KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/72598
Title: | Fish tyrosinase enzyme involved in melanin biosynthesis: Insights from physicochemical characterization, homology modeling, and virtual screening studies. |
Other Titles: | Not Available |
Authors: | Kumari, R., Jahageerdar, S., Panche, A, Sanath Kumar |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR: Central Institute of Fisheries Education |
Published/ Complete Date: | 2020-01-01 |
Project Code: | Not Available |
Keywords: | Transmembrane region; hydrophobicity; extinction coefficient; expasy; virtual screening |
Publisher: | Taylor & Francis |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | In the vertebrates, including fish, the tyrosinase enzyme plays an essential role in coloration. Modulation of tyrosinase activity is expected to alter the body pigmentation in fish and other vertebrate species. In the present study, physicochemical, functional, and structural properties of tyrosinase of three fish species viz., goldfish, Japanese medaka, and common carp were determined. The homology model was developed using the Chimera1.1.2, Swiss model, and Phyre2, and the best model was selected upon evaluation. Further, a virtual screening method was applied to identify the putative modulators using the PyRx- Virtual screening tool. The estimated physicochemical and functional properties of tyrosinase from the three species suggested that they all are hydrophobic, acidic, thermostable, with a high extinction coefficient (Cys, Trp, and Tyr) and have transmembrane-segment. Based on virtual screening against 13,000 compounds from the zinc database, five compounds were determined as potent modulators of fish tyrosinase with a binding energy of 7.0 to 8.8 Kcal/ mol. Of these, Pilosine (ZINC13469966) was found to be the best putative modulator with low binding energy and properties of standardized drugs. This study showed that the tyrosinase function could be modulated to alter the pigment formation in fish species by using small compound. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Animal Biotechnology |
Journal Type: | International |
NAAS Rating: | 8.28 |
Impact Factor: | 2.282 |
Volume No.: | Not Available |
Page Number: | 1-17 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/72598 |
Appears in Collections: | FS-CIFE-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.