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  HIGHLIGHTS
● Sustainable approach to minimize pesticide
usage and enhance crop productivity was
developed.

● Disease management in cauliflower achieved
by integrating spectral sensor, machine
learning, and targeted spraying.

● Support vector machine outperformed the
decision trees model in black rot detection in
cauliflower.

● Targeted spraying cut chemical use by 72.5%
and saved 21.0% time in black rot-infested
crops.
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  GRAPHICAL ABSTRACT
 

  ABSTRACT
This research explored a novel multimodal approach for disease management
in  cauliflower  crops.  With the rising  challenges  in  sustainable  agriculture,  the
research  focused  on  a  patch  spraying  method  to  control  disease  and  reduce
crop  losses  and  environmental  impact.  For  non-destructive  disease
assessment,  a  spectral  sensor  was  used  to  collect  spectral  information  from
diseased  and  healthy  cauliflower  parts.  The  spectral  data  sets  were  analyzed
using  decision  tree  and  support  vector  machine  (SVM)  algorithms  to  identify
the  most  accurate  model  for  distinguishing  diseased  and  healthy  plants.  The
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chosen  model  was  integrated  with  a  low-volume  sprayer  (50‒150  L·ha‒1),
equipped  with  an  electronic  control  unit  for  targeted  spraying  based  on
sensor-detected  regions.  The  decision  tree  model  achieved  89.9%  testing
accuracy,  while  the  SVM  model  achieved  96.7%  accuracy  using
hyperparameters:  cost  of  10.0  and  tolerance  of  0.001.  The  research
successfully  demonstrated  the  integration  of  spectral  sensors,  machine
learning,  and  targeted  spraying  technology  for  precise  input  application.
Additionally,  the  optimized  sprayer  achieved  a  72.5%  reduction  in  chemical
usage and a significant time-saving of  21.0% compared to a standard sprayer
for  black  rot-infested  crops.  These  findings  highlight  the  potential  efficiency
and  resource  conservation  benefits  of  innovative  sprayer  technology  in
precision agriculture and disease management.

© The Author(s) 2024. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

  

1    Introduction
 
Global  agriculture  is  currently  confronted  with  two  critical
challenges,  i.e.,  food  security  and  sustainable  agricultural
productivity. The effective management of diseases in crops is a
critical  aspect  of  sustaining  agricultural  practices,  as  diseases
can  cause  significant  yield  losses  and  impact  overall  crop
productivity.  Climate  change  and  biological  threats  have
influenced human-control environments[1] and are anticipated
to continue constraining the diversity and yield of farming and
forest  environments[2–7].  Agricultural  production  has  been
diminishing  throughout  the  world  due  to  attacks  of  pests  and
diseases  on  various  crops[8,9].  To  overcome  these  challenges,
large  amounts  of  pesticides  are  being  sprayed  on  crops
randomly  without  validating  whether  the  crop  is  affected  by
diseases  or  not.  While  pesticides  are  used  in  agriculture  to
protect  crops  from  pests  and  diseases  have  various  harmful
effects  on  the  environment,  human  health,  and  non-target
organisms.  Pesticide  residues  accumulating  in  the  food  chain
pose  health  risks  to  humans,  potentially  causing  long-term
issues  such  as  cancer  and  neurological  disorders.  To  mitigate
these harmful effects, there is an ongoing effort to develop and
promote sustainable and integrated pest management practices
that  minimize  reliance  on  chemical  pesticides  and  focus  on
environmentally-friendly alternatives.

Commonly,  disease  detection  in  crops  relies  on  visual
inspection, which can be subjective, time-consuming, and may
lead  to  delayed  or  inaccurate  diagnosis.  In  recent  years,  there
has been a growing interest in the development of sensor-based
disease  detection  systems  that  enable  targeted  pesticide
application  for  efficient  disease  management  in  low-volume
crops.  Sensor-based  disease  detection  systems  offer  the
potential  for  rapid,  objective,  and  non-destructive  assessment

of  crop  health.  Spectral  sensors,  in  particular,  have  gained
attention due to their ability to capture and analyze the spectral
signatures  of  plants,  providing  valuable  information  about
their  physiologic  condition[10].  Diseases  can  be  detected  from
the  leaf  canopy  of  crops  as  its  spectral  reflectivity  varies  with
the  progression  of  the  disease  which  can  further  be  used  to
target pesticide application based on variation in reflectivity.

