KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/6061
Title: | Transgenic Peanut (Arachis hypogaea L.) Overexpressing mtlD Gene Showed Improved Photosynthetic, Physio-Biochemical, and Yield-Parameters under Soil-Moisture Deficit Stress in Lysimeter System |
Other Titles: | Not Available |
Authors: | Patel, Kirankumar G. Radhakrishnan, T. Mishra, G.P. Mandaliya, V.B. Kumar, A. Dobaria, J.R. |
Author's Affiliated institute: | ICAR::Directorate of Groundnut Research |
Published/ Complete Date: | 2017-11-03 |
Project Code: | IXX04805 |
Keywords: | drought stress peanut lysimeter system physio-biochemical parameters growth-related traits wilting symptoms groundnut |
Publisher: | Frontiers |
Citation: | Patel KG, Thankappan R, Mishra GP, Mandaliya VB, Kumar A and Dobaria JR (2017) Transgenic Peanut (Arachis hypogaea L.) Overexpressing mtlD Gene Showed Improved Photosynthetic, Physio-Biochemical, and Yield-Parameters under Soil-Moisture Deficit Stress in Lysimeter System. Front. Plant Sci. 8:1881. doi: 10.3389/fpls.2017.01881 |
Series/Report no.: | Not Available; |
Abstract/Description: | Peanut, an important oilseed crop, frequently encounters drought stress (DS) during its life cycle. In this study, four previously developed mtlD transgenic (T) peanut lines were used for detailed characterization under DS, at the reproductive stage using lysimeter system under controlled greenhouse conditions. In dry-down experiments, T lines maintained better photosynthetic machinery, such as, photosynthesis rate, stomatal conductance, transpiration rate, and SPAD (Soil-Plant Analyses Development) values, and had lower oxidative damage, including lipid membrane peroxidation and hydrogen peroxide and superoxide radical accumulation than WT, when exposed to 24 days of DS. WT plants had a more negative water potential (WP; up to −3.22 MPa) than T lines did (−2.56 to −2.71 MPa) at day 24 of DS treatment. During recovery, T lines recovered easily whereas 67% of WT plants failed to recover. In T lines, the rate of photosynthesis strongly and positively correlated with the transpiration rate (r = 0.92), RWC (r = 0.90), WP (r = 0.86), and total chlorophyll content (r = 0.75), suggesting its strong correlation with water retention-related parameters. Furthermore, yield parameters such as, pod weight and harvest index of T lines were up to 2.19 and 1.38 times more than those of WT plants, respectively. Thus, the significantly better performance of mtlD T peanut lines than of WT plants under DS could be attributed to the accumulation of mannitol, which in turn helped in maintaining the osmoregulation and ROS scavenging activity of mannitol and ultimately conferred water-economizing capacity and higher yield in T lines than in WT plants. |
Description: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Frontiers in Plant Science |
NAAS Rating: | 10.4 |
Volume No.: | 8 |
Page Number: | 1881 |
Name of the Division/Regional Station: | Crop Improvement |
Source, DOI or any other URL: | https://www.frontiersin.org/articles/10.3389/fpls.2017.01881/full |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/6061 |
Appears in Collections: | CS-DGR-Publication |
Files in This Item:
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.