JVI Accepted Manuscript Posted Online 20 January 2016 J. Virol. doi:10.1128/JVI.03069-15 Copyright © 2016, American Society for Microbiology. All Rights Reserved.

1 2	For publication in Journal of Virology
3	Mutations in a highly conserved motif of nsp1β protein attenuate the innate immune
4	suppression function of porcine reproductive and respiratory syndrome virus (PRRSV)
5	
6 7 8 9	Yanhua Li ^{la} , Duan-Liang Shyu ^{2a} , Pengcheng Shang ¹ , Jianfa Bai ¹ , Kang Ouyang ² , Santosh Dhakal ² , Jagadish Hireamt ² , Basavaraj Binjawadagi ² , Gourapura J. Renukaradhya ² *, Ying Fang ¹ *
10 11	1. Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.
12 13	2. Food Animal Health Research Program (FAHRP), Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691.
14 15	
16 17	*To whom correspondence should be addressed. E-mail: <u>gourapura.1@osu.edu</u> ; <u>yfang@vet.k-</u> <u>state.edu</u> .
18	
19	^a Yanhua Li and Duan-Liang Shyu contribute equally to this work.
20 21	Tannua Er and Duan-Erang Snyu contribute equany to tins work.
22	Running title: PRRSV nsp1 β mutation and attenuation <i>in vivo</i>
23	
24	Abstract word count: 250
25	Main text word count: 9933
26	

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest

 \leq

28	PRRSV nonstructural protein 1β (nsp 1β) is a multifunctional viral protein, which involves in
29	suppressing innate immune response and activating a unique -2/-1 programmed ribosomal
30	frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-
31	directed mutagenesis analysis showed that R128A or R129A mutation introduced in a highly
32	conserved motif ($_{123}$ GKYLQRRLQ $_{131}$) reduced the ability of nsp1 β to suppress IFN- β activation
33	and also impaired $nsp1\beta$'s function as PRF transactivator. Three recombinant viruses, vR128A,
34	vR129A and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were
35	characterized. In comparison to the wild type (WT) virus, vR128A and vR129A showed slightly
36	reduced growth ability, while vRR129AA mutant had significantly reduced growth ability in
37	infected cells. Consistent with the attenuated growth phenotype in vitro, the pigs infected with
38	$nsp1\beta$ mutants had lower level of viremia than that of WT virus-infected pigs. Comparing to WT
39	virus in infected cells, all of the three mutated viruses stimulated higher level of IFN- α
40	expression and exhibited reduced ability in suppressing mRNA expression of selected ISGs. In
41	pigs infected with nsp1 β mutants, IFN- α production was increased in the lungs during early time
42	points of post-infection, which was correlated with an increased innate NK cell function.
43	Furthermore, augmented innate response was consistent with increased production of IFN- γ in
44	those mutated viruses-infected pigs. These data demonstrate that R128 and R129 residues are
45	critical for nsp1 β function, and modifying these key residues in the GKYLQRRLQ motif
46	attenuates virus growth ability and improve the innate and adaptive immune responses in
47	infected animals.

48

49

Journal of Virology

Accepted Manuscript Posted Online

50 IMPORTANCE

51	PRRSV infection induces poor anti-viral innate IFN and cytokine responses, which results in
52	weak adaptive immunity. One of the strategies in next generation vaccine construction is to
53	manipulate viral proteins/genetic elements involved in antagonizing host immune response. The
54	PRRSV nsp1 β was identified to be a strong innate immune antagonist. In this study, two basic
55	amino acids, R128 and R129, in a highly conserved GKYLQRRLQ motif were determined to be
56	critical for nsp1 β function. Mutations introduced into these two residues attenuated virus growth
57	and improved the innate and adaptive immune responses in infected animals. Technologies
58	developed in this study could be broadly applied to current commercial PRRSV MLV vaccines
59	and other candidate vaccines.

60

61

62 INTRODUCTION

63 Porcine reproductive and respiratory syndrome (PRRS), a disease described in the US in 1987 64 (1) and in Europe in 1990 (2), has caused tremendous economic losses to the swine industry since its appearance. Hallmark symptoms of PRRS are mild to severe respiratory disease in 65 infected newborn and growing pigs, and reproductive failure in pregnant sows. The etiologic 66 67 agent, PRRS virus (PRRSV), was first discovered in the Netherlands in 1991 (2). In the US, 68 PRRSV was first isolated and characterized in 1992 (3, 4). Generally, infection of pigs by most of the PRRSV strains dampens the host innate immune response (5, 6). This initial suppression 69 of host innate immune response, leading to the delayed induction of protective cellular and 70 humoral immunity (7, 8), which provides a window of time that allows PRRSV to replicate, shed 71 72 and transmit to other contact naïve animals. Therefore, strategies for vaccine development are directed at constructing a PRRS vaccine capable of inducing a high level of innate and adaptive 73 74 immune responses.

75 PRRSV is an enveloped, positive-stranded RNA virus, which belongs to the order Nidovirales, family Arteriviridae, including equine arteritis virus (EAV), mouse lactate dehydrogenase-76 elevating virus (LDV), simian hemorrhagic fever virus (SHFV) and several recently discovered 77 monkey arteriviruses that are only distantly related to SHFV (9). The PRRSV genome is about 78 79 15kb in length and contains at least eleven open reading frames. The 3' end of the genome 80 encodes four membrane-associated glycoproteins (GP2a, GP3, GP4 and GP5), three unglycosylated membrane proteins (E, ORF5a and M) and a nucleocapsid protein (N) (10-19). 81 The replicase-associated genes, ORF1a and ORF1b, situated at the 5' end, and represent nearly 82 75% of the viral genome. The ORF1a and ORF1b encode two large polyproteins, pp1a and 83 pp1ab, with expression of the latter depending on a -1 ribosomal frameshifting signal in the

Journal of Virology

84

85	ORF1a/ORF1b overlap region. Following their synthesis from the genomic mRNA template, the	
86	pp1a and pp1ab replicase polyproteins are processed into at least 14 nonstructural proteins (nsps)	
87	by a complex proteolytic cascade that is directed by four proteinase domains encoded in ORF1a,	
88	which include two papain-like proteinases (PLP1 α and PLP1 β) located in the nsp1 α and nsp1 β , a	
89	papain-like proteinase (PLP2) domain located at the N-terminal of nsp2, and a serine proteinase	
90	located in nsp4. The PLP α auto-cleaves between nsp1 $\alpha/1\beta$, PLP β auto-cleaves between nsp1 $\beta/2$,	
91	and PLP2 cleaves between nsp2/3, which mediate the rapid release of nsp1 α , nsp1 β and nsp2	
92	from the polyprotein (20). Recently, two novel PRRSV proteins, nsp2TF and nsp2N, were	
93	identified (21). The nsp2TF and nsp2N are expressed by a novel -2/-1 programmed ribosomal	
94	frameshifting (PRF) mechanism, which accesses the alternative ORF (TF) through a	
95	frameshifting site that overlaps the nsp2-encoding region. Both nsp2TF and nsp2N share the N-	
96	terminal 2/3 sequence with nsp2, which contains the PLP2 domain.	
97	Previous studies from our laboratory and others identified PRRSV $nsp1\beta$ to be a strong innate	
98	immune antagonist (22-24). PRRSV nsp1 β has strong inhibitory effects on type I IFN production	
99	and signaling pathways that lead to the expression of interferon stimulated genes (ISGs).	
100	Interestingly, this protein was recently identified to also function as a transactivator for the	
101	expression of -2/-1 PRF products, nsp2TF and nsp2N (25). Embedded in nsp1ß's papain-like	
102	autoproteinase domain (PLP1 β), a highly conserved GKYLQRRLQ motif was identified to be	
103	critical for -2/-1 PRF transactivation and innate immune suppression function of the virus (25,	
104	26). Based on the crystal structure analysis, three basic residues (K124, R128, and R129) in	
105	GKYLQRRLQ motif are exposed on the surface of the protein (25). In this study, we further	
106	investigated the function of the basic residues K124, R128, and R129 involved in modulation of	

107 host immune responses. Recombinant viruses carrying mutations in these basic residues were

108 created and characterized in cell culture systems as well as in a nursery piglet model.

109

110 MATERIALS AND METHODS

Cells and viruses. HEK-293T cells and MARC-145 cells were maintained in minimum essential 111 112 medium (Gibco) supplemented with 10% fetal bovine serum and antibiotic (Streptomycin, 100 µg/mL) at 37 °C with 5% CO₂. BHK-21 cells were cultured in minimum essential medium 113 supplemented with 5% fetal bovine serum and antibiotic (Streptomycin, 100 µg/mL). As 114 115 described previously, porcine alveolar macrophages were obtained from lung lavage of 6-week-116 old PRRSV naive piglets (27). The Sendai virus (SeV), Cantell strain, grown in embryonated 117 chicken eggs was used for stimulation of type 1 IFN response in cell culture system. The type 2 118 PRRSV isolate SD95-21 (GenBank accession: KC469618), and its nsp1β mutants were used for 119 subsequent experiments.

120 <u>Antibodies</u>. To detect the expression of nsp1 β and its mutants, mAb 123-128 (25) or the anti-FLAG M2 mAb (Sigma-Aldrich, St. Louis, MO) was used. The mAb 140-68 (25), specifically 121 recognizing the common N-terminal PLP2 domain of nsp2, nsp2TF and nsp2N, was used to 122 detect the expression of nsp2-related proteins. The rabbit pAb against nsp2TF (25) was utilized 123 to immunoprecipitate and detect nsp2TF. In addition, the anti- β -tubulin mAb (abm Inc., BC, 124 125 Canada) was used to detect the expression of housekeeping gene β -tubulin. Antibody mixture of 126 mAb M2 against FLAG and anti-β-tubulin was used for simultaneously detection the expression 127 of FLAG-tagged nsp1 β and β -tubulin in western blot, while antibody mixture of mAb 123-128 128 and anti- β -tubulin was used for simultaneously detection the expression of nsp1 β and β -tubulin 129 in western blot.

130	<u><i>Plasmids.</i></u> Using the nsp1 β expressing plasmid (p3xFLAG-NA-nsp1 β) that we generated			
131	previously (26), specific mutations, K124A, R128A, R129A, or RR129AA (double mutations of			
132	R128A and R129A) in the GKYLQRRLQ motif region (amino acids 123-131) of nsp1 β were			
133	introduced by site-directed mutagenesis using QuickChange TM site-directed mutagenesis kit			
134	(Agilent Technologies, Inc., Santa Clara, CA), following the manufacturer's instruction. A			
135	vaccinia/T7 polymerase system (pL-NA-nsp1β-2) expressing the nsp1β-nsp2 of SD95-21 virus			
136	was described previously (26). Specific mutations (K124A, R128A, R129A, or RR129AA) were			
137	introduced into the nsp1 β region of pL-NA-nsp1 β -2 using QuickChange TM site-directed			
138	mutagenesis kit. To generate full-length PRRSV cDNA clones containing these specific			
139	mutations (R128A, R129A, or RR129AA), a shuttle plasmid carrying the region between two			
140	unique restriction sites (Sph I and Sca I) of the full-length cDNA clone of PRRSV (pCMV-			
141	SD95-21) was constructed using Zero Blunt® PCR Cloning Kit (Invitrogen, Carlsbad, CA).			
142	QuickChange TM site-directed mutagenesis kit (Agilent Technologies, Inc., Santa Clara, CA) was			
143	employed to introduce the specific mutations into the shuttle plasmid. The region between SphI			
144	and Scal of pCMV-SD95-21 was replaced by the corresponding regions of the shuttle plasmids			
145	containing the specific mutations. The mutated full-length cDNA clones were designated as			
146	pCMV-SD95-21-R128A, pCMV-SD95-21-R129A, and pCMV-SD95-21-RR129AA. DNA			
147	sequencing was further performed to verify the introduced mutations. For in vitro luciferase			
148	reporter assay, two reporter plasmids, the p125-Luc and pISRE-Luc, were used as described			
149	previously (26).			
150	<u>Luciferase reporter assay.</u> HEK-293T cells were seeded at 0.5×10^5 cells/mL in 24-well plates			

one day before transfection. DNA transfection was conducted using FuGENE HD transfection 151 reagent (Promega, Madison, WI). Briefly, cells were co-transfected with 0.5 µg plasmid DNA 152

 $\overline{\leq}$

expressing WT nsp1 β (or its mutants) and 0.5 μ g luciferase reporter plasmid DNA of p125-Luc
or pISRE-Luc. At 24 h post-transfection, cells were mock treated or stimulated with the SeV
inoculated at 100 HA unit/ml/well for 16 h, or treatment with IFN- β at 2000 IU/ml/well for 16 h.
Cells were lysed and used for reporter gene assay using the dual luciferase reporter system
(Promega, Madison, WI) according to the manufacturer's instruction. Firefly luciferase activities
were measured with FLUOstar Omega (BMG LABTECH, Cary, NC).
<u><i>Vaccinia/T7 polymerase expression system</i></u> . The nsp1 β -nsp2 and its mutants were expressed
using a vaccinia/T7 polymerase system (28) as described previously (26). Briefly, HEK-293T
cells ($1x10^{6}$ /well) were seeded in 6-well plates one day before infection. Cells in each of the well
were infected with a vaccinia virus expressing T7 polymerase at a multiplicity of infection (MOI)
of 10. At 1 h post-infection, cells were transfected with $2\mu g$ DNA of pL-NA-nsp1 β -2 or its
mutants using FuGENE HD transfection reagent (Promega, Madison, WI). At 18 h post-
transfection, cell lysate from each well of 6-well plate was harvested and subjected to western
blot analysis using antibodies against nsp1β (mAb 123-128) and nsp2 (mAb 140-68). In addition,

cell lysate was used in immunoprecipitation to evaluate the expression of -2 PRF product with

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest

the antibody that specifically recognizes nsp2TF (pAb-TF).