Several studies have focused on spectral information for disease
detection  in  crops  and  made  useful  advances  in  disease
management  practices.  Many  studies  have  been  conducted  to
segment and detect diseases from plant leaves using machine or
deep  learning  models[11–15].  The  utilization  of  machine
learning  models  in  conjunction  with  spectral  data  has  shown
promising  results  in  disease  detection  and  classification.
Support vector machines (SVMs) and decision tree algorithms
have  been  widely  employed  as  effective  classifiers  in  various
agricultural  applications.  These models can learn from labeled
spectral data and make accurate predictions about the presence
or  absence  of  diseases  in  crops.  The  identification  of  diseased
foliage  through  sensor-based  technologies  and  machine
learning  models  offers  a  unique  opportunity  for  target  spray
application.  The  integration  of  sensor-based  disease  detection
with  precision  agriculture  technologies,  including  for  target
sprayer  application  is  a  promising  alternative  for  reduced
pesticide  usage  and  minimized  environmental  impacts[16–19].
This  seamless  integration  facilitates  precise  pesticide
application  exclusively  to  identified  target  areas,  thereby
minimizing  environmental  impact  and  optimizing  disease
control.

This  paper  describes  the  development  of  such  a  device  that
combines  spectral  sensors,  machine  learning  models,  and
targeted  spraying  to  detect  diseases  in  cauliflower  crops  and
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facilitate  precise  pesticide  application.  The  device  was
developed  with  a  spectral  sensor  AS7341  (ams  AG,
Premstaetten,  Austria)  to  collect  spectral  data  from  diseased
and healthy regions of cauliflower crops (Table 1). The AS7341
sensor  uses  I2C  serial  communication  protocol  for
communication.  Machine  learning  models,  such  as  SVM  and
decision tree algorithms, were trained and tested to determine
the  most  accurate  model  for  disease  detection.  The  selected
model  was  integrated  into  a  target  spraying  device,  to  actuate
the  relay  switch  based  on  disease  detection  by  the  sensor,
enabling precise pesticide application to the target areas.

The  development  of  a  sensor-based  device  that  combines
disease  detection,  machine  learning,  and  target  pesticide
application  holds  promise  for  enhancing  disease  control
efficacy,  reducing  pesticide  reliance,  mitigating  environmental
impacts, and ultimately improving overall crop productivity in
cauliflower  production.  Such  innovative  target  spray
applications  have  significant  implications  for  the  sustainable
management of diseases in low-volume vegetable crops.
 

2    Materials and methods
 
The  study  focused  on  the  detection  and  targeted  pesticide
application  for  black  rot  disease,  affecting  particularly
cauliflower  crops  and resulting in  substantial  yield  losses.  The
experimental  plot  (100  m2)  of  cauliflower  was  grow  on  the
research  field  of  the  Indian  Agricultural  Research  Institute
(IARI),  New  Delhi,  India.  The  cauliflower  crop  was  carefully
categorized  into  two  distinct  groups:  (1)  plants  intentionally
inoculated  with Xanthomonas  campestris pv. campestris,  the
causal agent of black rot disease, and (2) healthy plants.
 

2.1    Hardware configuration
The sensor used for the study (detailed in Table 1) was a multi-

spectral  sensor  for  color  detection  and  spectral  analysis
applications, covering wavelengths from about 350 to 1000 nm.
Before  use,  the  spectral  sensor  was  calibrated  by  dividing  the
raw data  counts  by  the  gain  value  and  integration  time  value.
Also, white reference was used every 30 min to compensate for
variations arising from light and temperature conditions. Eight
optical channels cover the visible spectrum, one channel can be
used  to  measure  near-infrared  light  and  one  channel  is  a
photodiode without a filter (clear). The device also integrates a
dedicated  channel  to  detect  50  or  60  Hz  ambient  light  flicker
(Fig. 1).

The  use  of  the  spectral  sensor  under  field  conditions
necessitated the development of a custom electronic circuit and
Arduino  code.  The  electronic  circuit  was  designed  within  the
Division  of  Agricultural  Engineering,  IARI,  New  Delhi,  India
to  support  the  use  of  the  spectral  sensor  under  diverse  field
conditions.  For  seamless  data  collection  on  the  spectral
reflectance  of  both  diseased  and  healthy  plants  across  various
growth stages, the sensor was integrated with a microcontroller
(Arduino  UNO,  Arduino,  Turin,  Piedmont,  Italy)  for  data
acquisition. Additionally, a dedicated workstation served as the
power  source  and  storage  unit,  ensuring  efficient  data
processing  and  storage  during  the  experimental  phases.  The
data  processing  including  removal  of  noise  from  spectral
information  in  each  channel  by  following  moving  average
filter.  The  averaged  spectral  data  was  used  for  training  of
classification machine learning models.
 

