KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/55622
Title: | Influence of temperature and salinity on survival of the freshwater mullet, Rhinomugil corsula (Hamilton) |
Other Titles: | Not Available |
Authors: | Kutty,M N Sukumaran,N Kasim,H M |
ICAR Data Use Licennce: | Not Available |
Author's Affiliated institute: | Not Available |
Published/ Complete Date: | 1980 |
Project Code: | Not Available |
Keywords: | temperature salinity survival freshwater mullet Rhinomugil corsula |
Publisher: | Elsevier |
Citation: | Not Available |
Series/Report no.: | Not Available |
Abstract/Description: | The upper incipient lethal temperatures of the freshwater mullet, Rhinomugil corsula, acclimated to 15, 20, 25, 30 and 35°C in fresh water, were 32.4, 34.1, 36.0, 36.2 and 36.5°C respectively, and the corresponding lower lethal temperatures were 10.5, 11.5, 13.2, 15.8 and 19.5°C. The mullet has a total tolerance (area of thermal polygon) of 569°C with an upper and lower thermal tolerance of 253 and 316°C2. Likewise, the total resistance of the mullet was 391°C2, with upper and lower resistance zones of 181 and 210°C respectively. The upper critical temperatures of swimming inhibition of R. corsula (17.2 cm; acclimation 30°C), determined in a swimming tunnel, were 35.2, 34.6 and 34.2 for water current velocities of 38, 62 and 77 cm s−1 respectively. The corresponding lower critical temperatures were 26.2, 27.5 and 28.1°C. These results indicated the stenothermal nature of the mullet by comparison with other fishes, e.g. Tilapia mossambica. In tests on the influence of ambient salinity on thermal resistance, R. corsula survived longest at 7‰ (iso-osmotic salinity). At salinities above and below this point, survival times were shorter at any lethal temperature. In a tentative scheme for quantification of stress due to temperature and salinity at death (after acclimation to 30°C and tested at 37°C), the hypo-osmotic and hyper-osmotic stress were estimated to be 50 and 31% of the thermal stress (100%) respectively. |
Description: | Not Available |
ISSN: | NULL |
Type(s) of content: | Article |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Aquaculture |
Volume No.: | 20 |
Page Number: | 261-274 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/55622 |
Appears in Collections: | FS-CMFRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.