KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/73682
Title: | nifPred: Proteome-wide identification and categorization of nitrogen-fixation proteins of diaztrophs based on composition-transition-distribution features using support vector machine. |
Other Titles: | Not Available |
Authors: | Prabina K. Meher Tanmaya K. Sahu Jyotilipsa Mohanty Shachi Gahoi Supriya Purru Monendra Grover Atmakuri R. Rao |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Agricultural Statistics Research Institute Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India |
Published/ Complete Date: | 2018-05-29 |
Project Code: | Not Available |
Keywords: | nitrogenase diaztroph Fe protein Fe-Mo protein biological nitrogen fixation di-nitrogenase |
Publisher: | Not Available |
Citation: | Meher Prabina K., Sahu Tanmaya K., Mohanty Jyotilipsa, Gahoi Shachi, Purru Supriya, Grover Monendra, Rao Atmakuri R.(2018). Proteome-Wide Identification and Categorization of Nitrogen-Fixation Proteins of Diaztrophs Based on Composition-Transition-Distribution Features Using Support Vector Machine, Frontiers in Microbiology, 9. https://www.frontiersin.org/articles/10.3389/fmicb.2018.01100 |
Series/Report no.: | Not Available; |
Abstract/Description: | As inorganic nitrogen compounds are essential for basic building blocks of life (e.g., nucleotides and amino acids), the role of biological nitrogen-fixation (BNF) is indispensible. All nitrogen fixing microbes rely on the same nitrogenase enzyme for nitrogen reduction, which is in fact an enzyme complex consists of as many as 20 genes. However, the occurrence of six genes viz., nifB, nifD, nifE, nifH, nifK, and nifN has been proposed to be essential for a functional nitrogenase enzyme. Therefore, identification of these genes is important to understand the mechanism of BNF as well as to explore the possibilities for improving BNF from agricultural sustainability point of view. Further, though the computational tools are available for the annotation and phylogenetic analysis of nifH gene sequences alone, to the best of our knowledge no tool is available for the computational prediction of the above mentioned six categories of nitrogen-fixation (nif) genes or proteins. Thus, we proposed an approach, which is first of its kind for the computational identification of nif proteins encoded by the six categories of nif genes. Sequence-derived features were employed to map the input sequences into vectors of numeric observations that were subsequently fed to the support vector machine as input. Two types of classifier were constructed: (i) a binary classifier for classification of nif and non-nitrogen-fixation (non-nif) proteins, and (ii) a multi-class classifier for classification of six categories of nif proteins. Higher accuracies were observed for the combination of composition-transition-distribution (CTD) feature set and radial kernel, as compared to the other feature-kernel combinations. The overall accuracies were observed >90% in both binary and multi-class classifications. The developed approach further achieved >92% accuracy, while evaluated with blind (independent) test datasets. The developed approach also produced higher accuracy in identifying nif proteins, while evaluated using proteome-wide datasets of several species. Furthermore, we established a prediction server nifPred (http://webapp.cabgrid.res.in/nifPred) to assist the scientific community for proteome-wide identification of six categories of nif proteins. Besides, the source code of nifPred is also available at https://github.com/PrabinaMeher/nifPred. The developed web server is expected to supplement the transcriptional profiling and comparative genomics studies for the identification and functional annotation of genes related to BNF. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Frontiers in Microbiology |
NAAS Rating: | 11.64 |
Impact Factor: | 5.64 |
Volume No.: | 9 |
Page Number: | 1100 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | 10.3389/fmicb.2018.01100 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/73682 |
Appears in Collections: | AEdu-IASRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.