Western Blot Analysis. Western blot analysis was performed to evaluate protein expression using the method described previously (20, 26). Briefly, cell lysates were prepared by harvesting virus-

infected or plasmid DNA-transfected cells with RIPA buffer. Cell lysate was mixed with equal

volume of Laemmli sample buffer and heated at 95 °C for 6 min. After being separated by

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins were

- transferred onto a nitrocellulose membrane. The membrane was blocked with 5% skim milk in
- PBST (PBS with 0.05% Tween 20) at 4 °C overnight, and then incubated with primary antibody

176	at appropriate dilution at room temperature for 1h. After 3 times wash with PBST, the secondary
177	antibody, IRDye® 800CW Goat anti-Mouse IgG (H + L) or/and IRDye® 680RD Goat anti-
178	Rabbit IgG (H + L) (LI-COR Biosciences, Lincoln, NE), was added and the membrane was
179	incubated for additional 1 h at room temperature. The target proteins were visualized and
180	quantified using a digital image system (Odyssey infrared imaging system; LI-COR Biosciences,
181	Lincoln, NE). For quantification of the target proteins, the expression levels were normalized to
182	the expression level of β -tubulin, which is a house keeping gene used as a loading control.
183	Recovery of recombinant viruses from infectious cDNA clones. The procedure for generating
184	recombinant viruses was described previously (26). BHK-21 cells with 70-80% confluency were
185	transfected with 2 μg of the type 2 PRRSV full-length cDNA clone of pCMV-SD95-21 or the
186	full-length cDNA clones containing $nsp1\beta$ mutations. Transfection was performed using
187	FuGENE HD reagent (Promega, Madison, WI). At 48 h post-transfection, cell culture
188	supernatant was harvested and passaged onto MARC-145 cells. After 48-60 h of incubation,
189	indirect immunofluorescence assay were performed to confirm the viability of recombinant
190	viruses using mAb SDOW17 (PRRSV N protein-specific monoclonal antibody, (29)). The
191	recombinant viruses were serially passaged on MARC-145 cells, and passage 3 and 4 viruses
192	were used for further analysis.
193	Sequencing of nsp1ß mutation regions. To determine the stability of each mutation, cell culture
194	supernatant from recombinant virus-infected cells or serum samples collected from
195	experimentally infected animals [14, 21 and 35 days post infection (DPI)] were used for viral
196	RNA extraction using the QIA amp viral RNA kit (QIAGEN). The nsp1 β coding region
197	containing the corresponding mutations was amplified by RT-PCR, and PCR products were
198	subjected to DNA sequencing at GENEWIZ, Inc. (South Plainfield, NJ).

 \sum

199	Virus growth kinetics and plaque assay. The passage 3 of WT and mutant viruses were used to
200	characterize viral growth properties in vitro. Confluent MARC-145 cells were inoculated with
201	WT virus or $nsp1\beta$ mutants at a MOI of 0.01. Cell culture supernatant was harvested at 12, 24,
202	36, 48, 60, 72 h post-infection. Virus titer was measured by micro-titration assay using MARC-
203	145 cells in 96-well plates and calculated as $TCID_{50}$ /ml according to the Reed and Muench
204	method (30). To determine the plaque morphology of WT virus and $nsp1\beta$ mutants, plaque assay
205	was conducted using MARC-145 cells as described previously (31).
206	Pig groups, sample collection and preparation. A total of 45 specific pathogen free (SPF) pigs
206 207	<u>Pig groups, sample collection and preparation.</u> A total of 45 specific pathogen free (SPF) pigs were obtained from the swine farm of The Ohio State University. Pigs were randomly divided
207	were obtained from the swine farm of The Ohio State University. Pigs were randomly divided
207 208	were obtained from the swine farm of The Ohio State University. Pigs were randomly divided into 5 groups (n=9; Table 1). Pigs were mock-infected (group 1), or infected with $4x10^6$ TCID ₅₀
207 208 209	were obtained from the swine farm of The Ohio State University. Pigs were randomly divided into 5 groups (n=9; Table 1). Pigs were mock-infected (group 1), or infected with $4x10^6$ TCID ₅₀ of WT PRRSV (group 2), vR128A mutant (group 3), vR129A mutant (group 4), vRR129AA

213 28, 35 DPI. Three pigs from each group were sequentially euthanized at 7, 21, and 35 DPI (Table

1). During necropsy, the lungs were evaluated for gross lesions using the method described 214

previously (32), and bronchoalveolar lavage fluid (BALF) and lung tissue samples were 215

216 collected as described previously (33). The pig experiment was performed according to the

217 protocol approved by the Institutional Animal Care and Use Committee (IACUC) of The Ohio

State University, Ohio. 218

Real-time RT-PCR quantification of viral load in infected animals. For the determination of viral 219 220 RNA load, serum, BALF and lung lysate samples were examined using a real-time quantitative RT-PCR. Briefly, viral genomic RNA was extracted using MagMAX[™]-96 viral RNA isolation 221

222	kit (life technologies) following the manufacturer's instruction. Viral RNA level was determined	
223	by a quantitative RT-PCR using iTaq [™] Universal SYBR® Green One-Step Kit (Bio-Rad,	
224	Hercules, CA), and the RNA copy numbers were calculated based on a RNA standard curve. A	
225	pair of primers, PRRS-qF1 (CCATTTCCTTGACACAGTCG) and PRRS21-qR2	
226	(GACCGCGTAGATGCTACTTAGG) located at viral genomic region (nt 14043-14130), was	
227	designed for the real-time RT-PCR. The RNA standard was prepared by in vitro transcription.	
228	Briefly, the viral genomic region (nt 13918-14246) was amplified by RT-PCR using primer pairs,	
229	T7-GP5F (TCTAGATAATACGACTCACTATAGGGAACTTGACGCTATGTGAGCTG,	
230	underline indicates T7 promoter) and GP5R (TAGAGTCTGCCCTTAGTGTCCA). PCR product	
231	was purified and subjected to in vitro transcription using MEGAscript® T7 Transcription Kit	
232	(Invitrogen, Carlsbad, CA). The purified RNA product was used as the quantification standard.	
233	Quantitative analysis of mRNA. Porcine alveolar macrophages were infected with WT virus or	
234	nsp1β mutants at a MOI of 1. At 12 h post-infection, PAMs were harvested with TRIzol LS	
235	(Ambion, Foster City, CA) and subjected to total RNA extraction according to the	
236	manufacturer's instruction. After removing contaminating genomic DNA with TURBO DNA-	
237	free™ Kit (Invitrogen, Carlsbad, CA), 1µg total RNA was used to synthesize first-strand cDNA	
238	using SuperScript® VILO [™] cDNA Synthesis Kit (Invitrogen, Carlsbad, CA). Subsequently,	
239	real-time PCR was performed to quantify the expression of mRNA of ISG15, IFIT1, IFITM1 and	
240	β-tubulin using predesigned primer/probe sets (Applied Biosystems, Foster City, CA), following	
241	the manufacturer's instruction. The amount of ISG15, IFIT1 and IFITM1 mRNA was normalized	
242	to the endogenous β -tubulin mRNA.	
243	Analysis of swine cytokine response. Porcine alveolar macrophages were infected with WT virus	
	<u>Analysis of swine cytokine response</u> . For the alveolar macrophages were infected with with virus	
244	or nen LK mutante at a MOU at L. At L'2 h negt intection, call culture supernetant was howested	

 \sum

for analyzing the IFN-α expression using ProcartaPlex Porcine IFN alpha Simplex kit
(eBioscience, San Diego, CA). In addition, Serum, BALF and lung lysate samples were used for
measuring the levels of secreted cytokines, IFN-α, IFN-γ, IL-6, and IL-10 by ELISA as described

248 previously (34).

249 *Pig NK cell cytotoxic assay.* To determine the pig NK cell-mediated cytotoxicity, the

250 immunofluorescence based assay was performed using a modified method described previously 251 (34-36). The assay was conducted using the 7-AAD/CFSE cell-mediated cytotoxicity assay kit 252 (Cayman Chemical, Ann Arbor, MI). Briefly, PBMCs isolated from pigs were used as the source 253 of NK cells (effectors) against K562 (human myeloblastoid cell line) target cells. The target cells 254 were labeled with CFSE according to the manufacturer's recommendation. Effector and target cells were incubated at different E:T ratios at 37° C overnight. The frequency of apoptotic CFSE-255 256 labeled K562 cells that were mediated by NK cells was measured by staining the co-cultured target cells with the 7-AAD nuclear dye. The specific NK cell-cytotoxicity was measured using 257 flow cytometry by acquiring 10,000 CFSE labeled events, and further gated for CFSE and 7ADD 258 (green and red) double staining cell frequency, which indicates the NK-lysed cell frequency. 259 260 Appropriate controls include K562 cells labeled or unlabeled with CFSE, and apoptosis induced 261 K562 cells (treated with UV at 254nm for 30 min and then incubated for 6-8 h at 37 °C). The 262 percentage of NK-specific lysis was calculated using the formulae: double positive K562 263 cells/CFSE positive cells multiplied by 100.

- 264 *Flow cytometry analysis.* Immunophenotyping of PBMCs was performed as previously
- described (33, 37). Briefly, PBMCs were first surface-labeled with pig lymphocyte specific
- 266 fluorochrome-conjugated mAbs (CD3ε-PerCP, CD4α-APC and CD8α-FITC). For intracellular
- 267 IFN-γ staining, GolgiPlug[™] (BD Biosciences, San Jose, CA, USA) and Brefeldin A (B7651,

268	Sigma-Aldrich, St. Louis, MO) were added during the last 12 h of incubation of PBMCs treated	
269	with or without the respective virus as a stimulant at a MOI of 1. The surface immunostained	
270	cells were fixed with 1% paraformaldehyde and permeabilized with a cell-permeabilization	
271	buffer (85.9% deionized water, 11% PBS without Ca ²⁺ or Mg ²⁺ , 3% formaldehyde solution, and	
272	0.1% saponin) overnight at 4°C. Cells were washed and stained with fluorochrome-conjugated	
273	anti-pig IFN- γ or its isotype control mAb (BD Biosciences, East Rutherford, NJ) in 0.1%	
274	saponin containing fluorescence-activated cell-sorting (FACS) buffer. Immunostained cells were	
275	acquired using the FACS Aria II (BD Biosciences, East Rutherford, NJ) flow cytometer and	
276	analyzed using FlowJo (Tree Star, Ashland, OR, USA) software. All specific cell population	
277	frequencies were presented as the percentage of lymphocytes in PBMCs.	

278 <u>Statistical analysis</u>. All the data were expressed as the mean of 3 to 9 pigs \pm standard error of the 279 mean (SEM). Statistical analyses were performed using one way analysis of variance (ANOVA) 280 followed by post-hoc Tukey's test using GraphPad InStat Prism (software version 5.0) to establish variations between indicated pig groups. Statistical significance was assessed at P<0.05 281 (*), P<0.01 (**), P<0.001 (***). 282

283

284 RESULTS

Identification of critical residues on GKYLQRRLQ motif for PRRSV nsp1β function 285

286 In our previous study (26), we identified a highly conserved GKYLQRRLQ motif in PRRSV

- 287 nsp1 β that is critical for the innate immune suppression function of this protein. Protein
- structural analysis showed that three basic residues (K124, R128, and R129) in GKYLQRRLQ 288
- 289 motif are exposed on the surface of nsp1 β (25). In this study, we further investigated the function
- 290 of these three basic residues. A panel of nsp1 β mutants was generated. Each of the nsp1 β genes

291	carries a single alanine substitution at amino acid K124 (K124A), R128 (R128A), R129 (R129A)
292	or double alanine substitutions at R128/R129 (RR129AA). A previously created mutant
293	$nsp1\beta KO$ (R124/R128 to A124/A128 double substitutions (26)) was also included in the
294	analysis. These nsp1β mutants were cloned into the plasmid vector, p3xFLAG-Myc-CMV TM -23,
295	in which the gene expression is under the control of CMV promoter and expressed as a 3xFLAG-
296	tagged protein. Initially, this panel of nsp1 β mutants was analyzed in an IFN- β promoter driven-
297	luciferase reporter assay. The HEK-293T cells were co-transfected with a plasmid expressing
298	wild type (WT) or mutated nsp1 β and a reporter plasmid (p125-Luc) that expresses firefly
299	luciferase reporter gene under the control of IFN- β promoter. The empty vector (EV), p3xFLAG-
300	Myc-CMV TM -23, was included in the analysis as a control. At 24 h post-transfection, cells were
301	mock-infected or infected with Sendai virus (SeV). Cells were harvested to test the luciferase
302	activities at 16 h post-infection (hpi). As shown in Figure 1A, SeV infection induced high level
303	of luciferase reporter expression in cells transfected with empty vector, but luciferase expression
304	was about 46 to 16-fold lower in cells expressing WT nsp1 β and K124A mutant. In contrast, in
305	comparison to that of WT nsp1 β , about 33-fold, 19-fold, 24 fold and 26-fold higher level of
306	reporter signal was detected in cells expressing R128A, R129A, RR129AA and 1 β KO mutants,
307	respectively. We further determined whether these mutations had effect on $nsp1\beta$'s ability to
308	suppress IFN-dependent signaling pathway for the interferon-stimulated genes (ISGs)
309	expression. The panel of $nsp1\beta$ mutants was analyzed using an ISRE promoter driven-luciferase
310	reporter assay. Similar result was generated as that obtained in Figure 1A, in comparison to that
311	of cells expressing WT nsp1 β about 38-fold, 46-fold, 75-fold and 71-fold higher level of reporter
312	signal was detected in cells expressing R128A, R129A, RR129AA and 1 β KO mutants,
313	respectively (Figure 1B). These results suggest that R128 and R129 are critical to IFN antagonist

 \leq

314 function of nsp1 β . In contrast, K124 appeared to be not significantly affecting the IFN antagonist 315 function of $nsp1\beta$.

