KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/27910
Title: | Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish |
Other Titles: | Not Available |
Authors: | Neeraj Kumar*, Nitish Kuamr Chandan, GC Wakchaure, NP Singh |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India |
Published/ Complete Date: | 2020-01-01 |
Project Code: | Not Available |
Keywords: | Zinc nanoparticles Lethal concentration Temperature Stress biomarker Fish |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | In the present study, an experiment was carried out to delineate the lethal concentration of (LC50) zinc nanoparticles (Zn-NPs) alone and with concurrent to high temperature (34 °C) in Pangasianodon hypophthalmus. The lethal concentration of Zn-NPs alone and with high temperature was estimated as 21.89 and 19.74 mg/L respectivey in P. hypophthalmus. The lethal concentration was decided with the help of definite concentration via 16, 18, 20, 22, 24, 26, 28 and 30 mg/L. The Zn-NPs were significantly alter the biochemical and histopathology of different fish tissues. The stress biomarkers such as oxidative stress (catalase superoxide dismutase and glutathione- s-transferase, lipid peroxidation) was studied in the liver, gill and kidney tissue, which was noticeable (p < 0.01) enhanced with higher concentration in both condition (Zn-NPs alone and Zn-NPs-T) in dose dependent manners. The carbohydrate (lactate dehydrogenase and malate dehydrogenase) and protein metabolic enzymes (alanine amino transferase and aspartate amino transferase) were also remarkable enhanced (p < 0.01) with higher concentration of Zn-NPs and Zn-NPs-T. The neurotransmitter (acetylcholine esterase) activities were significant inhibited (p < 0.01) with exposure to Zn-NPs and Zn-NPs-T and digestive enzymes such as protease and amylase were non-significant (p > 0.01) with the exposure of Zn-NPs and Zn-NPs-T, further, lipase were significantly reduced (p < 0.01) with exposure to Zn-NPs and temperature exposure group. The histopathological alteration were also observed in the liver and gill tissue. The present investigation suggested that, essential trace elements at higher concentration in acute exposure led to pronounced deleterious alteration on histopathology and cellular and metabolic activities in fish. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Comparative Biochemistry and Physiology C-Toxicology & Pharmacology |
NAAS Rating: | 8.89 |
Volume No.: | 229: 108678. |
Page Number: | Not Available |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/27910 |
Appears in Collections: | NRM-NIASM-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.