2.2    Collection of spectral reflectance data from
diseased and healthy regions of the crops
The cauliflower (Brassica oleracea var. botrytis)  grown for this
study  was  transplanted  into  a  research  plot.  To  foster  an
environment conducive to disease propagation, the plants were
adequately  irrigated  throughout  the  infection  period,  thereby

 

Table 1    Technical specifications of AS7341 spectral sensor

Specification Detail

Sensor type Multi spectral sensor

Measured spectral components (nm) 415, 445, 480, 515, 555, 590, 630, and 680, clear and near-infrared

Operating temperature (°C) −30 to 85

Supply voltage (V) 2.7Minimum, 3.3Typical, 5.5Maximum

I/O I2C

Dimension 32.4 mm × 32.3 mm

Manufacturer Ams OSRAM AG

Programming language used Arduino and Python
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maintaining high humidity  to  create  an environment favoring
disease development.

Xanthomonas  campestris pv. campestris accession  number
ITCC-BH-0001  (Delhi  isolate  C1)  was  inoculated  onto  the
cauliflower crop. This strain was sourced from the Bacteriology
Unit,  Division  of  Plant  Pathology,  ICAR-IARI.  To  obtain
sufficient  bacterial  inoculum,  the  bacteria  was  cultured  on
medium  glucose  yeast  extract  agar  at  25  °C  for  3  days.
Following successful bacterial  culture growth, it  was harvested
from the agar using a sterilized slide.  The harvested cells  were
suspended in 100 mL of sterilized distilled water by thoroughly
mixing  with  a  vortex  mixer  to  a  final  concentration  of  108−
109 CFU·mL‒1[20].

Plant  inoculation  to  induce  infection  was  conducted  30  days
after  transplanting  using  a  method  known  as  leaf  cut  and
dip[21]. This technique involved using a small scissor dipped in
the  bacterial  suspension  to  clip  the  secondary  veins  at  the
margins of the youngest leaves of the plants.  This process was
performed  at  10  points  on  each  leaf  and  repeated  on  three
plants.  Black  rot  disease  typically  causes  lesions  and  necrotic
areas  on  the  leaves  and  stems  of  cauliflower  plants.  The
diseased  tissue  usually  has  different  spectral  reflectance
properties  to  that  of  the  healthy  tissues.  Depending  on  the
severity of the disease, the reflectance properties of the affected
regions may change in various wavelengths.

Two  categories  of  leaves  were  obtained  from  this  process:
diseased and healthy. The primary objective of the study was to

compile  a  database  of  spectral  characteristics  of  both  diseased
(black rot) and healthy (control) regions in the selected crop to
identify the most effective spectral band for detecting diseased
tissue. The spectral characteristics of both diseased and healthy
tissue  of  the  crops  were  evaluated  in  various  bands
(wavelengths) using a spectral sensor.

The  spectral  data  was  taken from black  rot  disease-inoculated
plants  and  healthy  plants  at  3-day  intervals  after  symptoms
appeared.  The  spectral  sensor  was  held  at  an  optimum height
of  35  cm  from  the  plant  canopy  for  the  collection  of  spectral
reflectance  values.  The  data  from  the  spectral  sensor  was
directly  stored  in  spreadsheet  using  Tera  term  software[22].  A
total  of  6000  spectral  data  sets  (Fig. 2(a))  of  each  healthy
(Fig. 2(b))  and  diseased  (Fig. 2(c))  part  were  collected.  Each
experimental  run  was  repeated  three  times  to  minimize
experimental  error  and  to  increase  the  precision  of  spectral
data. Before use, the spectral sensor was calibrated by dividing
the  raw  data  counts  by  the  gain  value  and  integration  time
value. Due to the passive sensor type, the integration time was
adjusted  to  a  constant  speed  of  17  ms  per  scan.  The  true
spectral  data  was  obtained  by  determining  the  ratios  of  raw
data count to the gain value multiplied by integration time for
each  sample.  The  equation  used  to  calculate  the  true  spectral
data was:
 

Tsp =
Rsp

Gsp
×Ti (1)

where, Tsp represents the basic counts of true spectral data, Rsp

denotes the raw data counts, Gsp represents the gain value, and
Ti indicates the integration time.

 

 
Fig. 1    Schematic of the AS7341 11-channel spectral color sensor.
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The sensor results were dependent on the sensor arrangement
and  other  direct  effects,  including  series-related  disturbances
and deviations, as well as effects in the measuring process itself.
To  compensate  for  these  deviations,  a  correction  of  each
channel  with  a  correction  factor  per  filter  was  required.  The
selected  target  reflectance  values  were  measured  with  a
standard  spectroradiometer  (PS100,  Apogee  Instruments,
Logan, UT, USA) over 250−1000 nm (visible to near-infrared).
Software  was  available  for  AS7341 sensor  data  processing  and
compared  selected  target  reference  values  with  the  measured
sensor  value  for  all  channels  to  determine  deviations.  Also,  a
spectral on a plate as a white reference was used every 30 min
to  check  the  reflectance  of  the  target  and  compare  it  with
sensor  values.  This  was  done to  determine offset  values  if  any
arising  because  of  time  and  temperature  changes.  The  basic
counts  were  calculated  based  on  the  raw  measurement  values
and the corresponding gain and integration time at that time to
get sensor results were not dependent on parameter setup[23].
 