316

The expression level of nsp1 β was evaluated by western blot analysis using mAb M2 against 317 318 FLAG-tag. The result confirmed the expression of nsp1 β in WT and mutants-transfected cells 319 used in luciferase assays (Figure 1C). In our previous study, we showed that double mutations of 320 K124/R128 to A124/A128 caused increased amount of nsp1 β expression in comparison to that of 321 WT nsp1 β and other mutants, which suggested that nsp1 β may suppress its "self-expression" 322 (26). In this study, individual substitutions introduced in K124, R128 and R129 showed that only R128A substitution affects the ability of nsp1 β to suppress "self-expression" in vitro. The 323 324 detailed mechanism for $nsp1\beta$'s ability to suppress "self-expression" and whether such property 325 relates to innate immune suppression function of the virus needs to be further studied (see more 326 details in Discussion section).

327

328 We further determined whether mutations introduced in GKYLQRRLQ motif also affect the 329 transactivator function of $nsp1\beta$. A vaccinia/T7 polymerase system expressing $nsp1\beta$ -2 region was used to analyze the expression of nsp2 and PRF products. The expression of -2 PRF product 330 331 (nsp2TF) was determined by immunoprecipitation (IP) and Western blot (WB). Equal amount of lysates of transfected cells expressing WT nsp1 β -2 or its mutants (K124A, R128A, R129A, 332 16KO, and RR129AA) were subjected to immunoprecipitation using the polyclonal Ab (pAb-333 334 TF) that specifically recognizes the C-terminal peptide of nsp2TF. Subsequently, western blot analysis was performed using pAb-TF and mAb140-68 that recognizes the N-terminal PLP2 335 336 domain of the protein. As shown in Figure 2A, the nsp2TF product only detected in cells

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest

Journal of Virology

scri	337	expressing nsp1β-2 WT or K124A mutant, but not detected in cells expressing R128A, R129A,
Accepted Manuscri	338	RR129AA mutants. In contrast, the expression of full-length nsp2 and nsp1 β was detected in WT
M	339	and all mutants of nsp1 β -2 (Figure 2B). The result indicates that residue R128 and R129 are
oted	340	critical for the transactivator function of nsp1 β in activating -2 PRF. K124 did not show
cep	341	significant effect on the nsp1 β function in PRF transactivation.
Å	342	
	343	In vitro characterization of recombinant viruses containing mutations in GKYLQRRLQ
	344	motif
	345	To further investigate whether the specific substitutions introduced into the $nsp1\beta$
	346	GKYLQRRLQ motif of the virus could improve innate immune responses in PRRSV-infected
ž	347	cells, we created a panel of recombinant viruses using reverse genetics. Three viable
Virolog	348	recombinant viruses were generated, including vSD95-21-R128A (vR128A), vSD95-21-R129A
Journal of Virology	349	(vR129A) and vSD95-21-R128A/R129A (vRR129AA), carrying single or double mutations at
Journ	350	the residue R128 and R129 of the GKYLQRRLQ motif. As a comparison, recombinant viruses
	351	with the mutation at K124 (vSD95-21-K124A; vK124A), the double mutations at K124/R128
	352	(vSD95-21-K124A/R128A; v1 β KO), and the WT virus, vSD95-21 were also recovered from
	353	reverse genetics. Stability of those mutations introduced into the virus was determined by serially
	354	passaging each virus 5 times in MARC-145 cells, and sequence analysis of passage 3 and
	355	passage 5 viruses showed that all of the introduced mutations were stably maintained in the

mutant viruses. The growth property of these mutants (passage 3) was compared with the WT 356

parental virus. In comparison to WT virus (peak viral titer of 10^{7.33} TCID₅₀/ml), vK124A showed 357

similar growth ability, while vR128A and vR129A showed certain levels of reduced growth 358

ability (peak viral titers of 10^{7.0} TCID₅₀/ml and 10^{6.58} TCID₅₀/ml, respectively). In contrast, 359

360

361	decrease in viral titer through the time course of study (Figure 3A). Plaque assay result
362	consistently showed that v1 β KO and vRR129AA developed smaller plaques than that of WT
363	virus (Figure 3B).
364	
365	Expression of innate immune genes in nsp1β mutant virus-infected cells
366	As we determined that R128A and/or R129A mutations introduced in GKYLQRRLQ motif
367	reduced the $nsp1\beta$'s ability to suppress innate immune response (Figure 1), we further analyzed
368	whether these mutations could alter the inhibitory effect of PRRSV on type I IFN production and
369	signaling. Since K124A did not show much effect on the function of $nsp1\beta$ in PRF
370	transactivation and innate immune suppression, recombinant viruses containing K124A
371	substitution (vK124A and v1 β KO) were not further analyzed in the following experiments (see
372	Discussion section for more description about the characteristics of v1 β KO). Initially, IFN- α
373	expression was evaluated in $nsp1\beta$ mutants or WT virus-infected porcine alveolar macrophages
374	(PAMs) using ProcartaPlex Porcine IFN alpha Simplex kit (eBioscience, San Diego, CA). PAMs
375	were initially infected with equal amount (MOI=1) of WT or an nsp1 β mutant. At 12 h post-
376	infection, IFN- α concentration in the cell culture supernatant of virus-infected porcine alveolar
377	macrophages (PAM) was evaluated. All of the nsp1 β mutants showed improved ability to induce
378	the production of IFN- α , which is indicated by 3.3-fold (vR128A), 6.1-fold (vR129A), and 50-
379	fold (vRR129AA) higher concentration of IFN- α in the supernatant of mutant viruses infected
380	cells than that of WT virus infected cells (Figure 4A). Of note, vRR129AA showed the strongest
381	stimulation of IFN- α production. In addition, the expression of nsp1 β was detected by western
382	blot, indicating successful viral replication in PAM of WT virus and nsp1β mutants (Figure 4E).

vRR129AA and v1 β KO mutants had significantly reduced growth ability with about 1~1.5 logs

 \sum

÷		
Accepted Manuscript H	383	Subsequently, we analyzed whether these mutations could alter the inhibitory effect of PRRSV
nuc	384	on the production of ISGs. At 12 h post-infection, the mRNA expression level of three selected
Ĕ	385	ISGs, ISG15, IFIT1 and IFITM1, was assessed via quantitative real-time PCR using predesigned
oted	386	primers/probe sets (Applied Biosystems, Foster city, CA). Consistent with their improved ability
Sce	387	for IFN- α induction, all of the nsp1 β mutants stimulated higher mRNA expression level of ISGs.
Ă	388	As indicated in Figure 4B, in comparison with that of WT virus infected cells, about 4.1-fold
	389	(vR128A), 7.8-fold (vR129A) and 20-fold (vRR129AA) higher mRNA expression of ISG15 was
	390	detected in mutant viruses infected cells, although the increase in vR128A and vR129A infected

cells is not statistically significant. Similarly, the mRNA expression levels of IFIT1 and IFITM1 391 392 were increased in mutant viruses infected cells in comparison to that in WT virus infected cells 393 (Figure 4C and 4D).

394

In vivo characterization of nsp1ß mutants 395

396 Subsequently, we obtained five groups of 4-week-old pigs to determine whether the R128 and 397 R129-related mutants could improve specific immune responses in PRRSV-infected pigs. As 398 shown in Table 1, each group of pigs (n=9) was infected with the WT virus, an nsp1 β mutant, or 399 mock-infected with cell culture medium as negative control. The serum, BALF, and lung lysate 400 samples were collected and stored at -80 °C for further analysis. We did not observe any noticeable clinical PRRS symptoms and fever in any of the WT virus or nsp1ß mutant-infected 401 402 pigs.

403

Viral load in serum and tissue samples. Initially, we measured viral RNA load in serum samples 404 using real-time quantitative RT-PCR (qRT-PCR). In comparison with the group of pigs infected 405

with WT virus, pigs infected with vR128A and vRR129AA mutants showed consistently lower viral RNA load through the entire time course of the experiment, while pigs infected with vR129A mutant exhibited lower viral RNA load from 1 DPI to14 DPI (Figure 5A). In pigs infected with the vR128A mutant, statistically significant lower level of viral RNA load was obtained at 1, 2, 5, and 14 DPI, in comparison to that in pigs infected with WT virus (Figure 5A). At most of the time-points, especially at the later stage of the infection, the mean viral RNA load in pigs infected with vRR129AA mutant was the lowest among all the infected pigs (Figure 5A). Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with hsp1β mutants were about 1–3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR129A was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (
408vR129A mutant exhibited lower viral RNA load from 1 DPI to 14 DPI (Figure 5A). In pigs409infected with the vR128A mutant, statistically significant lower level of viral RNA load was410obtained at 1, 2, 5, and 14 DPI, in comparison to that in pigs infected with WT virus (Figure 5A).411At most of the time-points, especially at the later stage of the infection, the mean viral RNA load412in pigs infected with vRR129AA mutant was the lowest among all the infected pigs (Figure 5A).413Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the414group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically415significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI.416Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further417quantified infectious virus particles in serum samples. Infectious virus titer was measured418through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in420groups of pigs infected with nsp1β mutants were about 1~3 log lower (statistically significant)421loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with422nsp1β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay423through the time course of infection. The rebounded viral titer was observed in vR129A mutant-424infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by425qRT-PCR. These results indicate t	406	with WT virus, pigs infected with vR128A and vRR129AA mutants showed consistently lower
infected with the vR128A mutant, statistically significant lower level of viral RNA load was obtained at 1, 2, 5, and 14 DPI, in comparison to that in pigs infected with WT virus (Figure 5A). At most of the time-points, especially at the later stage of the infection, the mean viral RNA load in pigs infected with vRR129AA mutant was the lowest among all the infected pigs (Figure 5A). Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	407	viral RNA load through the entire time course of the experiment, while pigs infected with
obtained at 1, 2, 5, and 14 DPI, in comparison to that in pigs infected with WT virus (Figure 5A). At most of the time-points, especially at the later stage of the infection, the mean viral RNA load in pigs infected with vRR129AA mutant was the lowest among all the infected pigs (Figure 5A). Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	408	vR129A mutant exhibited lower viral RNA load from 1 DPI to14 DPI (Figure 5A). In pigs
At most of the time-points, especially at the later stage of the infection, the mean viral RNA load in pigs infected with vRR129AA mutant was the lowest among all the infected pigs (Figure 5A). Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with msp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	409	infected with the vR128A mutant, statistically significant lower level of viral RNA load was
in pigs infected with vRR129AA mutant was the lowest among all the infected pigs (Figure 5A). Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /mI) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	410	obtained at 1, 2, 5, and 14 DPI, in comparison to that in pigs infected with WT virus (Figure 5A).
Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection to WT phenotype at certain level during the later stage of infection (see sequencing	411	At most of the time-points, especially at the later stage of the infection, the mean viral RNA load
414 group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically 415 significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. 416 Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further 417 quantified infectious virus particles in serum samples. Infectious virus titer was measured 418 through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in 419 groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) 420 than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral 421 loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with 422 nsp1 β mutants was lower than the detection limit ($10^{1.67}$ TCID ₅₀ /ml) of the micro-titration assay 423 through the time course of infection. The rebounded viral titer was observed in vR129A mutant- 424 infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by 425 qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was 426 attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection 427 but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	412	in pigs infected with vRR129AA mutant was the lowest among all the infected pigs (Figure 5A).
415 significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI. 416 Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further 417 quantified infectious virus particles in serum samples. Infectious virus titer was measured 418 through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in 419 groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) 420 than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral 421 loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with 422 nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay 423 through the time course of infection. The rebounded viral titer was observed in vR129A mutant- 424 infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by 425 qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was 426 attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection 427 but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	413	Surprisingly, vR129A mutant infected pigs showed similar level of mean viral RNA load as the
Since qRT-PCR does not distinguish between viable and nonviable forms of the virus, we further quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	414	group of pigs infected with WT virus at 21 DPI, and exhibited higher (but not statistically
quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit ($10^{1.67}$ TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	415	significant) viral RNA load than that of pigs infected with WT virus at 28 DPI and 35 DPI.
quantified infectious virus particles in serum samples. Infectious virus titer was measured through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit ($10^{1.67}$ TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	416	Since gRT-PCR does not distinguish between viable and nonviable forms of the virus, we further
through micro-titration assay using MARC-145 cells. At 1, 2 and 5 DPI, infectious viral titers in groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing		
groups of pigs infected with nsp1 β mutants were about 1~3 log lower (statistically significant) than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	418	
421 loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with 422 nsp1β mutants was lower than the detection limit $(10^{1.67} \text{ TCID}_{50}/\text{ml})$ of the micro-titration assay 423 through the time course of infection. The rebounded viral titer was observed in vR129A mutant- 424 infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by 425 qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was 426 attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection 427 but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	419	
422 nsp1β mutants was lower than the detection limit $(10^{1.67} \text{TCID}_{50}/\text{ml})$ of the micro-titration assay 423 through the time course of infection. The rebounded viral titer was observed in vR129A mutant- 424 infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by 425 qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was 426 attenuated <i>in vivo</i> , and the growth ability of vR129A was attenuated at early stage of infection 427 but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	420	than the viral titers in pigs infected with WT virus (Figure 5B), which is consistent with viral
 through the time course of infection. The rebounded viral titer was observed in vR129A mutant- infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i>, and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing 	421	loads quantified by qRT-PCR (Figure 5A). The infectious viral titer in many pigs infected with
 infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i>, and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing 	422	nsp1 β mutants was lower than the detection limit (10 ^{1.67} TCID ₅₀ /ml) of the micro-titration assay
 qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was attenuated <i>in vivo</i>, and the growth ability of vR129A was attenuated at early stage of infection but reverted to WT phenotype at certain level during the later stage of infection (see sequencing 	423	through the time course of infection. The rebounded viral titer was observed in vR129A mutant-
 426 attenuated <i>in vivo</i>, and the growth ability of vR129A was attenuated at early stage of infection 427 but reverted to WT phenotype at certain level during the later stage of infection (see sequencing 	424	infected pigs at 21, 28 and 35 DPI, which is consistent with the viral RNA load data generated by
427 but reverted to WT phenotype at certain level during the later stage of infection (see sequencing	425	qRT-PCR. These results indicate that the growth ability of vR128A and vRR129AA was
	426	attenuated in vivo, and the growth ability of vR129A was attenuated at early stage of infection
428 data in Table 2).	427	but reverted to WT phenotype at certain level during the later stage of infection (see sequencing
	428	data in Table 2).

