Skip navigation
DSpace logo
  • Home
  • Browse
    • SMD
      & Institutes
    • Browse Items by:
    • Published/ Complete Date
    • Author/ PI/CoPI
    • Title
    • Keyword (Publication)
  • Sign on to:
    • My KRISHI
    • Receive email
      updates
    • Edit Profile
ICAR logo

KRISHI

ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)


  1. KRISHI Publication and Data Inventory Repository
  2. Natural Resource Management A8
  3. ICAR-Central Arid Zone Research Institute L7
  4. NRM-CAZRI-Publication
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item: http://krishi.icar.gov.in/jspui/handle/123456789/21647
Title: Soil properties under Acacia nilotica trees in a traditional agroforestry system in central India
Authors: C.B. Pandey
A.K. Singh
D.K. Sharma
ICAR Data Use Licennce: http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf
Author's Affiliated institute: ICAR::Central Arid Zone Research Institute
Published/ Complete Date: 2000-10-01
Project Code: Not Available
Keywords: C:N ratio C:P ratio dispersed trees N mineralization soil texture
Publisher: Springer
Citation: Not Available
Abstract/Description: Acacia nilotica (L.) Willd. ex Del is an important multipurpose tree of traditional agroforestry system in the central belt of the Indian sub-continent. The tree is reported to reduce crop yields under its canopy. However, information is lacking on the spatial variation in soil physical characters, nutrient pool sizes and their availability to crops under its canopy. The present study reports influence of three tree canopy positions, viz. mid canopy, canopy edge and canopy gap, of Acacia nilotica (≥ 12 years) on texture, organic C, total and mineral N and P, and soil pH, in 0 to 10, 10 to 20 and 20 to 30 cm depth of the soil at ten sites in a traditional agroforestry system. Sand particles declined by 10% and 9% whereas clay particles increased by 14% and 10% under mid canopy and canopy edge, respectively, compared to that under canopy gap. Clay particles did not decline significantly with soil depth under all canopy positions. Proportion of silt particles was not influenced by the canopy position. Soil organic C, total N, total P, mineral N (NO3−-N and NH4+-N) and P were greater under mid canopy and canopy edge positions compared to canopy gap. Soil organic C and N pool sizes were maximum in 0 to 10 cm and declined with the depth of soil. Total and mineral P contents were nearly uniform across the depths. C/N ratio tended to increase with the soil depth whereas C/P ratio declined.
Description: Not Available
Type(s) of content: Research Paper
Sponsors: Not Available
Language: English
Name of Journal: Agroforestry Systems
NAAS Rating: 7.97
Volume No.: 49(1)
Page Number: 53–61
Name of the Division/Regional Station: Division of natural resources
Source, DOI or any other URL: https://doi.org/10.1023/A:1006314411454
URI: http://krishi.icar.gov.in/jspui/handle/123456789/21647
Appears in Collections:NRM-CAZRI-Publication

Files in This Item:
There are no files associated with this item.
Show full item record


Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.

  File Downloads  

Mar 2023: 72393 Feb 2023: 91778 Jan 2023: 163488 Dec 2022: 133147 Nov 2022: 119666 Oct 2022: 99600

Total Download
3817605

(Also includes document to fetched through computer programme by other sites)
( From May 2017 )

ICAR Data Use Licence
Disclaimer
©  2016 All Rights Reserved  • 
Indian Council of Agricultural Research
Krishi Bhavan, Dr. Rajendra Prasad Road, New Delhi-110 001. INDIA

INDEXED BY

KRISHI: Inter Portal Harvester

DOAR
Theme by Logo CINECA Reports

DSpace Software Copyright © 2002-2013  Duraspace - Feedback