KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/84450
Title: | Exogenous variable driven deep learning models for improved price forecasting of TOP crops in India |
Other Titles: | Not Available |
Authors: | G. H. Harish Nayak Md Wasi Alam K. N. Singh G. Avinash Rajeev Ranjan Kumar Mrinmoy Ray Chandan Kumar Deb |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Agricultural Statistics Research Institute ICAR::Indian Agricultural Research Institute |
Published/ Complete Date: | 2024-01-01 |
Project Code: | Not Available |
Keywords: | Deep learning, Exogenous variable, Agricultural crop prices, NBEATSX, TransformerX |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Accurately predicting agricultural commodity prices is crucial for India’s economy. Traditional parametric models struggle with stringent assumptions, while machine learning (ML) approaches, though data-driven, lack automatic feature extraction. Deep learning (DL) models, with advanced feature extraction and predictive abilities, offer a promising solution. However, their application to agricultural price data ignored the exogenous factors. Hence, the study explored advanced versions of the well-known univariate models, NBEATSX and TransformerX. The research employed price data for essential crops like Tomato, Onion, and Potato (TOP) from major Indian markets and complemented it with corresponding weather data (precipitation and temperature). To provide a comprehensive analysis, the study also evaluated traditional statistical methods (ARIMAX and MLR) and a suite of ML algorithms (ANN, SVR, RFR, and XGBoost). The performance of these models was rigorously evaluated using error metrics like RMSE, MAE, sMAPE, MASE and QL. The findings were significant indicating DL models, particularly when augmented with exogenous variables, consistently outshone other methods with NBEATSX and TransformerX showing an average RMSE of 110.33 and 135.33, MAE of 60.08 and 74.92, sMAPE of 22.14 and 24.00, MASE of 1.02 and 1.32 and QL of 30.04 and 34.07, respectively. They exhibited lower error metrics, as compare to the statistical and ML models underscoring their effectiveness and potential in agricultural crop price forecasting. This study not only bridged a crucial research gap but also highlighted the robust potential of DL models in enhancing the accuracy of agricultural commodity price predictions in India. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Scientific Reports |
Journal Type: | Included NAAS journal list |
NAAS Rating: | 9.8 |
Impact Factor: | Not Available |
Volume No.: | 14 |
Page Number: | 17203 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/84450 |
Appears in Collections: | AEdu-IASRI-Publication |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Harish_2024_SR.pdf | 7.7 MB | Adobe PDF | View/Open |
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.