429	Since PAM serves as the primary target cell for PRRSV, we further evaluated the viral load in
430	lung lysate and BALF collected at 7, 21 and 35 DPI. Viral RNA load was quantified by qRT-
431	PCR and infectious viral titer was determined by micro-titration assay. Results from both qRT-
432	PCR and micro-titration assay showed that the viral loads in lung and BALF from all groups of
433	pigs infected with $nsp1\beta$ mutants were consistently lower than that in pigs infected with WT
434	virus at 7 and 21 DPI (Figure 6), although some of the differences were not statistically
435	significant. At 35 DPI, the lower level of mean viral load and infectious viral titer were detected
436	in lung samples from pigs infected with vR128A and vRR129AA mutants, in comparison with
437	that in pigs infected with WT virus (Figure 6). In the lung samples from vR129A mutant infected
438	pigs, the mean viral load and infectious viral titer were reached similar level as that of WT virus-
439	infected pigs at 35 DPI. These results suggest that $nsp1\beta$ mutants have attenuated replication
440	ability in the lung of infected pigs, but vR129A showed reversion to WT phenotype at certain
441	level during later stage of infection.

442 Genetic stability of nsp1 mutants in pigs. The genetic stability is one of the important criteria 443 for selecting vaccine candidates. Initially, serum samples from 3 pigs per group terminated at 21 DPI were used to determine the stability of the introduced mutations. The $nsp1\beta$ coding region 444 was RT-PCR amplified and the PCR product was subjected to DNA sequencing analysis. As 445 showed in Table 2, no 2^{nd} site mutation and also no reversion were found in nsp1 β coding region 446 447 of the virus that isolated from serum samples of the pigs infected by vRR129AA mutant virus. In 448 the group of pigs infected with vR128A mutant, the designed mutation was maintained in the viruses recovered from all three tested pigs, but several 2^{nd} site mutations were observed, 449 including the substitution of Asp⁹ to Gly and Ser¹²² to Pro in all three pigs, and His¹⁰⁹ and Leu¹⁴¹ 450

451 substituted by Arg and Pro in one pig, respectively. In the group of pigs infected with vR129A

452	mutant, the designed mutation in one of the three tested pigs reversed from Ala back to Arg (in
453	WT virus), and R129A was maintained in the other two pigs. Similar to vR128A group, 2 nd site
454	mutation, Ser ¹²² to Pro, was detected in those two pigs that maintained designed mutation; an
455	additional mutation of Ser ¹⁶⁹ to Pro occurred in one of the two pigs, and the substitution of Asp ⁹
456	to Gly was observed in all three pigs. Since there was a reversion occurred in one of the vR129A
457	mutant-infected pig at 21 DPI, we further analyzed serum samples from all 6 pigs infected with
458	vR129A at 14 DPI. Remarkably, the pig with Ala ¹²⁹ to Arg reversion at 21 DPI had already
459	obtained the reversion at 14 DPI. However, the designed R129A mutation was maintained in all
460	other five pigs. It is worth noting that the 2 nd site substitution of Ser ¹²² to Pro occurred in all of
461	the pigs that maintained designed mutations (R128A and R129A) at 14, 21 and 35 DPI,
462	suggesting that this substitution may compromise the effect of designed mutations on viral
463	growth ability in vivo. Interestingly, the mutation of Asp ⁹ to Gly was not only detected in pigs
464	infected with all mutants, but also observed in pigs infected with WT virus. This mutation may
465	relate to the in vivo fitness of PRRSV, which was most likely not caused by our designed
466	mutations. In addition, using the serum samples at 35 DPI that was determined to be PRRSV
467	RNA positive by real-time RT-PCR, no reversion was observed in sequencing analysis. We
468	searched PRRSV full-length genome sequences available in the Genbank (as of 7/27/2015), all
469	of the 2 nd site substitutions that observed here are able to be found in field strains, for example,
470	PRRSV P129 strain contains Pro^{122} . Taken together, among the three nsp1 β mutants, vRR129AA
471	maintained the best genetic stability in vivo with no reversion and less 2 nd site mutation detected
472	in nsp1β-coding region.

Innate immune response in PRRSV nsp1ß mutants infected pigs. To determine whether the 473

mutations introduced into $nsp1\beta$ region could improve PRRSV-specific innate immune response, 474

		2	5
	2	5	
2	>	>	
	7	כ ד	

Jourr

475	we initially measured IFN- α expression in infected and control pigs during the early stage of
476	infection. Compared to WT virus-infected pigs, a 1.5-fold higher (but was not significant) levels
477	of IFN-α was observed in serum samples of vRR129AA infected pigs at 1 DPI (data not shown).
478	Since the virus replicates primarily in alveolar macrophages and we inoculated the virus by
479	intranasal (IN) route, the immune response in the lung is important, we measured IFN- α levels in
480	both BALF (represents airways) and lung lysate (represents lung parenchyma, local site of
481	PRRSV infection). In the BALF at 7 DPI, the IFN- α was comparable among all pig groups,
482	while at 21 and 35 DPI in pigs inoculated with vRR129AA and vR129A mutant viruses, there
483	was an increased level (but not statistically significant) of IFN- α production compared to that of
484	WT virus-infected pigs (data not shown). At 7 DPI, in the lung lysate of pigs inoculated with
485	nsp1 β mutant viruses, higher levels of IFN- α were observed compared to that of WT virus-
486	infected pigs (Figure 7A).
487	IFN- α is critical for natural killer (NK) cell-mediated cytotoxic function. To determine whether
487	the nsp1 β mutations impaired IFN- α antagonist function of the virus, PBMCs from mutants and
400	the hspip mutations imparted in the antagonist function of the virus, P Bivies nom mutatics and
489	WT virus-infected pigs were used as a source of NK cells to evaluate NK cell function in the NK
490	cell-cytotoxicity assay. At both the E:T ratios (100:1 and 50:1), the vRR129AA mutant virus-
491	infected pigs had increased activity of NK cell cytotoxic function at 7 DPI (Figure 7B and C).

492 This result is consistent with the increased level of IFN- α production in the serum and lung

Adaptive immune response in PRRSV nsp1β mutants infected pigs. A strong innate immune
response following a virus infection augments the cell-mediated adaptive immunity. Therefore,
we analyzed the production of an important Th1 cytokine IFN-γ response in WT virus and nsp1β

⁴⁹³ lysate of vRR129AA-infected pigs.

Virology	
Journal of	

497	mutants-infected pigs. The production of IFN- γ in the serum of WT virus-infected pigs was
498	undetectable throughout the time course of the study (0-35 DPI), while in the serum of $nsp1\beta$
499	mutants-infected pigs, spurts of IFN- γ secretion (100-150 pg/ml) was detected at multiple DPIs,
500	with IFN-y detected from vR129A mutant-infected pigs at 7-21 DPI, and IFN-y detected from
501	vRR129AA mutant infected pigs at 14 and 28 DPI (Figure 8A). In vR128A mutant-infected pigs,
502	increased IFN- γ in serum was detected at 5 and 14 DPI (Figure 8A). Such an early response of
503	IFN- γ in nsp1 β mutants-infected pigs might be due to the rescue of adaptive immunity mediated
504	through induction of IFN- α secretion and NK cell function by these mutants. A similar increase
505	in IFN- γ secretion (but not statistically significant) was detected in the BALF of vR128A,
506	vR129A and vRR129AA infected pigs, observed at only 7 DPI (data not shown). However, an
507	increased level of IFN- γ production in the lung lysate of vR129A and vRR129AA infected pigs
508	at 7 DPI was significantly higher than that of WT virus-infected pigs (Figure 8B).
509	Production of the pro-inflammatory cytokine IL-6 suggests the inflammatory reaction in the
510	lungs of pigs (34). The levels of IL-6 was higher (but not significant) at 21 DPI in the BALF of
511	vR129A and vRR129AA infected pigs compared to that of WT virus infected pigs (Figure 8C).
512	In the lung lysate of vRR129AA infected pig at 21 DPI, a significantly higher level of IL-6
513	production was detected compared to that of WT virus infected pigs (Figure 8D). This data
514	suggests that the induction of IL-6 production by the vRR129AA mutant virus in pigs appears to
515	be responsible for augmenting the IFN- γ production, an indicator of adaptive immunity.
516	We further evaluated the frequency of different T cell subpopulation in PBMCs, expressed as the
517	percentage of CD3 ⁺ or CD3 ⁻ cells. The pig T cells expressing the combination of phenotypic
518	markers CD3 ⁺ CD4 ⁻ CD8 α^+ are either cytotoxic T cells (CTLs) or $\gamma\delta$ T cells, and cells with

519

520

521

522	lymphocyte subsets were elucidated by re-stimulating PBMCs with the same virus in vitro. In
523	every phenotypic marker staining, respective isotype controls were included to eliminate the
524	background. The specific population of cells was identified based on combination of phenotypic
525	cell surface markers, which include CD3 ⁺ CD4 ⁻ CD8 α^+ (CTLs or $\gamma\delta$ T cells), CD3 ⁺ CD4 ⁺ CD8 α^+
526	(T-helper/memory), and CD3 ⁻ CD4 ⁻ CD8 α^+ (NK) cells (38, 40-43). Subsequently, the cells were
527	fixed and stained for intracellular IFN- γ and gated for their respective activated (IFN- γ^+)
528	phenotype. Frequency of total CTLs/ $\gamma\delta$ T cells in vR129A and vRR129AA infected pigs were
529	numerically increased (but not statistically significant) at 21 DPI and were significantly reduced
530	at 35 DPI compared to WT virus infected pigs (Figure 9A), while the activated (IFN- γ^+)
531	$CTLs/\gamma\delta$ T cells in the same mutants infected pigs were numerically increased and decreased
532	(but not statistically significant) compared to WT virus at DPI 7 and 35, respectively (Figure
533	9B). In comparison of WT virus-infected pigs with vR129A and vRR129AA-infected pigs,
534	exactly a similar trend (but not statistically significant) in total and activated T-helper/memory
535	cell frequencies to that of CTLs/ $\gamma\delta$ T cells was observed at all three DPIs (Figure 9C and D). The
536	frequency of NK cells was significantly increased only in vRR129AA infected pigs at 7 DPI
537	(Figure 9E). This data suggest that the NK cells and the two important T cell subsets were
538	activated particularly in vRR129AA mutant PRRSV-infected pigs, suggesting the virus specific
539	activation of innate and adaptive immunity.
540	
541	

CD3⁺CD4⁻CD8 $\alpha\beta^+$ are exclusively CTLs (38, 39). Porcine immune system has a unique

frequency of CD3⁺CD4⁺CD8 α ⁺ T cells, which have the memory, cytotoxic, and T-helper cell

properties (40, 41). To determine antigen specific activation of T cell response, IFN-y secreting

543 Many studies have demonstrated that a potent innate immune response induced by microbial 544 infection / vaccination will lead to generation of sufficient adaptive immunity, which subsequently clears the pathogen infection from the host completely (44, 45). However, PRRSV 545 546 infection generally induces poor anti-viral innate IFN and cytokine responses, which results in weak adaptive immunity (46-50). One of the key steps in new PRRS vaccine construction is to 547 548 develop strategies to target these initial immune response events to enhance the viral specific immunity. Previous studies for other viral pathogens showed that recombinant viruses generated 549 with targeted mutations (deletions) in genes encoding for immune antagonists are excellent 550 candidates for MLV vaccines (51-54). The (selected) recombinant viruses normally grow well in 551 552 tissue culture; while in infected animals, they are attenuated but still replicate to sufficient 553 amounts for stimulating robust immune responses. Several PRRSV proteins have been identified 554 as antagonists to the type I IFN induction (and signaling), and $nsp1\beta$ was determined having the 555 strongest inhibitory effect among those proteins (22-24, 26). Therefore, in this study, our vaccine 556 development strategy is to generate recombinant viruses with targeted mutations in the nsp1 β 557 regions.

558 Our previous study identified a highly conserved GKYLQRRLQ motif in nsp1 β that is critical 559 for its inhibitory effect on type I IFN production and signaling. Based on the crystal structure of 560 nsp1 β , three basic residues (K124, R128, and R129) in GKYLQRRLQ motif are exposed on the 561 surface of the protein. In our previous study, double mutations of K124A/R128A impaired the 562 IFN antagonist function of nsp1 β (26). In this study, we further tested each of these three 563 individual residues. In comparison to WT nsp1 β , nsp1 β mutants carrying alanine substitution at 564 R128 and R129 showed a significantly reduced antagonism effect on reporter gene expression 565

566

567

568

569	expression, in contrast to significant higher level of luciferase expression in cells transfected with
570	$nsp1\beta$ mutants that contain mutations at R128 and/or R129 (Figure 1B). These results indicate
571	that R128 and R129 residues, but not K124, are critical for $nsp1\beta$'s function in antagonizing type
572	1 IFN production and signaling.
573	As we discussed previously (26), suppressing host cellular gene expression, including $nsp1\beta$
574	"self-expression" could be a mechanism of its immune antagonist function. Compared to the
575	expression level of WT nsp1 β , obviously higher level of nsp1 β expression was detected in
576	western blot analysis for R128A and K124A/R128A (1 β KO) mutants (Figure 1C). Interestingly,
577	when R129A substitution combines with R128A (RR129AA), it appeared to restore the $nsp1\beta$'s
578	ability to suppress its "self-expression". The single alanine substitution of R129 residue did not
579	impair the ability of nsp1 β to suppress its "self-expression", although it attenuated nsp1 β 's
580	ability to suppress type I IFN expression. These data make us speculate that different

581 mechanisms may be utilized by R128 and R129 residues to evade host innate immune defense,

under the control of IFN-B promoter (p125-Luc); however, K124A mutant still had a similar

inhibitory effect on reporter gene expression as that of WT nsp1ß. Similar results were observed

in the luciferase reporter assay (pISRE-Luc) utilized to examine the inhibitory effect on type 1

IFN signaling. Both the WT nsp1 β and K124A mutant severely suppressed luciferase reporter

582 which needs to be further elucidated.

