ×  105  km2 and 1.66 ×  105  km2 area under 
SSP126 (2050) and SSP126 (2070), respectively. Likewise 8.28 ×  104  km2 and 2.93 ×  105  km2 area loss predicted 
in highly suitable area under SSP585 (2050) and SSP585 (2070), respectively. The prediction of the CanESM5 
model revealed a maximum (5.43 ×  105  km2) area decrease in highly suitable areas under SSP585 (2070), with 
a minimal reduction under SSP126 (2070). Under both low and high-emission scenarios, the highly suitable 
area is predicted to be a contract, while the medium suitability area is predicted to increase. The prediction of 
the CNRM-CM6-1 model revealed that the maximum reduction of highly suitable area 3.89 ×  105  km2 attained 
under SSP585 (2070). In contrast, the optimum suitability habitat for T. tabaci is projected to increase under both 
low and high-forcing scenarios. The prediction of the MIROC6 model under SSP126 revealed 1.31 ×  105  km2 
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distribution.
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and 1.93 ×  105  km2 area would lost under SSP126 (2050) and SSP126 (2070), respectively. Likewise, a decrease 
of 2.44 ×  105  km2 and 3.77 ×  105  km2 of the highly suitable area was predicted under SSP585 (2050) and SSP585 
(2070), respectively. Moreover, the optimum suitability area would increase under low and high forcing scenarios.

Figure 6.  (a) Thrips tabaci occurrence points (b) Potential geographical distribution of T. tabaci in India under 
present conditions.
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Discussion
Climate modelling for habitat suitability has unequivocally proven that climate change will significantly impact 
crop pests’  distribution3–5. Despite the errors and uncertainties in the outputs of species distribution  modelling59, 
SDM is still considered an effective tool to predict future changes in the distribution of a  species54,60. Studies 
attributed that temperature and precipitation affects the species distribution, survival, and development of T. 
tabaci and other pest  species61–65. The current study estimated the potential geographic distribution of T. tabaci 

Figure 7.  Potential future geographical distribution of T. tabaci in India based on (a) BCC-CSM2-MR, (b) 
CanESM5, (c) CNRM-CM6-1, (d) MIROC6 models for SSP126 during 2050 and 2070.
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in India by analyzing the current CMIP6 data with greater prediction accuracy. T. tabaci has a wide distribution 
range in India, spread across central, southern, north and northeastern states. Based on a large scale climate 
data, current model projected its geographical distribution in India to 1.17 ×  106  km2 as the highly suitable 
habitat for the species under current climatic conditions, in which the center areas are in Maharashtra, Gujarat, 
Madhya Pradesh, the southern states of Andhra Pradesh, Telangana, the northern states of Uttar Pradesh, Bihar, 
Jharkhand, Chhattisgarh, Delhi, Haryana, Punjab and Uttarakhand, and northeastern states like Sikkim, Assam, 

Figure 8.  Potential future geographical distribution of T. tabaci in India based on (a) BCC-CSM2-MR, (b) 
CanESM5, (c) CNRM-CM6-1, (d) MIROC6 models for SSP585 during 2050 and 2070.
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Meghalaya and Tripura. This model exactly reflects the current distribution of T. tabaci in India and in agreement 
with the occurrence data. MaxEnt utilizes continuous and categorical data, incorporates interactions between 
different variables, and predicts and avoids commission  errors66,67.