2.3    Analysis of spectral data for classification of
diseased and healthy regions using machine learning
techniques
The  spectral  data  were  analyzed  using  machine  learning
algorithms  (decision  tree  and  SVM)  to  determine  the  most
accurate  model  for  distinguishing  diseased  and  healthy
bands[24]. In the decision tree algorithm, a total of eight models

were  trained  by  varying  the  hyperparameters,  including  four
models with the Gini index criterion and four models with the
entropy  criterion.  Additionally,  different  tree  depths  were
explored, resulting in a range of models. For each model, 70%
of  the  data  set  was  used  for  training,  15%  for  testing  and  the
remaining  15%  was  used  for  validation.  The  hyperparameters
were  adjusted  using  the  validation  data  sets  to  enhance  the
ability  of  the  model  to  generalize  effectively  to  new  data.  The
accuracy of the trained models was assessed by comparing their
performance  on  both  the  training  and  testing  data  sets.  This
evaluation  provided  insights  into  how  well  each  model  could
distinguish  between  diseased  (black  rot)  and  healthy  crops
based on the sensor data.

Similarly,  the  SVM  algorithm  was  employed  to  train  and  test
the  collected  data.  The  SVM models  were  trained,  tested,  and
validated using 70%, 15%, and 15% of the data set, respectively.
A total of 12 SVM models with different hyperparameters were
trained  and  tested  for  the  sensor  data.  The  accuracy  of  each
model  was  determined  allowing  for  a  comprehensive
comparison of their performance.

In  total,  20  models  were  assessed,  comprising  eight  decision
tree  models  and  12  SVM  models.  These  models  can  learn
patterns  and  relationships  from  spectral  data,  enabling  the
classification of diseased and healthy crops with high accuracy.
When assessing the classification models, we use the Confusion
matrix,  a  valuable  tool  for  comparing  predicted  and  actual
values  for  each  class[25].  To  ensure  a  thorough  evaluation,  we
employed  a  variety  of  metrics,  including  accuracy,  precision,
recall, and F1 score. These equations offer a comprehensive set
of  metrics,  enabling  a  detailed  assessment  of  model
performance  across  different  dimensions[26].  Accuracy,
precision, recall, and F1 score were calculated as:
 

Accuracy =
TP+TN

TP+TN+FP+FN
(measuring overall correctness of predictions) (2)

 

Precision =
TP

TP+FP
(gauging accuracy of positive predictions)

(3)
 

Recall=
TP

TP+FN
(assessing ability to capture positive instances)

(4)
 

F1 score =
2×Precision×Recall

Precision+Recall
(considering both precision and recall) (5)

where, TP is the number of true positives, TN is the number of
true  negatives,  FP  is  the  number  of  false  positives,  and  FN  is
the number of false negatives.

 

 
Fig. 2    (a)  Spectral  reflectance  from  (b)  a  healthy  cauliflower
leaf and (c) a black rot diseased leaf.
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The  testing  accuracy  is  a  more  reliable  indicator  of  how  well
the  model  will  perform  in  real-world  scenarios,  as  it  assesses
the  ability  of  the  model  to  generalize  to  new  and  unseen
examples.  A  higher  testing  accuracy  indicates  better
generalization.  Thus,  the  model  with  the  highest  testing
accuracy  was  selected  and  further  used  in  the  targeted  spray
application,  allowing  for  precise  and  efficient  pesticide
application based on disease detection by the sensor.
 

2.4    Development of electronic control unit for
sensor-actuated targeted spray application
The  electronic  control  unit  for  sensor-actuated  spraying  was
developed for targeted spray application. This unit serves as the
central  functional  system within the targeted sprayer,  guiding,
the  decision-making  process  regarding  whether  to  initiate
spraying  based  on  the  detection  of  diseased  regions  by  the
sensor or not. The key components of the control unit include
a  microprocessor  (Raspberry  Pi  Zero,  Raspberry  Pi
Foundation,  Cambridge,  Cambridgeshire,  UK),  a  relay  switch,
a  buck  converter,  a  battery,  a  pump,  and  a  switch  (Fig. 3).
Upon activation, the sensor engages when subjected to the crop
canopy,  receiving  spectral  reflectance  data.  Subsequently,  the
microprocessor  processes  this  data  and  employs  a
preestablished  model  to  determine  the  presence  or  absence  of
disease  within  the  crop.  If  diseased  tissue  is  identified,  the
microprocessor  triggers  the  relay  switch,  activating  the  pump
and initiating spray application. Conversely, if a healthy region
is detected, the pump remains inactive and no spraying occurs.

