KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/42742
Title: | Robust analysis of agricultural field experiments |
Other Titles: | Not Available |
Authors: | Ranjit Kumar Paul Lalmohan Bhar Sanjeev Panwar Anil Kumar |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Agricultural Statistics Research Institute |
Published/ Complete Date: | 2015-01-01 |
Project Code: | Not Available |
Keywords: | Agricultural experiments Block design Least Median of Squares estimation Outlier |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Agricultural data generated from designed experiments are also prone to occurrence outliers. It is well known that Least Squares (LS) model can be distorted even by a single outlying observation. An outlier is one that appears to deviate markedly from the other members of the sample in which it occurs. The sources of influential subsets are diverse. Rousseeuw (1984) introduced a robust method known as Least Median of Squares (LMS) for linear regression models. By this method, the median of squares errors is minimized in order to obtain parameter estimates. It turns out that this estimator is very robust with respect to outliers. Since it focuses on the median residual, up to half of the observations can disagree without masking a model that fits the rest of the data. Therefore, the breakdown point of this estimator is 50%, the highest possible value. In the present investigation, this method is applied to analyze the data set containing outlying observations generated from agricultural field experiments. The data sets for the present investigation have been taken from Agricultural Field Experiments Information System, IASRI, New Delhi. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Indian Journal of Agricultural Sciences |
NAAS Rating: | 6.21 |
Volume No.: | 85(1) |
Page Number: | 55-59 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/42742 |
Appears in Collections: | AEdu-IASRI-Publication |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RKPAUL_IJAS.pdf | 47.46 kB | Adobe PDF | View/Open |
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.