KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/61463
Title: | Trichoderma‐Azotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton |
Other Titles: | Not Available |
Authors: | Velmourougane K, Prasanna R, Chawla G, Nain L, Kumar A and Saxena AK |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR-NATIONAL BUREAU OF AGRICULTURALLY IMPORTANT MICROORGANISMS KUSHMAUR MAU NATH BHANJAN 275103 |
Published/ Complete Date: | 2019-01-01 |
Project Code: | Not Available |
Keywords: | PEP carboxylase; macro- and micronutrients; microbial biofilms; polysaccharides; rhizosphere. |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Microbial biofilms are gaining importance in agriculture, due to their multifaceted agronomic benefits and resilience to environmental fluctuations. This study focuses on comparing the influence of single inoculation-Azotobacter chroococcum (Az) or Trichoderma viride (Tv) and their biofilm (Tv-Az), on soil and plant metabolic activities in wheat and cotton grown under Phytotron conditions. Tv-Az proved superior to all the other treatments in terms of better colonisation, plant growth attributes and 10-40% enhanced availability of macronutrients and micronutrients in the soil, over control. Confocal and scanning electron microscopy showed that the cells attached to the root tips initially, followed by their proliferation along the surface of the roots. Soil polysaccharides, proteins and dehydrogenase activity showed several fold enhancement in Tv-Az biofilm inoculated samples. Time course studies revealed that the population of Az and Tv in the rhizoplane and rhizosphere was significantly higher with a 0.14-0.31 log colony-forming unit (CFU) increase in the biofilm-inoculated treatment in both crops. Enhancement in soil biological activities was facilitated by the improved colonisation of the biofilm, due to the synergistic association between Tv and Az. This demonstrates the utility of Tv-Az biofilm as a multifunctional plant growth promoting and soil fertility enhancing option in agriculture. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Journal of Basic Microbiology |
NAAS Rating: | 7.91 |
Volume No.: | 59 |
Page Number: | 632- 644 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | 10.1002/jobm.201900009 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/61463 |
Appears in Collections: | CS-NBAIMO-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.