This intelligent and sensor-triggered system ensures a targeted
and efficient application of pesticides.
 

2.5    Development of a targeted spraying device
Taking into consideration design complexity, cost-effectiveness
and  the  specific  target  application,  a  configuration  featuring
one sensor and one nozzle holding unit was designed utilizing
Catia  V5  software  (Dassault  Systèmes,  Vélizy-Villacoublay,
Île-de-France, France). The design was subsequently translated
into  a  physical  prototype  using  a  3D  printer  (Creality  model
10S,  Creality  (Shenzhen  Creality  3D  Technology  Co.,  Ltd.),
Shenzhen,  Guangdong,  China)  in  the  Division  of  Agricultural
Engineering.

The  concavity  in  sensor-nozzle  unit  was  designed  to  ensure
that the line of sensor detection intersects with the nozzle line
precisely  35  cm  from  the  sensor.  For  pesticide  application,  a
polypropylene  hollow  cone  nozzle  featuring  a  ceramic  orifice
insert was selected. It generates a finely atomized spray pattern
with droplet sizes between 145 and 225 mn. The discharge rate
of this nozzle ranges from 43.2 to 48.6 L·h−1, depending on the
pressure  applied,  which  fell  between  2  and  3  kg·cm−2.  This
design parameter  was  chosen to  enable  the  frequent  detection
of diseases within a targeted distance range of 25−45 cm from
the crop canopy. The specific geometry of the concavity is thus
optimized  to  enhance  the  efficiency  and  accuracy  of  disease
detection  within  the  specified  distance  range,  ensuring  the
sensor-nozzle  system  effectiveness  in  field  application.  The

 

 
Fig. 3    Electronic circuit diagram of the targeted spraying system.
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electronic control unit and the sensor-nozzle holding unit were
integrated with a low-volume sprayer (a knapsack sprayer) and
evaluated  under  field  conditions  (Fig. 4).  This  integration
represents  the  practical  application  of  the  developed
technology in an operational setting.
 

2.6    Working principle of targeted sprayer
Upon activation of the device, the sensor initiates its operation,
and  when  exposed  to  the  crop  canopy,  it  captures  spectral
reflectance data. Subsequently, this data are transmitted to the
microprocessor,  where  it  undergoes  processing.  Based  on  the
pre-fitted model, the microprocessor decides whether the tissue
(within the field of view) is diseased or not. If a diseased tissue
is  detected,  the  microprocessor  activates  the  pump,  thereby
initiating  spray  application.  Conversely,  if  a  healthy  region  is
identified, the pump remains inactive, and no spraying occurs.
The  operational  workflow  of  the  developed  targeted  spraying
system  is  shown  in Fig. 5.  This  diagram  illustrates  the
sequential  steps  and  decision-making  process  involved  in  the
functionality of the device during field operation.
 

2.7    Evaluation of developed low-volume targeted
sprayer under field conditions
Performance  evaluation  of  the  developed  system  was
conducted in a  cauliflower plot  infested with black rot  disease
at the Unit of Vegetable Research and Demonstration, IARI. A
designated  plot  of  100  m2 within  the  IARI  research  farm  was

used for this purpose and compared with the performance of a
standard  knapsack  spraying.  In  the  experimental  plots,  40
sample  locations  were  identified,  comprising  eight  (20%)
diseased and 32 (80%) healthy plants. The targeted sprayer was
systematically  operated  in  these  experimental  plots,  and  its
response,  indicated  by  the  ON/OFF  status,  was  closely
monitored  at  each  sample  location.  This  evaluation  aimed  to
assess the effectiveness of the the targeted sprayer compared to
a knapsack sprayer.

Performance  metrics  were  recorded  for  chemical  application
rate  and  spraying  time.  The  chemical  application  rate  was
determined by calculating the amount of chemicals consumed
per unit area covered. Initially, the sprayer tank was filled with
6  L  of  ManKocide  (Certis  USA  LLC,  Columbia,  Maryland,
USA) (mancozeb 15.0% and copper hydroxide 46.1%) solution.
This fungicide is commonly recommended for preventative use
against fungal and bacterial diseases, however, its application as
soon  as  disease  symptoms  are  noticed  helps  to  minimize
further  spread  of  the  disease  within  cauliflower  crops.  The
consumed chemical volume in the 100 m2 cauliflower crop area
was determined by assessing the difference in solution volume
before  and  after  application.  This  measurement  was  then
compared with a standard knapsack sprayer. Spraying time was
the  time  taken  to  cover  the  100  m2 plot  during  the  spraying
operation.  The  recorded  time  was  used  to  calculate  the
spraying capacity of the targeted sprayer which was compared
with  the  knapsack  sprayer  in  a  similar  manner.  These
comparative  analyses  provide  insights  into  the  efficiency  and

 

 
Fig. 4    Developed sensor-based targeted spraying system.
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practical  applicability  of  the  targeted sprayer  in  the  context  of
targeted chemical application and operational capacity.
 

