KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/48244
Title: | Microwave assisted fast fabrication of zinc/iron oxides based polymeric nanocomposites and evaluation on equine fibroblasts |
Other Titles: | Not Available |
Authors: | Anju Manuja Balvinder Kumar T Riyesh TR Talluri BN Tripathi |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::National Research Centre on Equines |
Published/ Complete Date: | 2020-09-25 |
Project Code: | Not Available |
Keywords: | ZnO nanoparticles Microwave Alginate |
Publisher: | Elsevier |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | We aimed to provide a tissue repair material, which can be synthesized rapidly, using polymers mimicking the natural environment in the extra-cellular matrix and metals/minerals. The components should have the potential to be used in tissue repair and simultaneously, reducing the side-effects of the incorporated molecules. It is challenging to manage the dispersibility of ZnO NPs in common solutions like water. Here, we report a novel method for preparing highly dispersible suspensions of ZnO NPs. In contrast to those synthesized by conventional methods, microwave assisted method allowed synthesis of dispersible ZnO NPs and the incorporation of zinc/Iron oxides NPs within alginate and gum matrix (AG) in a short span of time providing high yield of the product. The nanoformulations were characterized for size, morphology, interaction of various chemicals used during their synthesis by transmissible electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and energy dispersive X ray Spectrum. It was also evaluated for cytotoxicity and their effect on equine fibroblast cells. Microwave-assisted fabrication of zinc/iron oxides nanoparticles provided flowerlike morphology with good dispersibility and high yield in a short span of time. Our results revealed that ZnO NPs were more cytotoxic than AG ZnO NPs and doped AG Fe3O4 doped ZnO NPs at higher concentrations. Further metal nanoparticles capped with alginate/acacia with size range less than 100 nm demonstrated high stability, good biocompatibility, re-epithelization and enhanced mineralization in horse fibroblast cells. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Article |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | International Journal of Biological Macromolecules |
NAAS Rating: | 11.16 |
Volume No.: | 165 |
Page Number: | 71-81 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | https://doi.org/10.1016/j.ijbiomac.2020.09.172 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/48244 |
Appears in Collections: | AS-NRCE-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.