KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/33586
Title: | Assessment of plant nitrogen stress in wheat (TriticumaestivumL.) through hyperspectral indices |
Other Titles: | Not Available |
Authors: | RAJEEV RANJAN, USHA KIRAN CHOPRA, RABI N. SAHOO ANIL KUMAR SINGH SANATAN PRADHAN |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Institute of Soil and Water Conservation |
Published/ Complete Date: | 2012-10-20 |
Project Code: | Not Available |
Keywords: | PNA, photochemical reflectance index, plant nitrogen. |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | A field experiment with wheat was conducted with four different nitrogen and four different water stress levels, and hyperspectral reflectances in the 350–2500 nm range were recorded at six crop phenostages for two years (2009–2010 and 2010–2011). Thirty-two hyperspectral indices were determined using the first-year reflectance data. Plant nitrogen (N) status, characterized by leaf nitrogen content (LNC) and plant nitrogen accumulation (PNA), showed the highest R2 with the spectral indices at the booting stage. The best five predictive equations for LNC were based on the green normalized difference vegetation index (GNDVI), normalized difference chlorophyll index (NDCI), normalized difference705 (ND705) index, ratio index-1dB (RI-1dB) and Vogelman index a (VOGa). Their validation using the second-year data showed high R2 (>0.80) and ratio of performance to deviation (RPD; >2.25) and low root mean square error (RMSE; <0.24) and relative error (<10%). For PNA, five predictive equations with simple ratio pigment index (SRPI), photochemical reflectance index (PRI), modified simple ratio705 (mSR705), modified normalized difference705 (mND705) and normalized pigment chlorophyll index (NPCI) as predicting indices yielded the best relations with high R2 >0.80. The corresponding RMSE and RE of these ranged from 1.39 to 1.13 and from 24.5% to 33.3%, respectively. Although the predicted values show good agreement with the observed values, the prediction of LNC is more accurate than PNA, as indicated by higher RMSE and very high RE for the latter. Hence, the plant nitrogen stress of wheat can be accurately assessed through the prediction of LNC based on the five identified reflectance indices at the booting stage. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | International Journal of Remote Sensing |
NAAS Rating: | 8.98 |
Volume No.: | 33(20) |
Page Number: | 6342-6360 |
Name of the Division/Regional Station: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/33586 |
Appears in Collections: | NRM-IISWC-Publication |
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.