3    Results
 
The  results  of  this  study  provided  useful  insights  into  the
performance and efficacy of the sensor-based disease detection
and  targeted  pesticide  application  device  developed  for  small-
area  crops  like  cauliflower  that  only  need  low  spray  volumes.
This section details the outcomes of the spectral data collection,
analysis of spectral reflectivity, training and testing of decision
tree  and  SVM  models,  and  the  ultimate  selection  of  the  most
accurate  model  for  disease  detection.  In  addition,  the  design
specifications  and  the  device’s  performance  under  field
conditions are thoroughly discussed.

The  spectral  reflectivity  data  revealed  a  consistent  pattern
where  the  spectral  reflectance  from  the  diseased  region
consistently lagged behind that of the healthy region across all
spectral  bands.  These  findings  reveal  distinctive  spectral
signatures  associated  with  diseased  and  healthy  regions,
forming the basis for subsequent model training and testing for
effective disease detection.
 

3.1    Accuracy of machine learning algorithm models
for identification of diseased and healthy regions in
cauliflower crops
The  model  configuration  using  the  Gini  index  to  a  depth  of

four was the most efficacious, achieving a peak testing accuracy
of  89.9%.  This  configuration,  integrated  with  spectral  sensor
data,  demonstrated  superior  performance  across  various
metrics, including validation accuracy and F1 score, as detailed
in Table 2.

The  analysis  of  the  confusion  matrix,  generated  from  the
application  of  the  decision  tree  model,  provided  details  of  the
classification  outcomes.  Of  the  total  1608  samples  evaluated,
the  model  accurately  identified  740  cases  as  diseased  and  715
cases as  healthy.  However,  some of  misclassification occurred,
with the model erroneously identifying 55 instances of healthy
tissue  as  diseased  and  98  instances  of  diseased  as  healthy
(Fig. 6).

For  comparative  purposes,  12  distinct  models  utilizing  SVM
algorithms  were  created  to  detect  and  separate  cauliflower
tissue  affected  by  black  rot  disease.  Among  these,  the  model
configured with hyperparameters, cost of 10.0, and tolerance of
0.001, had the highest testing accuracy of 96.7%. Additionally,
the associated F1 score and validation accuracy further endorse
the  superiority  of  this  particular  model  (Table 3).  The
confusion  matrix  (Fig. 7)  for  the  SVM  algorithm  indicates  its
classification  performance.  Of  the  1608  instances,  the  SVM
model correctly classified 98% of samples as diseased and 94%
of samples as healthy.

Consequently,  the  SVM  model  provided  the  superior
outperform in terms of testing accuracy for classifying diseased
and healthy regions accurately in cauliflower crops. Overall, the
decision  tree  model  gave  an  accuracy  of  89.9%  with  the
hyperparameter Gini index to a depth of four and the SVM an
accuracy  of  96.7%  with  the  hyperparameter  configuration  of
cost set to 10.0 and tolerance set to 0.001.
 

3.2    Design of targeted sprayer
The  specifications  and  operating  parameters  for  various
components  of  a  sensor-based  targeted  sprayer  were  finalized
based on a study of spectral characteristics of black rot disease-
infested cauliflower using a spectral sensor as shown in Table 4.
 

3.3    Performance of the targeted sprayer in a black
rot affected crop
The  operational  performance  of  the  targeted  sprayer  was
assessed in the field revealing promising outcomes. The sprayer
effectively  activated  and  applied  chemicals  to  6  of  8  diseased
reference  plants,  while  remaining  inactive  in  28  out  of  32
healthy  plants.  Thus,  within  a  total  sample  of  40  plants,  the

 

 
Fig. 5    Operational  workflow  of  developed  sensor-based
targeted spraying system.
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sprayer successfully treated 10 plants and remained inactive for
30  plants.  Specifically,  the  sprayer  demonstrated  the  ability  to
detect  75%  of  diseased  regions,  resulting  in  chemical
application, and accurately identified 87.5% of the healthy areas
where it remained inactive.

The  pesticide  solution  consumption  was  measured  at
110  L·ha‒1,  taking  into  account  a  crop  distribution  of  20%
diseased and 80% healthy. The spraying capacity of the sprayer

was determined to be 0.038 ha·h‒1.  Consequently, the targeted
sprayer gave a 72.5% reduction in chemical usage and required
21.0%  less  time  for  spraying  per  unit  area  compared  to  the
knapsack sprayer. These findings reveal the potential efficiency
gains and resource savings associated with the implementation
of the targeted spraying technology in the context of precision
agriculture and disease management.