As we discussed above, besides function as an innate immune antagonist, nsp1β was recently
identified as a transactivator for the expression of -2/-1 PRF products, nsp2TF and nsp2N. Both
nsp2TF and nsp2N share the N-terminal 2/3 sequence with nsp2, which contains the PLP2
domain. PLP2 was also identified as an innate immune antagonist that is capable of removing

ubiquitin (Ub) and Ub-like modifiers like ISG15 from host cell substrates (55-58). When testing

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest

588 the nsp1 β effect during viral infection (see below), it remains to be established to what extent 589 nsp1 β directly modulates the innate immune response or does so by stimulating the expression of 590 nsp2TF and nsp2N.

591 In this study, we generated recombinant viruses of $nsp1\beta$ mutants using reverse genetics, 592 including vK124A, vR128A, vR129A and vRR129AA. As a comparison, our previously 593 constructed mutant v1BKO (containing double mutations of K124A/R128A) was included in viral growth characterization in cell culture. In comparison to WT virus, all nsp1 β mutants 594 except vK124A had attenuated growth ability in cell culture, but their peak viral titers were all 595 596 reached above 5 logs $TCID_{50}/mL$, which is acceptable for subsequently application in animals. 597 Multiple-step viral growth curves showed that vR128A and vR129A had slightly slower growth kinetics, while v1 β KO and vRR129AA showed 1~1.5 logs lower virus titer than that of parental 598 599 virus at all the tested time points (Figure 3A). It is worth noting that v1 β KO containing the 600 double mutations of K124A/R128A had lower virus titer than that of mutant virus with single 601 mutation of R128A, but single K124A mutation did not affect much on the virus growth ability 602 in cell culture. In addition, none of the mutations affected the release of $nsp1\beta$ from $nsp1\beta-2$ polyprotein (Figure 2B), suggesting that the reduced growth rate (viral titer) of the nsp 1β 603 mutants may not directly caused by a basic defect in replicase polyprotein proteolysis. We 604 605 speculate that R128A, R129A, or combined K124A/R128A, and R128A/R129A mutations may 606 change nsp1 β protein or RNA structure, which in turn affects virus replication ability. The in 607 depth mechanism of these mutations that affects viral growth ability requires more studies in the 608 future. When tested in the vaccinia/T7 expression system, the expression of nsp2TF was 609 impaired by alanine substitutions at residue 128 and 129 using $nsp1\beta-2$ expression constructs (Figure 2A). Under the virus infection condition, these two residues are also essential for the 610

Accepted Manuscript Posted Online

Journal of Virology

lournal of Virology

611 PRF transactivator function of nsp1 β (data not shown). Taken together, our data indicate that the 612 three basic amino acids exposed on $nsp1\beta$ surface appear to have different functions, and the 613 detailed mechanism needs to be further elucidated. Subsequently, these mutants were characterized in nursery pigs. Since the K124A did not have 614

much effect on innate suppression function of $nsp1\beta$, and the recombinant virus containing 615 616 K124A mutation did not affect much on viral replication, this mutant was excluded in current animal study. In a previous study, we evaluated 1 β KO and WT viruses in pigs. The 1 β KO 617 showed over-attenuated phenotype with virus grew in extremely low titer (~ 5×10^4 RNA 618 619 copies/ml in serum), which is 2 to 3 logs lower than that of wild type virus. As a consequence, 620 pigs did not seroconvert until 28 dpi. The initial IFN-α response was very limited (8.4 pg/mL serum at 3 DPI); in contrast, we could detect certain level of IFN- α response (100.9 pg/mL 621 serum at 3 DPI) in WT virus-infected pigs. As we discussed above, single mutation on K124 622 623 residue did not seem to affect much on the *in vitro* growth ability of the virus, but combined 624 mutations with R128 significantly impaired the virus growth ability in vitro and in vivo. The in depth mechanism of K124 involved in viral replication and its function in relation to combined 625 626 effect of R128 mutation need to be further studied. Since our previous data showed overattenuated phenotype of 1 β KO, in the current study, we focused on characterizing the other three 627 628 nsp1β mutants (vR128A, vR129A, and vRR129AA) in nursery pigs. Active virus replication was 629 observed in all of the virus-infected pigs. The viremia data indicate that, in consistent with in 630 *vitro* results, nsp1 β mutants were also attenuated in pigs. At all the time-points, in comparison to 631 WT virus-infected pigs, vR128A- and vRR129AA-infected pigs had consistently lower levels of mean viral RNA load and infectious virus titer. For vR129A group, these pigs also had lower 632 levels of viremia than that of WT virus group at the early time-points; however, they showed 633

634

635	virus in vR129A could be reversed back to WT virus. Subsequently, sequence analysis of $nsp1\beta$
636	coding region was performed to confirm the stability of the mutations introduced into the virus.
637	From viruses recovered at 21 DPI, the designed alanine substitutions were stably maintained,
638	except a reversion identified in one of the pigs (pig #31) infected with vR129A. We further
639	sequenced nsp1 β coding region in the viruses recovered from vR129A infected pigs at 14 DPI,
640	the result showed that the reversion only occurred in pig #31, but not the other five tested pigs.
641	Unexpectedly, no reversion in the nsp1 β coding region was identified in vR129A group of pigs
642	at 35 DPI, although vR129A group of pigs showed even higher virus titer than that of WT group
643	of pigs. We speculate that the spontaneous mutations in other regions of viral genome may
644	compensate viral replication ability in vivo. Remarkably, for those viruses stably maintained the
645	designed mutations vR128A and vR129A in infected pigs, a specific 2 nd site mutation of Ser ¹²² to
646	Pro^{122} was consistently identified. We analyzed the sequence of nsp1 β from <i>in vitro</i> expression
647	plasmids and original recombinant viruses that grew in MARC-145 cells (before inoculation into
648	pigs), and the result showed that Ser ¹²² was stably maintained in vR128A, vR129A and
649	vRR129AA. The data suggest that Pro ¹²² may contribute the viral fitness <i>in vivo</i> and Ser ¹²² to
650	Pro ¹²² substitution may compromise the side effect of our designed mutations on virus
651	replication ability in animals. Whether the Ser ¹²² to Pro ¹²² substitution has effect on the function
652	of nsp1 β needs to be further studied.
653	Given the impaired ability of nsp1 β mutants vR128A, vR129A and vRR129AA to antagonize
000	Given the imparted dointy of itspip inducits vici2ory, vici2/r and vicici2/rr to antagonize
654	innate immune response in vitro, we further assessed the ability of these viruses in the induction

even higher level of viremia than that of WT group at 35 DPI. These results suggest that the

- of host immune response *in vivo*. After immunization, no clinical symptoms and adverse side
- effects were observed in the WT and mutant virus-infected pigs. In addition, when terminated

657 three pigs per group at 7, 21 and 35 DPI, no obvious lung lesion was observed. This result is 658 expected, since the WT virus SD95-21 (backbone of nsp1ß mutants) has 99.5% nucleotide 659 identity with that of VR2332, the parental virus of PRRS modified live virus (MLV) vaccine (Ingelvac PRRS MLV; Boehringer Ingelheim Vetmedica, Inc.), and 99.6% identity to Ingelvac 660 PRRS MLV. In addition, SD 95-21 virus was adapted growth in MARC-145 cells. In previous 661 662 studies, pigs infected with PRRS MLV strain of VR2332 showed very mild or undetectable 663 clinical, gross and histopathological lesions (59). The goal of our vaccine development is to 664 improve the ability of current MLV vaccine to stimulate higher innate and cell mediated immune 665 responses.

666 Since type 1 IFNs are the principle cytokines for innate immunity against viral infections, IFN- α was selected as a representative to assess the ability of PRRSV to induce host innate immune 667 668 response. In consistent with our data generated in *in vitro* expression system, nsp1 β mutants induced higher level of IFN- α than that of WT virus during early time period post-infection. In 669 670 comparison to that of WT virus infected pigs, higher cytotoxic activity of NK cells was also 671 observed in pigs infected with nsp1 β mutants. These results suggest that PRRSV nsp1 β plays a crucial role in suppressing host innate immunity, and modifying this protein could effectively 672 improve the ability of PRRSV to stimulate host innate immune response. Furthermore, these 673 674 mutants induced earlier and higher level of IFN- γ expression compared to WT virus. As an 675 important factor in adaptive immunity against viral infection, IFN- γ increases antigen presentation and promotes Th1 cell differentiation (60). The increased expression of IFN- γ in 676 677 mutant viruses infected pigs indirectly indicates the activation of Th1 cell-mediated immune 678 response. This was observed not only in serum of mutants infected pigs, but also indicated by 679 increased activation of CTLs/yo T, T-helper/memory, and NK cells. Previously, increased

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest

680

681

682

683

684

685

686

687

688

689

690

691

692

693

response, these mutants may also have stronger ability in augmenting Th1 cell-medicated
adaptive immunity in comparison to that of WT virus. As a candidate vaccine, one would expect
its ability to stimulate significant humoral response in animals. In fact, we performed both
neutralizing antibody and ELISA assays using serum samples, but the result showed no
significant difference among pig groups infected with WT virus and three $nsp1\beta$ mutants (data
not shown). It is a well-established phenomenon that strong Th1 response suppresses the Th2
response (humoral response) and vice-versa, which were demonstrated previously in mice (65,
66) and pigs (33, 64, 67). Therefore, our data suggest that lack of improved virus neutralizing
antibody response in $nsp1\beta$ mutants-infected pigs could be caused by the strong Th1 response.
Future virus challenge study in the $nsp1\beta$ mutant vaccinated pigs may reveal benefits of
increased Th1 response in viral clearance.

frequency of activated T-helper/memory cells in pigs was shown to be beneficial in virus

clearance in Aujeszky's disease virus, African and Classical swine fever virus, and PRRSV

infections (33, 41, 61-64). Taken together, besides induction of higher level innate immune

694 Based on our data, the nsp1 β mutant, vRR129AA, could be a potential vaccine candidate, and 695 this attenuation strategy could be easily applied to improve current vaccines. This conclusion is based on multiple observations. First, vRR129AA can grow to sufficient virus titers in cell 696 697 culture (greater than 5 log $TCID_{50}/mL$), which facilitate large scale vaccine production. Second, 698 in comparison to WT virus, vRR129AA induced earlier and stronger innate immune response, which was supported by elevated IFN- α expression and NK cell cytotoxic activity. The improved 699 700 innate immune response appears to augment cell-mediated adaptive immunity, indicated by early 701 induction of IFN- γ expression by both NK cells and T cells, followed by depletion of activated T 702 cell subsets as presented in phenotypic analysis of PBMCs. Another important aspect is that this

703	mutant appeared to be quickly cleared from virus-infected pigs, and showed better genetic
704	stability than $nsp1\beta$ mutants containing single alanine substitution (vR128A, vR129A).
705	Nevertheless, the protection efficacy of this potential vaccine candidate needs to be further
706	assessed in animal challenge study. Finally, R128 and R129 residues are highly conserved in all
707	available PRRSV strains as described previously (25, 26), in which the technology described in
708	this study can be easily applied to current commercial vaccines and other candidate vaccines.
709	
710	ACKNOWLEDGEMENTS
711	We thank Professor Eric J. Snijder (Leiden University Medical Center, Leiden, The Netherlands)
712	for helpful discussion, Russell Ransburgh and Elizabeth Poulsen (Kansas State University,
713	Manhattan, KS, USA) for technical assistance. This project was supported by Agriculture and
714	Food Research Initiative Competitive Grant no. 2012-67015-21823 from the USDA National

Institute of Food and Agriculture; Kansas State University research startup fund. 715

 \sum

716 **REFERENCES**

717 1. Keffaber KK. 1989. Reproductive failure of unknown etiology. Am. Assoc. SwinePract. 718 Newsl.:1-9. Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, 719 2. Kragten C, van Buiten L, den Besten A, Wagenaar F, et al. 1991. Mystery swine 720 721 disease in The Netherlands: the isolation of Lelvstad virus. Vet O 13:121-130. Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson 722 3. 723 WT, Morrison RB, Gorcyca D, Chladek D. 1992. Characterization of swine infertility 724 and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest 725 4:127-133. Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goval 726 4. SM, McCullough S, Morrison RB, Joo HS, et al. 1992. Isolation of swine infertility 727 and respiratory syndrome virus (isolate ATCC VR-2332) in North America and 728 729 experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 4:117-730 126. Albina E, Madec F, Cariolet R, Torrison J. 1994. Immune response and persistence of 5. 731 the porcine reproductive and respiratory syndrome virus in infected pigs and farm units. 732 Vet Rec 134:567-573. 733 Dwivedi V, Manickam C, Binjawadagi B, Linhares D, Murtaugh MP, 734 6. 735 Renukaradhya GJ. 2012. Evaluation of immune responses to porcine reproductive and respiratory syndrome virus in pigs during early stage of infection under farm conditions. 736 Virol J 9:45. 737 7. Murtaugh MP, Xiao Z, Zuckermann F. 2002. Immunological responses of swine to 738 739 porcine reproductive and respiratory syndrome virus infection. Viral Immunol 15:533-740 547. 8. Renukaradhya GJ, Dwivedi V, Manickam C, Binjawadagi B, Benfield D. 2012. 741 Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new 742 perspective. Anim Health Res Rev 13:21-37. 743 9. 744 Snijder EJ, Kikkert M, Fang Y. 2013. Arterivirus molecular biology and pathogenesis. 745 J Gen Virol 94:2141-2163. Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, Moormann RJ, Schaaper 746 10. WM, Wensvoort G. 1995. Characterization of proteins encoded by ORFs 2 to 7 of 747 748 Lelystad virus. Virology 206:155-163. 749 11. Meulenberg JJ, Petersen-den Besten A, de Kluyver EP, Moormann RJ, Schaaper 750 WM, Wensvoort G. 1995. Characterization of structural proteins of Lelystad virus. Adv 751 Exp Med Biol 380:271-276. 12. Mounir S, Mardassi H, Dea S. 1995. Identification and characterization of the porcine 752 753 reproductive and respiratory virus ORFs 7, 5 and 4 products. Adv Exp Med Biol 754 380:317-320. Bautista EM, Meulenberg JJ, Choi CS, Molitor TW. 1996. Structural polypeptides of 755 13. 756 the American (VR-2332) strain of porcine reproductive and respiratory syndrome virus. Arch Virol 141:1357-1365. 757 14. Mardassi H, Massie B, Dea S. 1996. Intracellular synthesis, processing, and transport of 758 proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. 759 760 Virology 221:98-112.

