KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/81909
Title: | Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications |
Authors: | Anju Manuja Balvinder Kumar Rajesh kumar Dharvi Chhabra M gosh |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | NRCE |
Published/ Complete Date: | 2021-01-01 |
Project Code: | Not Available |
Keywords: | Metal oxide nanoparticles Metallic nanoparticles Toxicity Physicochemical properties Delivery Artificial intelligence Metal-organic frameworks |
Publisher: | Not Available |
Citation: | Manuja, Anju, et al. "Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications." Toxicology Reports 8 (2021): 1970-1978. |
Series/Report no.: | Not Available; |
Abstract/Description: | Metal/metal oxide nanoparticles show promise for various applications, including diagnosis, treatment, theranostics, sensors, cosmetics, etc. Their altered chemical, optical, magnetic, and structural properties have differential toxicity profiles. Depending upon their physical state, these NPs can also change their properties due to alteration in pH, interaction with proteins, lipids, blood cells, and genetic material. Metallic nanomaterials (comprised of a single metal element) tend to be relatively stable and do not readily undergo dissolution. Contrarily, metal oxide and metal alloy-based nanomaterials tend to exhibit a lower degree of stability and are more susceptible to dissolution and ion release when introduced to a biological milieu, leading to reactive oxygen species production and oxidative stress to cells. Since NPs have considerable mobility in various biological tissues, the investigation related to their adverse effects is a critical issue and required to be appropriately addressed before their biomedical applications. Short and long-term toxicity assessment of metal/metal oxide nanoparticles or their nano-formulations is of paramount importance to ensure the global biome's safety; otherwise, to face a fiasco. This article provides a comprehensive introspection regarding the effects of metal/metal oxides’ physical state, their surface properties, the possible mechanism of actions along with the potential future strategy for remediation of their toxic effects. |
Description: | Metal/metal oxide nanoparticles show promise for various applications, including diagnosis, treatment, theranostics, sensors, cosmetics, etc. Their altered chemical, optical, magnetic, and structural properties have differential toxicity profiles. Depending upon their physical state, these NPs can also change their properties due to alteration in pH, interaction with proteins, lipids, blood cells, and genetic material. Metallic nanomaterials (comprised of a single metal element) tend to be relatively stable and do not readily undergo dissolution. Contrarily, metal oxide and metal alloy-based nanomaterials tend to exhibit a lower degree of stability and are more susceptible to dissolution and ion release when introduced to a biological milieu, leading to reactive oxygen species production and oxidative stress to cells. Since NPs have considerable mobility in various biological tissues, the investigation related to their adverse effects is a critical issue and required to be appropriately addressed before their biomedical applications. Short and long-term toxicity assessment of metal/metal oxide nanoparticles or their nano-formulations is of paramount importance to ensure the global biome's safety; otherwise, to face a fiasco. This article provides a comprehensive introspection regarding the effects of metal/metal oxides’ physical state, their surface properties, the possible mechanism of actions along with the potential future strategy for remediation of their toxic effects. |
ISSN: | Not Available |
Type(s) of content: | Article |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications |
Volume No.: | 8 |
Page Number: | Not Available |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/81909 |
Appears in Collections: | AS-NRCE-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.