KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/44719
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MOHD ASHRAF ASHFAQ | en_US |
dc.contributor.author | V DINESH KUMAR | en_US |
dc.contributor.author | P SOMA SEKHAR REDDY | en_US |
dc.contributor.author | CH ANIL KUMAR | en_US |
dc.contributor.author | K SAI KUMAR | en_US |
dc.contributor.author | N NARASIMHA RAO | en_US |
dc.contributor.author | M TARAKESWARI | en_US |
dc.contributor.author | M SUJATHA | en_US |
dc.date.accessioned | 2021-01-13T05:21:44Z | - |
dc.date.available | 2021-01-13T05:21:44Z | - |
dc.date.issued | 2020-02-08 | - |
dc.identifier.citation | Ashfaq, M.A., Dinesh Kumar, V., Soma Sekhar Reddy, P., Sai Kumar, K., Narasimha Rao, N., Tarakeswari, M. and M. Sujatha. 2020. Post transcriptional gene silencing: Basic concepts and applications. Journal of Biosciences 45, 128 | en_US |
dc.identifier.issn | Not Available | - |
dc.identifier.uri | http://krishi.icar.gov.in/jspui/handle/123456789/44719 | - |
dc.description | Not Available | en_US |
dc.description.abstract | Post-transcriptional gene silencing (PTGS)-mediated gene silencing exploits the cellular mechanism wherein transcripts having sequence similarity to the double-stranded RNA (dsRNA) molecules present in the cell will be subjected to degradation. PTGS is closely related to natural processes such as RNA-mediated virus resistance and cross-protection in plants. Gene silencing and the cellular machinery for affecting this phenomenon might have evolved as a natural protective measure against viral infection in plants. In PTGS, small interfering RNA (siRNA) molecules of 21–23 nucleotides length act as homology guides for triggering the systemic degradation of transcripts homologous to the siRNA molecules. PTGS phenomenon, first discovered in transgenic petunia plants harbouring chalcone synthase gene and termed co-suppression, has been subsequently exploited to target specific gene transcripts for degradation leading to manifestation of desirable traits in crop plants. Targeted gene silencing has been achieved either through the introduction of DNA constructs encoding dsRNA or antisense RNA or by deploying cosuppression constructs producing siRNAs against the transcript of interest. Understanding the mechanism of gene silencing has led to the development of several alternative strategies for inducing gene silencing in a precise and controlled way.This has paved the way for using PTGS as one of the chief functional genomics tools in plants and has helped in unraveling the mechanismofmany cellular processes and identifying the focal points in pathways, besides, opening new vistas in genetic engineering of plants for human benefits. PTGS has shown great potential in silencing the deleterious genes efficiently so that value-added plant products could be obtained. Thus, PTGS has ushered in a new era in the genetic manipulation of plants for both applied and basic studies. In this review, we have outlined the basics ofRNAi-mediated gene silencing and summarized thework carried out at our institute using this approach, as case studies. In particular, adopting RNAi-mediated gene silencing (a) as a method to restore fertility in transgenic male sterile lines developed based on orfH522 gene from sunflower PET1-CMSsource, (b) as a tool to suppress the production of toxic proteins, ricin and RCA, in castor, and (c) as an approach to induce bud necrosis virus resistance in sunflower has been discussed. Examples from other plant systems also have been mentioned to exemplify the concept and utility of gene silencing in crop plants. | en_US |
dc.description.sponsorship | ICAR-IIOR | en_US |
dc.language.iso | English | en_US |
dc.publisher | Indian Society of Oilseeds Research | en_US |
dc.relation.ispartofseries | Not Available; | - |
dc.subject | Post-transcriptional gene silencing (PTGS); | en_US |
dc.subject | RNA interference (RNAi); | en_US |
dc.subject | double-stranded RNA (dsRNA); | en_US |
dc.subject | small interfering RNA (siRNA); | en_US |
dc.subject | RNA induced silencing complex (RISC); | en_US |
dc.subject | antisense RNA technology | en_US |
dc.title | Post-transcriptional gene silencing: Basic concepts and applications | en_US |
dc.title.alternative | Not Available | en_US |
dc.type | Journal | en_US |
dc.publication.journalname | Journal of Oilseeds Research | en_US |
dc.publication.volumeno | Volume 37, Special issue | en_US |
dc.publication.pagenumber | 128 (10 pages) | en_US |
dc.publication.divisionUnit | Crop Improvement | en_US |
dc.publication.sourceUrl | https://doi.org/10.1007/s12038-020-00098-3 | en_US |
dc.publication.authorAffiliation | ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad- 500 030 | en_US |
dc.publication.authorAffiliation | Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110 062, India | en_US |
dc.ICARdataUseLicence | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf | en_US |
Appears in Collections: | CS-IIOR-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.