The  results  of  the  field  experiments  indicated  the  potential
effectiveness  of  the  device  in  improving  disease  management
practices  and  enhancing  crop  productivity.  Data  analysis
showed a significant reduction in pesticide usage and increased
spraying  capacity  compared  to  the  most  commonly  practiced
method. Additionally, the device contributed to improved crop
health and yield, underscoring its potential to positively impact
agricultural sustainability.
 

4    Discussion
 
Targeted  sprayer  for  pesticide  application  in  vegetable  crops
has  potential  for  saving  chemicals  and  crop  protection.  The
sufficient information on spectral reflectance from the diseased
and healthy regions of crops, and their morphological changes
with  growth  stages  are  of  critical  importance  to  distinguish
them  and  in  turn  for  targeted  spray  applications.  Spectral
vegetation  indices  have  been  widely  used  to  detect  different
plant diseases[27]. In detecting black shank disease in flue-cured

 

Table 2    Accuracy in distinguishing diseased and healthy tissues in cauliflower crops using decision tree algorithm-based models

Models Hyperparameter Status Precision Recall F1 score Validation accuracy (%) Testing accuracy (%)

1 Gini Diseased 0.64 0.96 0.76 69.06 67.35

depth: 1 Healthy 0.89 0.40 0.55

2 Gini Diseased 0.82 0.92 0.87 85.45 81.93

depth: 2 Healthy 0.90 0.78 0.84

3 Gini Diseased 0.82 0.96 0.88 86.95 84.22

depth: 3 Healthy 0.94 0.77 0.85

4 Gini Diseased 0.91 0.95 0.93 92.14 89.88

depth: 4 Healthy 0.94 0.89 0.92

5 Entropy Diseased 0.64 0.97 0.77 69.56 67.35

depth: 1 Healthy 0.92 0.40 0.56

6 Entropy Diseased 0.82 0.93 0.87 85.45 81.93

depth: 2 Healthy 0.91 0.78 0.84

7 Entropy Diseased 0.82 0.96 0.88 86.62 82.91

depth: 3 Healthy 0.95 0.76 0.84

8 Entropy Diseased 0.89 0.91 0.90 89.13 84.76

depth: 4 Healthy 0.90 0.87 0.88

 

 

 
Fig. 6    Confusion  matrix  of  detecting  black  rot  disease
(cauliflower crop) for the decision tree model.
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tobacco,  the  most  significant  reflectance  differences  were
reported  in  the  visible  range  (550–675  nm),  where  diseased
tissue  reflectance  increased  with  symptom  expression,  and  in
the near infrared (700–1500 nm) healthy tissue, reflectance was
lower  than  that  of  diseased  tissues[28].  Plant  disease  detection
using  ML  has  gained  considerable  momentum[29].  Many
researchers have used various ML algorithms for the detection
of diseases in crops. The various models were generated using a
SVM  and  decision  tree  algorithm  for  characterizing  the
diseased  and  healthy  regions  of  crops  with  different
sensors[30,31].  A  SVM  algorithm  was  used  for  the  automatic
detection  and  classification  of  tomato  pests  based  on  the
histogram  of  oriented  gradient  and  the  local  binary  pattern
feature  extraction  techniques  that  resulted  in  an  improved
accuracy  of  97%  compared  to  some  counterparts[32].  The
sensor-based  targeted  sprayer  tested  in  the  present  study  was
able  to  detect  85%  of  diseased  regions  and  thus  accordingly
applied  chemicals  in  those  areas  and  detected  90%  of  healthy

 

Table 3    Accuracy of support vector machine algorithm-based models for classifying diseased and healthy tissues

Models Hyperparameter Status Precision Recall F1 score Validation accuracy (%) Testing accuracy (%)