lournal of Virology

Meng XJ, Paul PS, Morozov I, Halbur PG. 1996. A nested set of six or seven
subgenomic mRNAs is formed in cells infected with different isolates of porcine
reproductive and respiratory syndrome virus. J Gen Virol 77 (Pt 6):1265-1270.
Meulenberg JJ, Petersen-den Besten A. 1996. Identification and characterization of a
sixth structural protein of Lelystad virus: the glycoprotein GP2 encoded by ORF2 is
incorporated in virus particles. Virology 225:44-51.
Snijder EJ, van Tol H, Pedersen KW, Raamsman MJ, de Vries AA. 1999.
Identification of a novel structural protein of arteriviruses. J Virol 73:6335-6345.
Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J,
Nelson EA. 2001. A 10-kDa structural protein of porcine reproductive and respiratory
syndrome virus encoded by ORF2b. Virology 287: 183-191.
Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP. 2011. Novel structural
protein in porcine reproductive and respiratory syndrome virus encoded by an alternative
ORF5 present in all arteriviruses. J Gen Virol 92: 1107-1116. Li Y, Tas A, Sun Z, Snijder EJ, Fang Y. 2014. Proteolytic processing of the porcine
reproductive and respiratory syndrome virus replicase. Virus Res.
Fang Y, Treffers EE, Li Y, Tas A, Sun Z, van der Meer Y, de Ru AH, van Veelen
PA, Atkins JF, Snijder EJ, Firth AE. 2012. Efficient -2 frameshifting by mammalian
ribosomes to synthesize an additional arterivirus protein. Proc Natl Acad Sci U S A
109: E2920-2928.
Chen Z, Lawson S, Sun Z, Zhou X, Guan X, Christopher-Hennings J, Nelson EA,
Fang Y. 2010. Identification of two auto-cleavage products of nonstructural protein 1
(nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1
function as interferon antagonist. Virology 398: 87-97.
Beura LK, Sarkar SN, Kwon B, Subramaniam S, Jones C, Pattnaik AK, Osorio FA.
2010. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta
modulates host innate immune response by antagonizing IRF3 activation. J Virol
84: 1574-1584.
Kim O, Sun Y, Lai FW, Song C, Yoo D. 2010. Modulation of type I interferon
induction by porcine reproductive and respiratory syndrome virus and degradation of
CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells. Virology 402 :315-326.
V 11010gy 402:313-320. Li V. Treffers F.F. Nanthine S. Tas A. Zhu L. Sun Z. Bell S. Mark BL. van Veelen

Li Y, Treffers EE, Napthine S, Tas A, Zhu L, Sun Z, Bell S, Mark BL, van Veelen 25. 793 794 PA, van Hemert MJ, Firth AE, Brierley I, Snijder EJ, Fang Y. 2014. Transactivation 795 of programmed ribosomal frameshifting by a viral protein. Proc Natl Acad Sci U S A 111:E2172-2181. 796

- 797 26. Li Y, Zhu L, Lawson SR, Fang Y. 2013. Targeted mutations in a highly conserved 798 motif of the nsp1beta protein impair the interferon antagonizing activity of porcine reproductive and respiratory syndrome virus. J Gen Virol 94:1972-1983. 799
- 27. Zeman D, Neiger R, Yaeger M, Nelson E, Benfield D, Leslie-Steen P, Thomson J, 800 801 Miskimins D, Daly R, Minehart M. 1993. Laboratory investigation of PRRS virus 802 infection in three swine herds. J Vet Diagn Invest 5:522-528.
- 803 28. Fuerst TR, Niles EG, Studier FW, Moss B. 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA 804 805 polymerase. Proc Natl Acad Sci U S A 83:8122-8126.

761

762

763

764

765

766

767

768

769 770

771

772 773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Nelson EA, Christopher-Hennings J, Drew T, Wensvoort G, Collins JE, Benfield
DA. 1993. Differentiation of U.S. and European isolates of porcine reproductive and
respiratory syndrome virus by monoclonal antibodies. J Clin Microbiol 31: 3184-3189.
Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints.
American journal of epidemiology 27: 493-497.
Fang Y, Rowland RR, Roof M, Lunney JK, Christopher-Hennings J, Nelson EA.
2006. A full-length cDNA infectious clone of North American type 1 porcine
reproductive and respiratory syndrome virus: expression of green fluorescent protein in
the Nsp2 region. J Virol 80: 11447-11455.
Halbur PG, Paul PS, Frey ML, Landgraf J, Eernisse K, Meng XJ, Lum MA,
Andrews JJ, Rathje JA. 1995. Comparison of the pathogenicity of two US porcine
reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet
Pathol 32: 648-660.
Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Torrelles JB, Renukaradhya
GJ. 2014. An innovative approach to induce cross-protective immunity against porcine
reproductive and respiratory syndrome virus in the lungs of pigs through adjuvanted
nanotechnology-based vaccination. Int J Nanomedicine 9:1519-1535.
Renukaradhya GJ, Alekseev K, Jung K, Fang Y, Saif LJ. 2010. Porcine reproductive
and respiratory syndrome virus-induced immunosuppression exacerbates the
inflammatory response to porcine respiratory coronavirus in pigs. Viral Immunol 23:457-
466.
Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, Del Toro-Arreola S,
Sanchez-Hernandez PE, Ramirez-Duenas MG, Balderas-Pena LM, Bravo-Cuellar A,
Ortiz-Lazareno PC, Daneri-Navarro A. 2009. Low NKp30, NKp46 and NKG2D
expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor
expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9: 186.
expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow
expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated
expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow
expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated
expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187.
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066.
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R,
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013.
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68.
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283.
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283. Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283. Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87:500-512.
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283. Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87:500-512. Denyer MS, Wileman TE, Stirling CM, Zuber B, Takamatsu HH. 2006. Perforin
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283. Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87:500-512. Denyer MS, Wileman TE, Stirling CM, Zuber B, Takamatsu HH. 2006. Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283. Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87:500-512. Denyer MS, Wileman TE, Stirling CM, Zuber B, Takamatsu HH. 2006. Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283. Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87:500-512. Denyer MS, Wileman TE, Stirling CM, Zuber B, Takamatsu HH. 2006. Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Vet Immunol Immunopathol 110:279-292.
 expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9:186. Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. 2001. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 253:177-187. Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. 2011. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 29:4058-4066. Talker SC, Kaser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R, Viehmann M, Klingler E, Ladinig A, Ritzmann M, Saalmuller A, Gerner W. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev Comp Immunol 40:51-68. Sinkora M, Butler JE. 2009. The ontogeny of the porcine immune system. Dev Comp Immunol 33:273-283. Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87:500-512. Denyer MS, Wileman TE, Stirling CM, Zuber B, Takamatsu HH. 2006. Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

053	42	Detail W Marthan C Difference D Distance V Weissen M Dissilance the CI
852	43.	Dwivedi V, Manickam C, Patterson R, Dodson K, Weeman M, Renukaradhya GJ. 2011. Intranasal delivery of whole cell lysate of Mycobacterium tuberculosis induces
853		protective immune responses to a modified live porcine reproductive and respiratory
854 855		
855	4.4	syndrome virus vaccine in pigs. Vaccine 29: 4067-4076.
856	44.	Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori K, Taniguchi M, Hase
857		K, Ohno H, Shimaoka T, Yonehara S, Odagiri T, Tashiro M, Sata T, Hasegawa H, Seino KI. 2008. Mechanism of NKT cell activation by intranasal coadministration of
858		alpha-galactosylceramide, which can induce cross-protection against influenza viruses.
859		Mucosal Immunol 1:208-218.
860	45.	
861	45.	Guillonneau C, Mintern JD, Hubert FX, Hurt AC, Besra GS, Porcelli S, Barr IG, Doherty PC, Godfrey DI, Turner SJ. 2009. Combined NKT cell activation and
862		
863		influenza virus vaccination boosts memory CTL generation and protective immunity.
864	16	Proc Natl Acad Sci U S A 106 :3330-3335.
865	46.	Albina E, Piriou L, Hutet E, Cariolet R, L'Hospitalier R. 1998. Immune responses in
866		pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). Vet
867	47.	Immunol Immunopathol 61: 49-66.
868	47.	Van Reeth K, Labarque G, Nauwynck H, Pensaert M. 1999. Differential production
869		of proinflammatory cytokines in the pig lung during different respiratory virus infections:
870	40	correlations with pathogenicity. Res Vet Sci 67:47-52.
871	48.	Buddaert W, Van Reeth K, Pensaert M. 1998. In vivo and in vitro interferon (IFN)
872		studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Adv Exp
873	40	Med Biol 440:461-467.
874	49.	Miller LC, Laegreid WW, Bono JL, Chitko-McKown CG, Fox JM. 2004. Interferon
875		type I response in porcine reproductive and respiratory syndrome virus-infected MARC-
876	50	145 cells. Arch Virol 149:2453-2463.
877	50.	Luo R, Xiao S, Jiang Y, Jin H, Wang D, Liu M, Chen H, Fang L. 2008. Porcine
878		reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta
879	51	production by interfering with the RIG-I signaling pathway. Mol Immunol 45 :2839-2846. Donelan NR, Basler CF, Garcia-Sastre A. 2003. A recombinant influenza A virus
880	51.	
881		expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon
882	50	and is attenuated in mice. J Virol 77:13257-13266.
883	52.	Talon J, Salvatore M, O'Neill RE, Nakaya Y, Zheng H, Muster T, Garcia-Sastre A,
884		Palese P. 2000. Influenza A and B viruses expressing altered NS1 proteins: A vaccine
885	50	approach. Proc Natl Acad Sci U S A 97:4309-4314.
886	53.	Valarcher JF, Furze J, Wyld S, Cook R, Conzelmann KK, Taylor G. 2003. Role of
887		alpha/beta interferons in the attenuation and immunogenicity of recombinant bovine
888	C 4	respiratory syncytial viruses lacking NS proteins. J Virol 77:8426-8439.
889	54.	Zust R, Cervantes-Barragan L, Kuri T, Blakqori G, Weber F, Ludewig B, Thiel V.
890		2007. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications
891	<i></i>	for the rational design of coronavirus vaccines. PLoS Pathog 3 :e109.
892	55.	Frias-Staheli N, Giannakopoulos NV, Kikkert M, Taylor SL, Bridgen A, Paragas J,
893		Richt JA, Rowland RR, Schmaljohn CS, Lenschow DJ, Snijder EJ, Garcia-Sastre A,
894 805		Virgin HWt. 2007. Ovarian tumor domain-containing viral proteases evade ubiquitin-
895		and ISG15-dependent innate immune responses. Cell Host Microbe 2:404-416.

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest

 Sun Z, Chen Z, Lawson SR, Fang Y. 2010. The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J Virol 84:7832-7846. Sun Z, Li Y, Ransburgh R, Snijder EJ, Fang Y. 2012. Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J Virol 86:3839-3850. van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M, Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110:E838-847. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for pseudorabies virus-stimulated porcine CD4+ CD8dull+ lymphocytes. Viral Immunol
 deubiquitinating and interferon antagonism functions. J Virol 84:7832-7846. Sun Z, Li Y, Ransburgh R, Snijder EJ, Fang Y. 2012. Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J Virol 86:3839-3850. Sun Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M, Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110:E838-847. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 57. Sun Z, Li Y, Ransburgh R, Snijder EJ, Fang Y. 2012. Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J Virol 86:3839-3850. 58. van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M, Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110:E838-847. 59. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. 912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J Virol 86:3839-3850. 58. van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M, Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110:E838-847. 59. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. 912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 901 interferon-stimulated gene 15. J Virol 86:3839-3850. 902 58. van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, 903 Khajehpour M, Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of 904 arterivirus papain-like protease 2 suppresses the innate immune response in infected host 905 cells. Proc Natl Acad Sci U S A 110:E838-847. 906 59. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. 907 Porcine reproductive and respiratory syndrome virus induces pronounced immune 908 modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected 909 pigs. Vet Microbiol 162:68-77. 910 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview 911 of signals, mechanisms and functions. J Leukoc Biol 75:163-189. 912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 58. van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M, Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110:E838-847. 59. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. 912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 Khajehpour M, Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110:E838-847. S9. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110:E838-847. 59. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. 912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 905 cells. Proc Natl Acad Sci U S A 110:E838-847. 906 59. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. 907 Porcine reproductive and respiratory syndrome virus induces pronounced immune 908 modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected 909 pigs. Vet Microbiol 162:68-77. 910 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview 911 of signals, mechanisms and functions. J Leukoc Biol 75:163-189. 912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 59. Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ. 2013. Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol 162:68-77. 60. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 pigs. Vet Microbiol 162:68-77. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163-189. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
 911 of signals, mechanisms and functions. J Leukoc Biol 75:163-189. 912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
912 61. De Bruin TG, Van Rooij EM, De Visser YE, Bianchi AT. 2000. Cytolytic function for
913 DSelidorables virus-stimiliated norcine ($1.04 \pm 0.00000000000000000000000000000000$
914 13: 511-520.
915 62. Franzoni G, Kurkure NV, Essler SE, Pedrera M, Everett HE, Bodman-Smith KB,
916 Crooke HR, Graham SP. 2013. Proteome-wide screening reveals immunodominance in
917 the CD8 T cell response against classical swine fever virus with antigen-specificity
918 dependent on MHC class I haplotype expression. PLoS One 8 :e84246.
919 63. Takamatsu HH, Denyer MS, Lacasta A, Stirling CM, Argilaguet JM, Netherton CL,
920 Oura CA, Martins C, Rodriguez F. 2013. Cellular immunity in ASFV responses. Virus
921 Res 173: 110-121.
922 64. Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Wu Y, Lee LJ, Torrelles JB,
923 Renukaradhya GJ. 2014. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-
924 entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits
925 cross-protective immune response in pigs. Int J Nanomedicine 9:679-694.
926 65. Wang S, Fan Y, Brunham RC, Yang X. 1999. IFN-gamma knockout mice show Th2-
associated delayed-type hypersensitivity and the inflammatory cells fail to localize and
928 control chlamydial infection. Eur J Immunol 29: 3782-3792.
929 66. Song Z, Wu H, Ciofu O, Kong KF, Hoiby N, Rygaard J, Kharazmi A, Mathee K.
2003. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and
931 impedes host immune clearance in a mouse model of acute lung infection. J Med
932 Microbiol 52: 731-740.
933 67. Diaz MA, Villalobos N, de Aluja A, Rosas G, Gomez-Conde E, Hernandez P,
934Larralde C, Sciutto E, Fragoso G. 2003. Th1 and Th2 indices of the immune response
935 in pigs vaccinated against Taenia solium cysticercosis suggest various host immune
936 strategies against the parasite. Vet Immunol Immunopathol 93: 81-90.
937
938
939