Model results showed that Annual Mean Temperature (bio1) and two precipitation variables (bio12, bio15) 
were among the most important bioclimatic variables, which contributed 68.3% to the current distribution. Pre-
vious studies on growth and distribution of T. tabaci showed that temperature and precipitation are significant 
determinants for reproduction, development, migration and dispersal of this  species24,68. Further, temperature-
induced reproductive quiescence is also evident in adult  thrips63. Likewise, we found that bio1 (33.3%) and bio12 
(19.6%) were the most important factors for T. tabaci and with the suitable range of 22–28 °C and 300–1000 mm, 
respectively for its distribution. The changes in the precipitation pattern under climate change may directly or 
indirectly impact pest survival. The warming temperatures are attributed affecting the development rate, survival, 
metabolic rate, and number generation of  insects65. Moreover, smaller size insects like T. tabaci are further vulner-
able to heavy precipitation because it washes off them from its  hosts69. Hard precipitation reduces the thrips dam-
age on  plants56; detrimental to thrips  larvae31 and suppresses adult  dispersal70. Warm temperature affects insect 
population growth by reducing cold-related  mortality71 and shortening their generation times. A temperature of 
30 °C was optimum for T. tabaci growth and development and temperature rises from 25 to 35 °C shortens the 
development period, total life cycle and per cent survival rate of T. tabaci. Bergant et al. assessed the potential 
impact of climate change on the development dynamics of T. tabaci using Global Circulation Models (GCMs). 
They suggested that the expected temperature increase will lead to a larger number of degree days, resulting in 
increased generations and consequently more crop  damage27. Higher precipitation (11.2 mm) and daily mean 
temperature < 10 °C reduced the T. tabaci movement, and daily mean temperature beyond 14.4 °C favoured 
population build-up61. The aerial dispersal of adult T. tabaci increased when the temperature raised beyond 
17 °C, and 90% of the aerial dispersion was between 20.8 and 27.7 °C and no dispersal when the temperature was 
> 30.6 °C72. Studies also reported the prevalence of diverse response of T. tabaci to temperature  changes26,73. This 
suggests that survival and distribution of T. tabaci be directly affected mainly by temperature and precipitation.

MaxEnt predicted that under the current habitat, the high-suitability habitats identified overlap with India’s 
main onion-growing states where T. tabaci recorded at moderate to high  densities74. Therefore, MaxEnt was 
reliable in predicting T. tabaci distribution, and the current prediction aligns with the recent reports.

The model shows that, under future climatic change SSP126 (2050), SSP126 (2070) and SSP585 (2050) sce-
narios, the highly suitable areas are concentrated in Gujarat, southern Rajasthan, Maharashtra, Karnataka and 
Andhra Pradesh. Besides, some of the northern states including Uttar Pradesh, Punjab, Haryana, Uttarakhand, 
and Himachal Pradesh, are highly suitable in this scenario. However, under high emission scenario SSP585 
(2070), there was a reduction in highly suitable habitat areas compared to current SSP126 (2050), SSP126 (2070) 
and SSP585 (2050). Moreover, the model predicted an increase of optimum suitability areas in all these scenarios. 
The areas under moderate suitability in the current climatic condition are projected to optimum suitability in 
both high and low-emission scenarios. A mechanistic niche model (CLIMAX) by Park et al. for a thrips species 
Thrips plami in Korea stated that the geographical distribution of polyphagous T. palmi could be easily expanded 
to regions wherever the host  exists75. Maximum Temperature of the Coldest Month (bio6) and the Maximum 
Temperature of the Warmest Month were the highest contributing variables (82.5% to the model) determining 
the potential distribution of T. palmi in  Korea76. Therefore, winter temperature would be the most influencing 
factor that can increase the size of overwintering population during the crop growing season. The net reproduc-
tive rate of T. palmi reaches its maximum of around 25 °C, and the generation time is 25  days25. Application 
of MaxEnt by Shogren and Paine for predicting the invasive potential of another thrips species, Klambothrips 
myopori revealed that temperature seasonality was a major variable contributing (64.9%) to the  model77. MaxEnt 
projections recovered the invasive range in California, but the known native range of K. myopori in Australia 
could not recovered enough. Precipitation of the Wettest Month (bio16), Temperature Annual Range (bio7), 
Maximum Temperature of the Warmest Month (bio5), as well as Precipitation of Warmest Quarters (bio18), 
were the most significant predictors of legume flower thrips, Megalurothrips sjostedti habitat  distribution78. The 
success of species distribution depends on many factors, not only climatic. The factors such as land cover, land 
use, landscape structures and dispersal success need to be considered for prediction as they may seriously impact 
species  distribution76,79. The season and cropping system determine the population structure of T. tabaci and has 
been attributed to variations in colonization patterns in response to cropping systems or strong establishment 
of particular genotypes on particular  hosts80.

