KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/32744
Title: | . Modelling of evapotranspiration using artificial neural network. |
Other Titles: | . Modelling of evapotranspiration using artificial neural network. |
Authors: | ICAR_CRIDA |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR_CRIDA |
Published/ Complete Date: | 2011 |
Project Code: | Not Available |
Keywords: | This study investigates the utility of artificial neural networks ~ANNs! for estimation of daily grass reference crop evapotranspiration ~ETo! and compares the performance of ANNs with the conventional method ~Penman–Monteith! used to estimate ETo. Several issues associated with the use of ANNs are examined, including different learning methods, number of processing elements in the hidden layer~s!, and the number of hidden layers. Three learning methods, namely, the standard back-propagation with learning rates of 0.2 and 0.8, and backpropagation with momentum were considered. The best ANN architecture for estimation of daily ETo was obtained for two different data sets ~Sets 1 and 2! for Davis, Calif. Using data of Set 1, the networks were trained with daily climatic data ~solar radiation, maximum and minimum temperature, maximum and minimum relative humidity, and wind speed! as input and the Penman– Monteith ~PM! estimated ETo as output. The best ANN architecture was selected on the basis of weighted standard error of estimate ~WSEE! and minimal ANN architecture. The ANN architecture of 6-7-1, ~six, seven, and one neuron~s! in the input, hidden, and output layers, respectively! gave the minimum WSEE ~less than 0.3 mm/day! for all learning methods. This value was lower than the WSEE ~0.74 mm/day! between the PM method and lysimeter measured ETo as reported by Jensen et al. in 1990. Similarly, ANNs were trained, validated, and tested using the lysimeter measured ETo and corresponding climatic data ~Set 2!. Again, all learning methods gave less WSEE ~less than 0.60 mm/day! as compared to the PM method ~0.97 mm/day!. Based on these results, it can be concluded that the ANN can predict ETo better than the conventional method ~PM! for Davis. |
Publisher: | Kumar M, Bandyopadhyay A, Raghuwanshi NS |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | This study investigates the utility of artificial neural networks ~ANNs! for estimation of daily grass reference crop evapotranspiration ~ETo! and compares the performance of ANNs with the conventional method ~Penman–Monteith! used to estimate ETo. Several issues associated with the use of ANNs are examined, including different learning methods, number of processing elements in the hidden layer~s!, and the number of hidden layers. Three learning methods, namely, the standard back-propagation with learning rates of 0.2 and 0.8, and backpropagation with momentum were considered. The best ANN architecture for estimation of daily ETo was obtained for two different data sets ~Sets 1 and 2! for Davis, Calif. Using data of Set 1, the networks were trained with daily climatic data ~solar radiation, maximum and minimum temperature, maximum and minimum relative humidity, and wind speed! as input and the Penman– Monteith ~PM! estimated ETo as output. The best ANN architecture was selected on the basis of weighted standard error of estimate ~WSEE! and minimal ANN architecture. The ANN architecture of 6-7-1, ~six, seven, and one neuron~s! in the input, hidden, and output layers, respectively! gave the minimum WSEE ~less than 0.3 mm/day! for all learning methods. This value was lower than the WSEE ~0.74 mm/day! between the PM method and lysimeter measured ETo as reported by Jensen et al. in 1990. Similarly, ANNs were trained, validated, and tested using the lysimeter measured ETo and corresponding climatic data ~Set 2!. Again, all learning methods gave less WSEE ~less than 0.60 mm/day! as compared to the PM method ~0.97 mm/day!. Based on these results, it can be concluded that the ANN can predict ETo better than the conventional method ~PM! for Davis. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Technical Report |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Hydrology Journal |
NAAS Rating: | 8.01 |
Volume No.: | 34 |
Page Number: | 22-32 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/32744 |
Appears in Collections: | NRM-CRIDA-Publication |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
. 08 Modelling of evapotranspiration using artificial neural network..pdf | 120.75 kB | Adobe PDF | View/Open |
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.