KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/33588
Title: | Dry Matter, Nitrogen, Phosphorous, and Potassium Partitioning, Accumulation, and Use Efficiency in Transgenic Cotton-Based Cropping Systems |
Other Titles: | Not Available |
Authors: | RAMAN JEET SINGH I. P. S. AHLAWAT |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Institute of Soil and Water Conservation |
Published/ Complete Date: | 2012-03-14 |
Project Code: | Not Available |
Keywords: | Apparent balance, dry matter, FYM, groundnut, nitrogen, organic carbon, transgenic cotton |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | A better understanding of the fate of nutrients in transgenic cotton (Gossypiumhirsutum L.) fields will improve nutrient efficiencies, will optimize crop growth and development, and may help to enhance soil quality. A study was made to evaluate and quantify the effect of cropping system [sole cotton and groundnut (Arachishypogaea) intercropping with transgenic cotton] and nitrogen (N) management [control (0N), 100% recommended dose of nitrogen (RDN) through urea, substitution of 25% RDN through farmyard manure (FYM), and substitution of 50% RDN through FYM] on dry matter (DM) and nutrient partitioning and accumulation by transgenic cotton and groundnut at New Delhi during 2006–2007. Soil and plant samples were collected and analyzed at 60, 90, and 120 days after sowing and at harvest. Results revealed that intercropping of groundnut with cotton did not significantly affect DM and nutrient partitioning in cotton, but residual soil fertility in terms of potassium permanganate (KMnO4) N showed an improvement in contrast to Olsen’s P and ammonium acetate (NH4OAc)–exchangeable K over sole cotton. At harvest, of total DMassimilated, leaves constituted 10–20%, stem 50%, and reproductive parts of cotton accounted for the rest. For each kilogram of seed cotton produced, the crop assimilated 61 g of N, of which 23 g was partitioned to harvested seed cotton. Substitution of 25% RDN through FYM, being on par with 100% RDN through urea, recorded greater DM, nutrient uptake in different parts of cotton, agronomic N-use efficiency (9.5 kg seed cotton kg N–1), and apparent N recovery (83.3%) over 50% RDN substitution through FYM and control. The control, being on par with 50% RDN substitution through FYM, recorded significantly greater DM and nutrient uptake by intercropped groundnut over other treatments. Apparent N and potassium (K) balance at the end of study was negative in all treatments; however, the actual change in KMnO4 N was positive in all the treatments except control. Our study suggests that intercropping of groundnut with transgenic cotton and substitution of 25% dose of N through FYM is sustainable in tropical countries. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Communications in Soil Science and Plant Analysis |
NAAS Rating: | 6.77 |
Volume No.: | 43 |
Page Number: | 2633-2650 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | 10.1080/00103624.2012.716125 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/33588 |
Appears in Collections: | NRM-IISWC-Publication |
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.