When the predictions of different models were compared under the scenarios SSP126 and SSP585, it was 
found that the amount of suitable habitable area gained and lost in each model under the same scenario varied. 
For example, the CanESM5 in the SSP585 model predicted that the area of the optimum suitable area of T. tabaci 
would decrease in the future, but the CNRM-CM6-1 predicted that it would gain. Moreover, in both scenarios, 
the prediction results of all four models consistently shift the highly suitable area, moderately suitable area, and 
low suitable area (gain or loss simultaneously). In the vast majority of cases, all four models revealed a unified 
trend in their predicting area suitable for T. tabaci in most cases. It illustrates that multi-model predictions could 
still help avoid uncertainty or display the phenomenon that is more likely to happen. While compared to the 
low-forcing scenario SSP126, the prediction of high-forcing scenario SSP585 lost the most highly suitable area. 
Conversely, the highly suitable region would degenerate, expanding the optimum and moderately suitable areas.

This is the first study in India that predicted the potential geographical distribution of T. tabaci under climate 
change scenarios using MaxEnt. The projection revealed that decrease in habitat suitability in the region, where 
the T. tabaci distributions were concentrated. Further, few pockets of higher latitudes are projected to be highly 
and optimistically suitable area under future climatic scenarios. The climate change related with latitudinal and 
altitudinal shift in species distribution, generally migrates to higher elevations and latitudes as climates warm. 
Our projection revealed that the suitability areas centered among major onion-growing central and southern 
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states of India remain as potentially habitable areas for T. tabaci distribution in the near future also. Further, con-
sistently, current analysis shows that under both the low (SSP126) and (SSP585) greenhouse emission scenarios 
the suitable habitat concentrates in higher latitudes states like Uttar Pradesh and Uttarakhand. Low-latitudes 
regions including central and southern regions, such as Maharashtra, Karnataka, Telangana and Andhra Pradesh 
states would see a decrease in distribution. While considering cultivation area  expansion81 to fulfill the domestic 
and export market, the potential future distribution, especially states having high habitat suitability for T. tabaci 
should frame sound management strategies to lower the pest pressure and prevent economic damage. The 
policies should ensure the appropriate monitoring and management strategy to limit pest outbreaks in these 
areas. Although the habitat predicted by the MaxEnt model in this study was remarkable, the limited number 
of occurrence coordinates, size of the study area, and choice of predictor variable all carry the risk of errors and 
ambiguity. MaxEnt is an ecological niche model that does not consider the influence of biotic factors, tri-trophic 
interaction (plant-pest predators and parasitoids), and management strategies that could significantly impact the 
species  distribution82. However, it may be assumed that model will also perform well in future climatic scenarios 
considering how well MaxEnt performed in the current habitat. For a deeper understanding of T. tabaci survival, 
studies on host phenology, off-season survival, and dispersal behavior are also essential.

Conclusions
The current study performed detailed analysis on the suitable habitat of T. tabaci in India under current and 
future climate change scenarios, SSP126 and SSP585, which can serve as an important step in developing strate-
gies and policies for effective management of T. tabaci in onion. MaxEnt projected that bio1, bio12, and bio15 
are the important bioclimatic variables, which greatly impacted the habitat suitability of T. tabaci, with the suit-
able range of 22–28 °C; 300–1000 mm and 70–160, respectively. This suggests that annual mean temperature 
(> 30.0 °C), annual mean rainfall (> 1000 mm) and precipitation seasonality (> 160) under climate warming would 
contract the species distribution in low-latitude regions, mainly central and southern states of India. Moreover, 
habitat suitability in few pockets of northern Indian states would concentrate further increase the optimum suit-
able habitat. The prediction of the BCC-CSM2-MR, CanESM5, CNRM-CM6-1 and MIROC6 model, suggests 
that the highly suitable area for T. tabaci would likely to contract under both SSP126 and SSP585. The findings 
of this study could aid researchers in better understanding the species distribution and a theoretical reference 
for the identification of potential areas for T. tabaci in India. This will help in devising effective pest management 
strategies under climate change in the future.
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On request, data can be obtained from the corresponding author.
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