KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/23360
Title: | Comparison of properties and aquatic arsenic removal potentials of organically modified smectite adsorbents |
Other Titles: | Not Available |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Agricultural Research Institute |
Published/ Complete Date: | 2019-05-01 |
Project Code: | Not Available |
Keywords: | Organic modification Smectite Arsenic Adsorption Water treatment Clay characterization |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Arsenic (As) poses a tremendous threat to human health due to exposure through arsenic-contaminated drinking water and/or food. We aimed to develop organically modified clay adsorbents for the removal of As from aqueous solution. We modified a smectite sample using three organic agents, namely hexadecyl trimethylammonium (HDTMA), chitosan and citric acid, and characterized the products using X-ray diffraction, infrared spectroscopy, and scanning electron microscopy techniques. The characterization techniques suggested successful organic modifications of the smectite sample. The surfactant-modified smectite was the most efficient (66.9%) As removing adsorbent with a maximum adsorption capacity of 473.2 μg g−1. Kinetic study showed that the adsorbents reached As adsorption equilibrium within 3 h, and the data fitted reasonably well to power function and simple Elovich equations (R2>0.89). The adsorption data were explained well by the Freundlich and Sips isothermal models. The surfactant-modified and chitosan-grafted organoclays adsorbed As by electrostatic attraction and anion exchange, whereas the citric acid activated smectite followed ligand exchange and simple anion exchange mechanisms. This study thus demonstrated the potential of surfactant-modified clays in removing As from contaminated waters. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Journal of Hazardous Materials |
NAAS Rating: | 15.04 |
Volume No.: | Not Available |
Page Number: | Not Available |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | https://doi.org/10.1016/j.jhazmat.2019.05.053 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/23360 |
Appears in Collections: | NRM-CSSRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.