Journal of Virology

940 FIGURE LEGEND

Figure 1. Mutations in GKYLQRRLQ motif impair nsp1 β 's inhibitory effect on type I interferon 941 production and signaling. HEK-293T cells in 24-well plate were co-transfected with a plasmid 942 943 expressing WT nsp1 β or nsp1 β mutant, p125-luc reporter plasmid expressing firefly luciferase 944 under the control of IFN- β promoter (A) or pISRE-luc expressing firefly luciferase derived by 945 interferon stimulated response element (ISRE; B). Empty vector was used as control. At 24 h post-transfection, cells were stimulated with SeV at 100 HA units/ml or stimulated with IFN-β at 946 2000 IU/ml for 16 h. Cell lysates were harvested for measuring luciferase activity. (C) The 947 948 expression level of nsp1\u00df was evaluated by western blot analysis using nsp1\u00bf-specific mAb 123-949 128, whereas β -tubulin was detected as a loading control. The membrane was incubated with 950 primary antibodies mixture of anti-FLAG M2 mAb (Sigma-Aldrich, St. Louis, MO) and mAb against β-tubulin. Secondary antibody IRDye® 800CW Goat anti-Mouse IgG (H + L) (LI-COR 951 952 Biosciences, Lincoln, NE) was used for visualizing the target proteins with a digital image 953 system (Odyssey infrared imaging system; LI-COR Biosciences, Lincoln, NE). The expression 954 of nsp1 β was quantified and normalized to β -tubulin, and the relative expression levels were 955 showed under each band. Statistical significance between wild type group and mutant virus group was determined by one-way ANOVA and Tukey's test, and indicated with asterisk (*, 956 p<0.05; **, p<0.01; ***, p<0.001). 957

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest

Figure 2. Mutations at R128 and R129 in GKYLQRRLQ motif impair the expression of nsp2TF
in vaccinia/T7 expression system. HEK-293T cells were infected with vaccinia virus expressing
T7 polymerase at 10 MOI, and then transfected with pLnsp1β-2 constructs at 1 h post-infection.
The cell lysates were harvested at 18 h post-transfection. (A) The nsp2TF was

962 immunoprecipitated by polyclonal antibody (pAb-TF) that specifically recognizes the C-terminal

N

region of nsp2TF using equal amount of lysate. Immunoprecipitated proteins were detected by
WB using pAb-TF (top panel) and mAb 140-68 recognizing the common N-terminal region of
nsp2-related proteins (bottom panel); (B) Western blot detecting the expression of nsp2 (top
panel), nsp1β (button panel) using specific mAbs.

Figure 3. *In vitro* characterization of recombinant viruses containing nsp1β mutations. (A)
Multiple-step virus growth curve. Each data point shown represents a mean value from
duplicates, and error bars show standard errors of the mean (SEM). (B) Plaque morphology of
WT and recombinant viruses containing mutations in the GKYLQRRLQ motif of nsp1β.

971 Figure 4. Mutations in GKYLORRLO motif attenuate the ability of PRRSV to suppress the 972 expression of IFN- α and ISGs. Porcine alveolar macrophages seeded in 24-well plate were 973 infected with the WT virus or $nsp1\beta$ mutants at a MOI of 1.0, and cell culture supernatants were 974 harvested at 12 h post-infection. (A) IFN- α production was quantified by using ProcartaPlex Porcine IFN alpha Simplex kit (eBioscience, San Diego, CA). Each data point shown represents 975 a mean value from three independent experiments with duplicate, and error bars show SEM. (B) 976 977 The mRNA expression of ISG15 was evaluated by quantitative real-time PCR and normalized to 978 endogenous β -tubulin mRNA. (C) The mRNA expression of IFIT1 was evaluated by quantitative 979 real-time PCR and normalized to endogenous β -tubulin mRNA. (D) The mRNA expression of 980 IFITM1 was evaluated by quantitative real-time PCR and normalized to endogenous β -tubulin 981 mRNA. Values (B, C, and D) are expressed as the means \pm SEM from three independent 982 experiments. (E) The expression of $nsp1\beta$ at 12 h post-infection was determined by western blot 983 analysis with nsp1 β -specific mAb 123-128, whereas β -tubulin was detected as a loading control. 984 The membrane was incubated with primary antibodies mixture of mAb123-128 and mAb against β-tubulin. Secondary antibody IRDye® 800CW Goat anti-Mouse IgG (H + L) (LI-COR 985

986	Biosciences, Lincoln, NE) was used for visualizing the target proteins with a digital image
987	system (Odyssey infrared imaging system; LI-COR Biosciences, Lincoln, NE). Statistical
988	significance between wild type group and mutant virus group was determined by one-way
989	ANOVA and Tukey's test, and indicated with asterisk (*, p<0.05; **, p<0.01; ***, p<0.001).
990	Figure 5. Comparison of viral load in serum samples from pigs inoculated with WT virus and
991	$nsp1\beta$ mutants. Pigs were uninfected (mock), infected with WT PRRSV (WT), or three indicated
992	mutants (vR128A, vR129A, vRR129AA). Serum samples were collected on the indicated DPIs.
993	(A) Viral load in serum samples quantified by quantitative RT-PCR and calculated as viral RNA
994	copies/ml. (B) Infectious virus titer in serum samples determined by micro-titration assay and
995	calculated as $logTCID_{50}$ /ml. Statistical significance between wild type group and mutant virus
996	group was determined by one-way ANOVA and Tukey's test, and indicated with asterisk (*,
997	p<0.05; **, p<0.01; ***, p<0.001).
000	Eigene (Comparison of visel load in DALE and long complex from give in coulstad with WT

998 Figure 6. Comparison of viral load in BALF and lung samples from pigs inoculated with WT virus and nsp1ß mutants. Pigs were uninfected (mock), infected with WT PRRSV (WT), or three 999 indicated mutants (vR128A, vR129A, vRR129AA). The lung harvested on the day of necropsy 1000 (7, 21 and 35 DPI) was used in BALF and lung lysate preparation. (A and B) Viral load in 1001 1002 BALF (A) and lung lysate (B) samples was quantified by quantitative RT-PCR and calculated as 1003 viral RNA copies/ml BALF or viral RNA copies/g lung. (C and D) Infectious virus titer in BALF (C) and lung lysate (D) samples was determined by micro-titration assay and calculated as 1004 1005 $\log TCID_{50}/ml$ or $\log TCID_{50}/g$. A legend explaining the treatment groups in panels (**B**), (**C**), and 1006 (D) is given in panel (A). Statistical significance between wild type group and mutant virus 1007 group was determined by one-way ANOVA and Tukey's test, and indicated with asterisk (*, 1008 p<0.05; **, p<0.01; ***, p<0.001).

1009	Figure 7. Comparison of IFN- α production levels and NK cell cytotoxicity in pigs inoculated
1010	with WT virus and nsp1 β mutants. Pigs were uninfected (mock), infected with WT PRRSV
1011	(WT), or three indicated mutants (vR128A, vR129A, vRR129AA). (A) The lung samples
1012	collected at 7 DPI were used to prepare lung lysates, and IFN- α levels were analyzed by ELISA.
1013	(B and C) PBMCs (NK effectors) were harvested on the day of necropsy (7 DPI), and cells were
1014	co-cultured with target cells (K562) at E:T ratio of 100:1(B) or 50:1(C). After overnight
1015	incubation, the NK specific cytotoxic activity was determined by flow cytometry. Each data
1016	point represents a mean value <u>+</u> SEM from 3 pigs. Statistical significance between wild type
1017	group and mutant virus group was determined by one-way ANOVA and Tukey's test, and
1018	indicated with asterisk (*, p<0.05; **, p<0.01; ***, p<0.001).
1019	Figure 8. Comparison of IFN- γ production levels in pigs inoculated with WT virus and nsp1 β
1020	mutants. Pigs were uninfected (mock), infected with WT PRRSV (WT), or three indicated

1021 mutants (vR128A, vR129A, vRR129AA). Blood samples were collected on the indicated DPIs,

and the BALF and lung lysate were prepared using lungs harvested on the day of necropsy (7, 21

and 35 DPI). IFNy levels in (A) Serum and (B) Lung lysate, and IL-6 levels in (C) BALF and

(D) Lung lysate were analyzed by ELISA. Each data point represents a mean value ± SEM from
3 pigs. Statistical significance between wild type group and mutant virus group was determined
by one-way ANOVA and Tukey's test, and indicated with asterisk (*, p<0.05; **, p<0.01; ***,

1027 p<0.001).

1028 Figure 9. T-helper and Memory T cells responses in pigs infected with nsp1β mutants. PBMCs

- 1029 collected at 7, 21 and 35 DPI were unstimulated or restimulated with the respective WT or
- 1030 mutant viruses that were used to infect pigs. Cells were immunostained for pig specific markers

1031	CD3, CD4, and CD8 α , followed by intracellular IFN- γ detection. Frequency of each lymphocyte
1032	subset based on the combination of markers are grouped: (A) CD3 ⁺ CD4 ⁻ CD8 α ⁺ (CTL/ $\gamma\delta$ T
1033	cells); (B) CD3 ⁺ CD4 ⁻ CD8 α ⁺ IFN γ ⁺ (activated CTL/ $\gamma\delta$ T cells); (C) CD3 ⁺ CD4 ⁺ CD8 α ⁺ (T-
1034	helper/Memory cells); (D) $CD3^{+}CD4^{+}CD8\alpha^{+}IFN\gamma^{+}$ (activated T-helper/Memory cells) and (E)
1035	CD3 ⁻ CD8 α^+ IFN γ^+ (activated NK cells) were analyzed by flow cytometry. A legend explaining
1036	the treatment groups in panels (A), (B), (D), and (E) is given in panel (C). Each bar is the mean
1037	value \pm SEM of 3 pigs. Statistical significance between wild type and mutant virus-infected pig
1038	groups was determined by one-way ANOVA and followed by Tukey's t-test, and indicated with
1039	asterisk (*, p<0.05; **, p<0.01; ***, p<0.001).

		Pig Number				
	dpi	Negative control	WT ^e	R128A	R129A	RR129AA
		(group 1)	(group 2)	(group 3)	(group 4)	(group 5)
Blood	0	$1 \sim 9^{c}$	$10 \sim 18$	$19 \sim 27$	$28 \sim 36$	$37 \sim 45$
collection ^a	1	1~9	$10 \sim 18$	$19 \sim 27$	$28 \sim 36$	$37 \sim 45$
	2	1~9	$10 \sim 18$	$19 \sim 27$	$28 \sim 36$	$37 \sim 45$
	5	1~9	$10 \sim 18$	$19 \sim 27$	$28 \sim 36$	37~45
	14	4~9	$14 \sim 18$	$22 \sim 27$	31 ~ 36	$40 \sim 45$
	28	$7 \sim 9$	17, 18	$25 \sim 27$	$34 \sim 36$	$43 \sim 45$
Animal	7	$1 \sim 3^d$	10, 11, 13	19 ~ 21	$28 \sim 30$	37~39
termination ^b	21	4~6	$14 \sim 16$	$22 \sim 24$	31 ~ 33	$40 \sim 42$
	35	7~9	17, 18	$25 \sim 27$	$34 \sim 36$	$43 \sim 45$

TE 1 1 1	г	· / 1	1 .	C	, <u>,</u> .	c	10			•
Lable L	. Exne	erimentai	design	tor	testing	or n	รทาธ	mutants i	in nursery	nigs
10010 10	•		a e o B i i		eesen b	· · · ·	~P • P	menterite	in nonserj	P-80

a: At 0, 1, 2, 5, 14, and 28 dpi, plasma and PBMCs were collected;

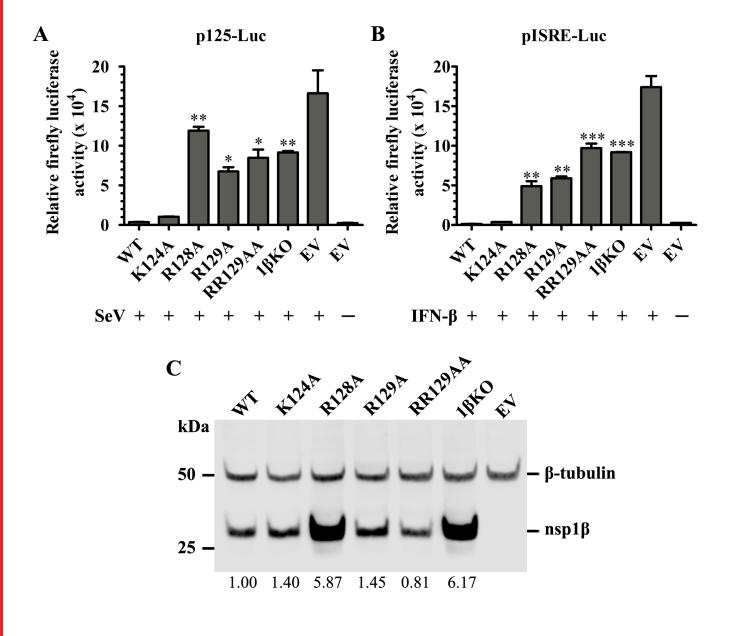
b: At 7, 21, and 35 dpi, 3 pigs from each group were terminated, and their plasma, PBMCs,

bronchoalveolar lavage fluid and lung tissue samples were collected;

