KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/32523
Title: | Fertilizer use constraints and management in rainfed areas with special emphasis on nitrogen use efficiency |
Other Titles: | Fertilizer use constraints and management in rainfed areas with special emphasis on nitrogen use efficiency |
Authors: | ICAR_CRIDA |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR_CRIDA |
Published/ Complete Date: | 2007-01-01 |
Project Code: | Not Available |
Keywords: | China,crop production,nitrogen input,nitrogen use efficiency, sustainability |
Publisher: | ICAR_CRIDA |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | : Crop production is threatened by the increased nitrogen (N) input and declining N use efficiency (NUE). Information on total N input from planted seeds/tubers, atmospheric deposition, irrigation water, crop residues, animal manure, biological N fixation, and synthetic N fertilizer and NUE based on these N inputs in China’s crop production is limited. We calculated the amount of various N inputs and NUE based on 117 primary crops from 1961 to 2012 in China. The total N input increased from 8.0 Mt in 1961 to 60.8 Mt in 2012. The substantial shift in the types of N input was observed from animal manure and biological N fixation toward synthetic N fertilizer. Animal manure plus biological N fixation and synthetic N fertilizer accounted for 70.9% and 6.8% of total N input in 1961, respectively, and these values were changed to 15.7% and 74.0% in 2012. Partial factor productivity of applied synthetic N and crop’s recovery efficiency of total N input declined substantially during the study period. These results suggest that it is essential to reduce synthetic N input and increase NUE with improved crop management practices and N-efficient crop varieties to achieve the sustainability of crop production in China. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Book |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Not Available |
Volume No.: | Not Available |
Page Number: | Not Available |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/32523 |
Appears in Collections: | NRM-CRIDA-Publication |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Fertilizer use constraints and management in rainfed areas with special emphasis on nitrogen use efficiency.pdf | 1.74 MB | Adobe PDF | View/Open |
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.