1 C: 10.0 Diseased 0.94 0.99 0.96 95.98 96.62

tol: 0.01 Healthy 0.99 0.93 0.95

2 C: 10.0 Diseased 0.94 0.99 0.96 95.98 96.73

tol: 0.001 Healthy 0.99 0.93 0.95

3 C: 10.0 Diseased 0.94 0.99 0.96 95.98 96.73

tol: 0.0001 Healthy 0.99 0.93 0.95

4 C: 1.0 Diseased 0.85 0.89 0.87 86.78 85.31

tol: 0.01 Healthy 0.88 0.85 0.86

5 C: 1.0 Diseased 0.85 0.89 0.87 86.78 85.41

tol: 0.001 Healthy 0.88 0.85 0.86

6 C: 1.0 Diseased 0.85 0.89 0.87 86.78 85.41

tol: 0.0001 Healthy 0.88 0.85 0.86

7 C: 0.5 Diseased 0.84 0.83 0.84 83.94 83.89

tol: 0.01 Healthy 0.83 0.85 0.84

8 C: 0.5 Diseased 0.84 0.83 0.84 83.94 83.89

tol: 0.001 Healthy 0.83 0.85 0.84

9 C: 0.5 Diseased 0.84 0.83 0.84 83.94 83.89

tol: 0.0001 Healthy 0.83 0.85 0.84

10 C: 0.1 Diseased 0.72 0.93 0.81 78.59 80.19

tol: 0.01 Healthy 0.90 0.64 0.75

11 C: 0.1 Diseased 0.72 0.93 0.81 78.59 80.08

tol: 0.001 Healthy 0.90 0.64 0.75

12 C: 0.1 Diseased 0.72 0.93 0.81 78.59 80.08

tol: 0.0001 Healthy 0.90 0.64 0.75

 

 

 
Fig. 7    Confusion  matrix  of  detecting  black  rot  disease
(cauliflower crop) for the support vector machine model.
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regions  and  remained  off  in  that  area.  Overall  the  targeted
spraying  resulted  in  a  72.5%  saving  of  chemicals  in  black  rot
disease control  compared to a knapsack sprayer.  These results
were  consistent  with  the  findings  of  a  range  of  similar
research[33,34].  The  is  a  need  to  shift  agriculture  practices  to
greater  precision  to  protect  plants  as  well  as  biodiversity.  In
India,  as  is  many  developing  countries,  the  majority  of  the
farmers  are  small  landholders  who  mostly  use  a  low-volume
sprayer. Uneven application and pesticide wastage are common
with  their  use  of  the  standard  low-volume  sprayers.  The
findings of the present research contribute to the advancement
of agricultural engineering and precision agriculture, providing
valuable  insights  into  the  application  of  sensing  technologies
and  machine  learning  algorithms  for  disease  detection  and
targeted  pesticide  application.  The  successful  implementation
of the device in the field experiments confirms its  potential  to
revolutionize  disease  management  practices  in  low-volume
crops.  Further  research  and  development  can  focus  on
optimizing  device  performance,  exploring  additional  crop-
disease  combinations,  and  integrating  advanced  technologies
such  as  artificial  intelligence  and  robotics.  With  continued
advances,  sensor-based  disease  detection  and  target  pesticide
application  devices  have  the  potential  to  transform  disease
management  practices,  enhance  crop  productivity,  and
contribute to sustainable agriculture. 

5    Conclusions
 
The  proposed  multimodal  approach  demonstrates  significant
potential  for  enhancing  disease  control  efficacy,  reducing
pesticide  reliance,  mitigating  environmental  impacts  and
improving overall crop productivity in cauliflower production.
The  integration  of  spectral  sensors,  machine  learning  models
and targeted spraying technology represents an important step
toward  sustainable  disease  management  practices  in  low-
volume  vegetable  crops.  The  research  work  successfully
demonstrated  the  integration  of  spectral  sensor,  machine
learning,  and  targeted  spraying  technology  for  precise  input
application. The successful  development and evaluation of the
sensor-based disease detection and target pesticide application
device  open  up  opportunities  for  broader  applications  in
agriculture.  The  concept  of  multimodal  approach  can  be
extended  and  customized  for  different  crops  and  diseases,
providing  a  scalable  solution  for  disease  management  in
various  agricultural  settings.  Additionally,  the  integration  of
advanced  sensing  technologies,  machine  learning  algorithms,
and  precision  agriculture  techniques  highlights  the  potential
for further advances in the field of agricultural engineering.

In  conclusion,  the  research  presented  in  this  paper
demonstrates  the  successful  development  and  evaluation  of  a

 

Table 4    Specification of the developed targeted sprayer for cauliflower crop

S.No. Item Value

1 Dimensions of tank (L × B × H) 395 mm × 220 mm × 400 mm

2 Tank capacity 16 L

3 Material of tank Plastic

4 Pump

Type Diaphragm type

Flow rate 3.6 L·min‒1

5 Nozzles type Hollow cone nozzle

6 Dimension of sensor controlled discharge unit Diameter: 12.8 cm

Foci of sensor: 35

7 Number of nozzles 1

8 Microprocessor Raspberry Pi Zero 2 W

9 Type of sensor Spectral sensor

Number of channels: 11

Range: 350−1000 nm

10 Delivery and return hoses

Diameter 10 mm

Length 2000 mm

11 Programmed model switch Black rot disease
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sensor-based  disease  detection  and  targeted  pesticide
application  device  for  intensively-produced  crops  like
cauliflower.  The  results  indicate  the  high  accuracy  of  the
selected  model  in  disease  detection,  and  its  integration  with  a

targeted spraying device enables precise and efficient pesticide
application. The device offers a sustainable approach to disease
management,  reducing  pesticide  usage  and  improving  overall
crop productivity.
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