KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/73021
Title: | Heavy metals biosorption mechanism of partially delignified products derived from mango (Mangifera indica) and guava (Psidium guiag) barks. |
Other Titles: | Not Available |
Authors: | Krishnani KK, Choudhary K, Veera BM, Moon DH, Meng X |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR: Central Institute of Fisheries Education |
Published/ Complete Date: | 2021-02-12 |
Project Code: | Not Available |
Keywords: | Bioactives; Bioadsorption; Heavy metals; Mango and guava barks; Mechanism; Partial delignification. |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | This paper evaluates the biosorption of toxic metal ions onto the bioadsorbents derived from mango (Mangifera indica) and guava (Psidium guiag) barks and their metal fixation mechanisms. Maximum metal biosorption capacities of the mango bioadsorbent were found in the following increasing order (mg/g): Hg (16.24) < Cu (22.24) < Cd (25.86) < Pb (60.85). Maximum metal biosorption capacities of guava bioadsorbent follow similar order (mg/g): Hg (21.48) < Cu (30.36) < Cd (32.54) < Pb (70.25), but with slightly higher adsorption capacities. The removal mechanisms of heavy metals using bioadsorbents have been ascertained by studying their surface properties and functional groups using various spectrometric, spectroscopic, and microscopic methods. Whewellite (C2CaO4·H2O) has been identified in bioadsorbents based on the characterization of their surface properties using X-ray techniques (XPS and XRD), facilitating the ion exchange of metal ions with Ca2+ bonded with carboxylate moieties. For both the bioadsorbents, the Pb2+, Cu2+, and Cd2+ are biosorbed completely by ion exchange with Ca2+ (89-94%) and Mg2+ (7-12%), whereas Hg2+ is biosorbed partially (57-66%) by ion exchange with Ca2+ (38-42%) and Mg2+ (19-24%) due to involvement of other cations in the ion exchange processes. Bioadsorbents contain lignin which act as electron donor and reduced Cr(VI) into Cr(III) (29.87 and 37.25 mg/g) in acidic medium. Anionic Cr(VI) was not adsorbed onto bioadsorbents at higher pH due to their electrostatic repulsion with negatively charged carboxylic functional groups. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Environmental Science and Pollution Research |
Journal Type: | International |
NAAS Rating: | 10.22 |
Impact Factor: | 4.22 |
Volume No.: | 28 |
Page Number: | 32891-32904 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/73021 |
Appears in Collections: | FS-CIFE-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.