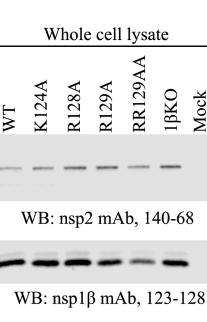
c: Pigs for blood collection at indicated time point;

d: Pigs terminated at indicated time point;

e: Pig #12 died before 7 dpi


Group	Pig #	Designed Mutation	2 nd site Mutation			
14 days post infection						
vR129A	31	reversion (GCG to AGG)				
	32	stable	122 ^a : UCU to CCU ^b , Ser to Pro ^c			
	33	stable	122: UCU to CCU, Ser to Pro			
	34	stable	122: UCU to CCU, Ser to Pro			
	35	stable	122: UCU to CCU, Ser to Pro			
	36	stable	122: UCU to CCU, Ser to Pro			
		21 days post in	fection			
WT	14		9: GAC to GGC, Asp to Gly			
	15		9: GAC to GGC, Asp to Gly			
-	16		9: GAC to GGC, Asp to Gly			
vR128A	22	stable	9: GAC to GGC, Asp to Gly;			
			122: UCU to CCU, Ser to Pro			
	23	stable	9: GAC to GGC, Asp to Gly;			
			122: UCU to CCU, Ser to Pro			
	24	stable	9: GAC to GGC, Asp to Gly;			
			109: CAU to C(A/G)U, His to His/Arg;			
			122: UCU to CCU, Ser to Pro;			
			141: CUA to C(U/C)A, Leu to Leu/Pro			
vR129A	31	reversion (GCG to AGG)	9: GAC to GGC, Asp to Gly			
	32	stable	9: GAC to GGC, Asp to Gly;			
			87: GAA to $GA(A/G)$;			
			122: UCU to CCU, Ser to Pro			
	33	stable	9: GAC to GGC, Asp to Gly;			
			122: UCU to CCU, Ser to Pro;			
			169: UCU to (C/U)CU, Ser to Ser/Pro			
vRR129AA	40	stable				
	41	stable				
	42	stable				
		35 days post in	fection			
WT	17		9: GAC to GGC, Asp to Gly;			
			126: CUA to CU(A/G)			
	18		9: GAC to GGC, Asp to Gly			
vR128A	27	stable	9: GAC to GGC, Asp to Gly;			
			109: CAU to CGU, His to Arg;			
			122: UCU to CCU, Ser to Pro			
vR129A	34	stable	9: GAC to GGC, Asp to Gly;			
			122: UCU to CCU, Ser to Pro;			

Downloaded from http://jvi.asm.org/ on November 5, 2018 by guest


Table 2. Sequence analysis of nsp1ß coding region in viruses recovered from infected pigs

vR129A	34		141: CUA to CU(A/G)
			169: UCU to (C/U)CU, Ser to Ser/Pro
	35	stable	9: GAC to GGC, Asp to Gly;
			122: UCU to CCU, Ser to Pro;
	36	stable	9: GAC to GGC, Asp to Gly;
			122: UCU to CCU, Ser to Pro;
			169: UCU to CCU, Ser to Pro
vRR129AA	44	stable	9: GAC to GGC, Asp to Gly
	45	stable	9: GAC to GGC, Asp to Gly

a. Numbers refer to codon position in $nsp1\beta$ coding region; b. Nucleotide substitution; c. Amino acid substitution.

 \sum

RR129AA

1βΚΟ

Mock

-nsp2

-nsp1β

R129A

B

kDa

-nsp2TF

–nsp2TF

250-

150-

100-

25

A

kDa

150

150-

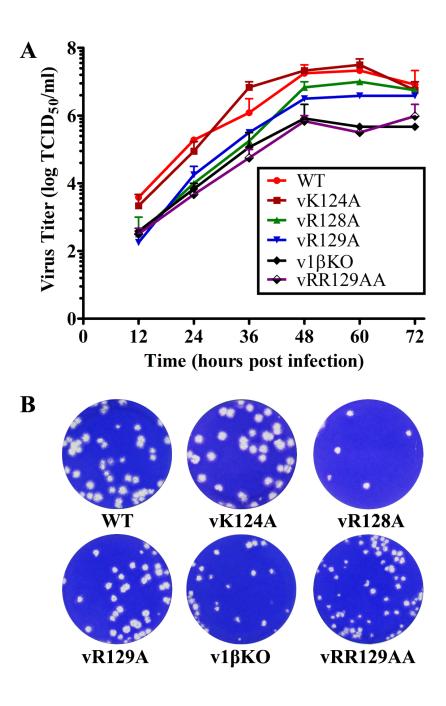
IP: pAb-TF

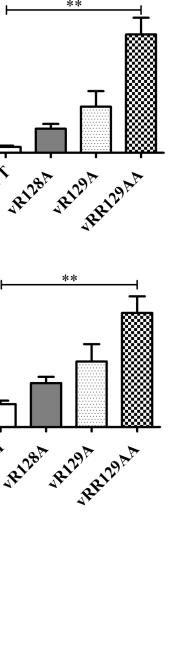
R129A

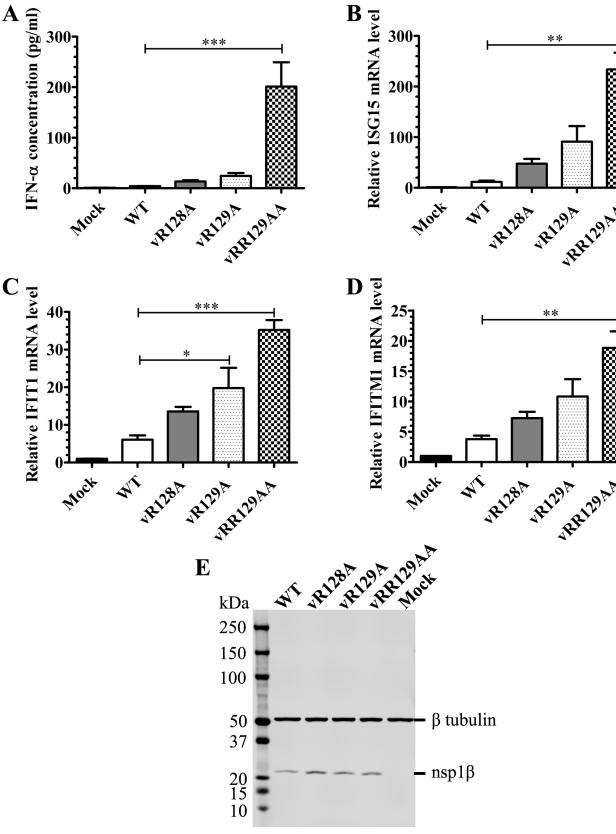
WB: pAb-TF

WB: nsp2 mAb, 140-68

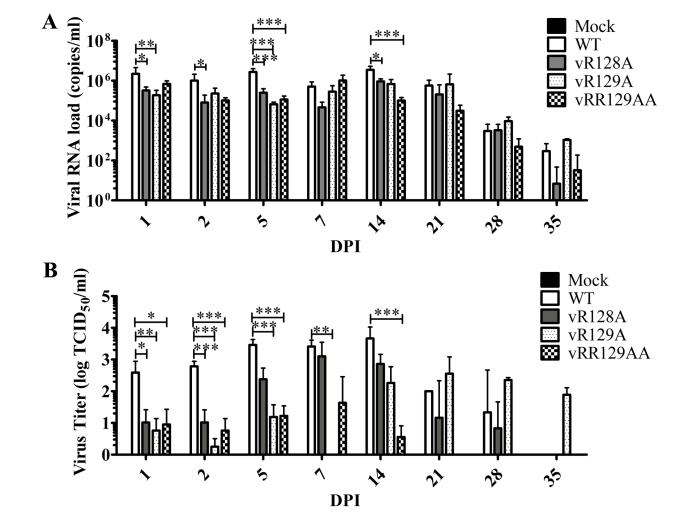
R128A

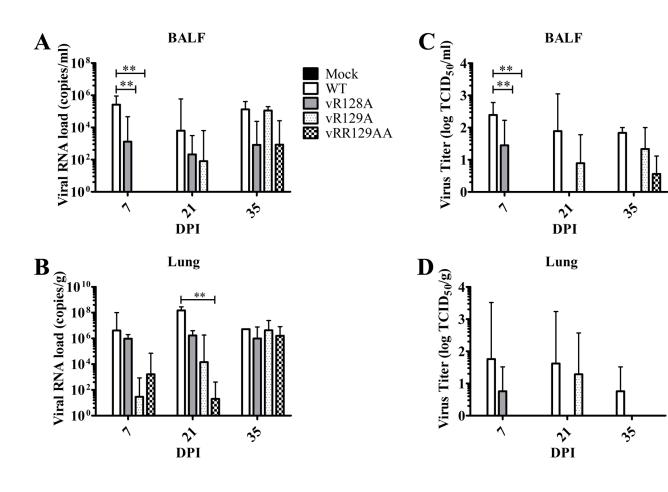

K124A

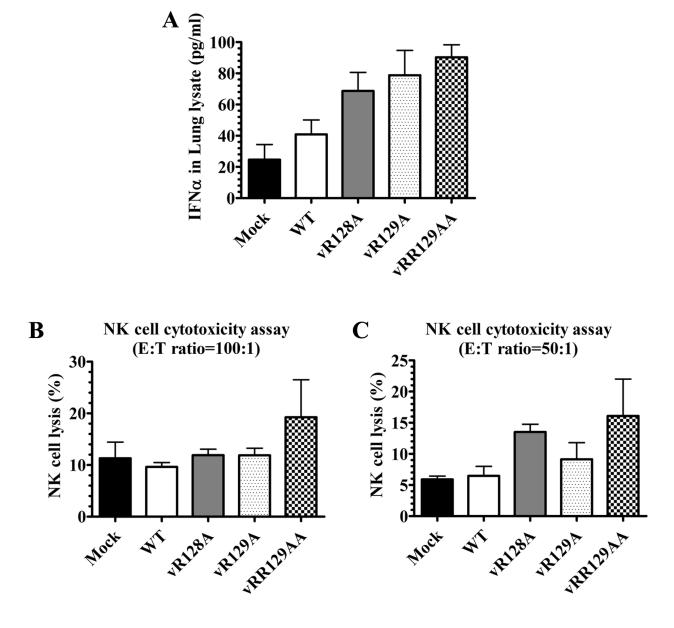

WT


RR129AA

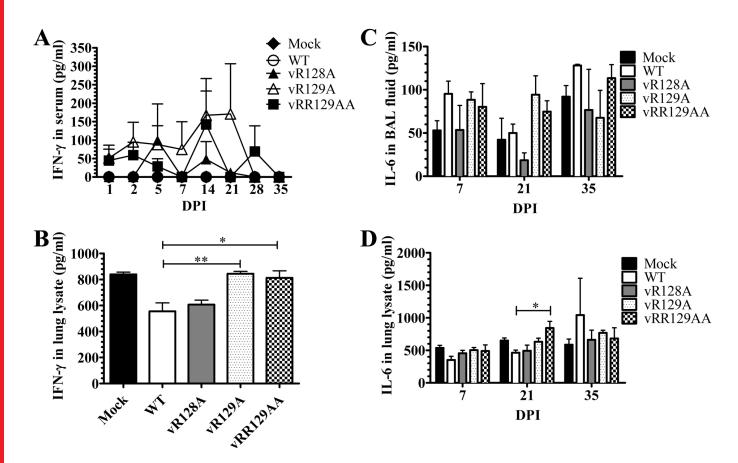
1βΚΟ Mock


WB: nsp1β mAb, 123-128; α-β tubulin

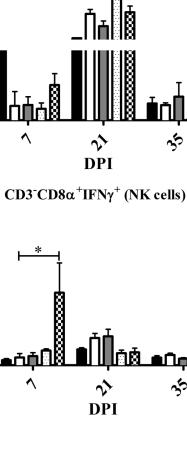

 \sum


Z

Journal of Virology


 \leq

Z


Accepted Manuscript Posted Online

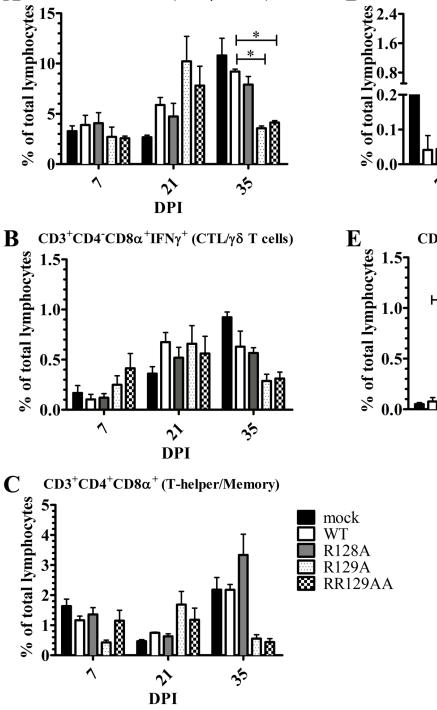
Journal of Virology

Z

A

D CD3⁺CD4⁺CD8 α ⁺IFN γ ⁺ (T-helper/Memory)

か DPI


ريمه

Πā

ż

Ā

か DPI

CD3⁺CD4⁻CD8α⁺ (CTL/γδ Tcells)