KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/23623
Title: | Fluoride in Groundwater: Toxicological Exposure and Remedies |
Other Titles: | Not Available |
Authors: | S. K. Jha,R. K. Singh,T. Damodaran,V. K. Mishra, D. K. Sharma, and Deepak Rai |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Central Soil Salinity Research Institute ICAR::Indian Institute of Sugarcane Research |
Published/ Complete Date: | 2013-04-10 |
Project Code: | Not Available |
Keywords: | fluoride, toxicology, exposure |
Publisher: | Taylor & Francis |
Citation: | google citation- 45 |
Series/Report no.: | Not Available; |
Abstract/Description: | Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Journal |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Journal of Toxicology and Environmental Health Part B |
NAAS Rating: | 12.11 |
Volume No.: | 16(1) |
Page Number: | 52–66 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | DOI: 10.1080/10937404.2013.769420 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/23623 |
Appears in Collections: | NRM-CSSRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.