KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/21647
Title: | Soil properties under Acacia nilotica trees in a traditional agroforestry system in central India |
Authors: | C.B. Pandey A.K. Singh D.K. Sharma |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Central Arid Zone Research Institute |
Published/ Complete Date: | 2000-10-01 |
Project Code: | Not Available |
Keywords: | C:N ratio C:P ratio dispersed trees N mineralization soil texture |
Publisher: | Springer |
Citation: | Not Available |
Abstract/Description: | Acacia nilotica (L.) Willd. ex Del is an important multipurpose tree of traditional agroforestry system in the central belt of the Indian sub-continent. The tree is reported to reduce crop yields under its canopy. However, information is lacking on the spatial variation in soil physical characters, nutrient pool sizes and their availability to crops under its canopy. The present study reports influence of three tree canopy positions, viz. mid canopy, canopy edge and canopy gap, of Acacia nilotica (≥ 12 years) on texture, organic C, total and mineral N and P, and soil pH, in 0 to 10, 10 to 20 and 20 to 30 cm depth of the soil at ten sites in a traditional agroforestry system. Sand particles declined by 10% and 9% whereas clay particles increased by 14% and 10% under mid canopy and canopy edge, respectively, compared to that under canopy gap. Clay particles did not decline significantly with soil depth under all canopy positions. Proportion of silt particles was not influenced by the canopy position. Soil organic C, total N, total P, mineral N (NO3−-N and NH4+-N) and P were greater under mid canopy and canopy edge positions compared to canopy gap. Soil organic C and N pool sizes were maximum in 0 to 10 cm and declined with the depth of soil. Total and mineral P contents were nearly uniform across the depths. C/N ratio tended to increase with the soil depth whereas C/P ratio declined. |
Description: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Agroforestry Systems |
NAAS Rating: | 7.97 |
Volume No.: | 49(1) |
Page Number: | 53–61 |
Name of the Division/Regional Station: | Division of natural resources |
Source, DOI or any other URL: | https://doi.org/10.1023/A:1006314411454 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/21647 |
Appears in Collections: | NRM-CAZRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.