Skip navigation
DSpace logo
  • Home
  • Browse
    • SMD
      & Institutes
    • Browse Items by:
    • Published/ Complete Date
    • Author/ PI/CoPI
    • Title
    • Keyword (Publication)
  • Sign on to:
    • My KRISHI
    • Receive email
      updates
    • Edit Profile
ICAR logo

KRISHI

ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)


  1. KRISHI Publication and Data Inventory Repository
  2. Agricultural Education A1
  3. ICAR-Indian Agricultural Statistics Research Institute B7
  4. AEdu-IASRI-Publication
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item: http://krishi.icar.gov.in/jspui/handle/123456789/68726
Title: Improved recognition of splice sites in A. thaliana by incorporating secondary structure information into sequence-derived features: a computational study
Other Titles: Not Available
Authors: Prabina Kumar Meher
Subhrajit Satpathy
ICAR Data Use Licennce: http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf
Author's Affiliated institute: ICAR::Indian Agricultural Statistics Research Institute
Published/ Complete Date: 2021-10-31
Project Code: Not Available
Keywords: Secondary structure
Computational biology
Machine learning
Splice junction
Nucleotide dependencies
Publisher: Continuous Article Publishing
Citation: Meher, P.K., Satpathy, S. Improved recognition of splice sites in A. thaliana by incorporating secondary structure information into sequence-derived features: a computational study. 3 Biotech 11, 484 (2021). https://doi.org/10.1007/s13205-021-03036-8
Series/Report no.: Not Available;
Abstract/Description: Identification of splice sites is an important aspect with regard to the prediction of gene structure. In most of the existing splice site prediction studies, machine learning algorithms coupled with sequence-derived features have been successfully employed for splice site recognition. However, the splice site identification by incorporating the secondary structure information is lacking, particularly in plant species. Thus, we made an attempt in this study to evaluate the performance of structural features on the splice site prediction accuracy in Arabidopsis thaliana. Prediction accuracies were evaluated with the sequence-derived features alone as well as by incorporating the structural features into the sequence-derived features, where support vector machine (SVM) was employed as prediction algorithm. Both short (40 base pairs) and long (105 base pairs) sequence datasets were considered for evaluation. After incorporating the secondary structure features, improvements in accuracies were observed only for the longer sequence dataset and the improvement was found to be higher with the sequence-derived features that accounted nucleotide dependencies. On the other hand, either a little or no improvement in accuracies was found for the short sequence dataset. The performance of SVM was further compared with that of LogitBoost, Random Forest (RF), AdaBoost and XGBoost machine learning methods. The prediction accuracies of SVM, AdaBoost and XGBoost were observed to be at par and higher than that of RF and LogitBoost algorithms. While prediction was performed by taking all the sequence-derived features along with the structural features, a little improvement in accuracies was found as compared to the combination of individual sequence-based features and structural features. To the best of our knowledge, this is the first attempt concerning the computational prediction of splice sites using machine learning methods by incorporating the secondary structure information into the sequence-derived features. All the source codes are available at https://github.com/meher861982/SSFeature.
Description: Not Available
ISSN: 2190-5738
Type(s) of content: Article
Sponsors: Not Available
Language: English
Name of Journal: 3 Biotech.
Journal Type: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology
NAAS Rating: 8.406
Impact Factor: 2.406
Volume No.: 11
Page Number: 484
Name of the Division/Regional Station: Statistical Genetics
Source, DOI or any other URL: https://doi.org/10.1007/s13205-021-03036-8
URI: http://krishi.icar.gov.in/jspui/handle/123456789/68726
Appears in Collections:AEdu-IASRI-Publication

Files in This Item:
There are no files associated with this item.
Show full item record


Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.

  File Downloads  

May 2022: 67321 Apr 2022: 94186 Mar 2022: 96096 Feb 2022: 93736 Jan 2022: 86503 Dec 2021: 98347

Total Download
2679302

(Also includes document to fetched through computer programme by other sites)
( From May 2017 )

ICAR Data Use Licence
Disclaimer
©  2016 All Rights Reserved  • 
Indian Council of Agricultural Research
Krishi Bhavan, Dr. Rajendra Prasad Road, New Delhi-110 001. INDIA

INDEXED BY

KRISHI: Inter Portal Harvester

DOAR
Theme by Logo CINECA Reports

DSpace Software Copyright © 2002-2013  Duraspace - Feedback