KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/73098
Title: | Molecular docking and Simulation study to identify antiviral agent by targeting MX protein against Betanodavirus causing viral nervous necrosis in Barramundi. |
Other Titles: | Not Available |
Authors: | 69. Singh R, Prasad KP, Tiwari A, Pathak A, Srivastava PP* |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR: Central Institute of Fisheries Education |
Published/ Complete Date: | 2021-04-13 |
Project Code: | Not Available |
Keywords: | Viral nervous necrosis, Mx protein, Barramundi, Phytochemical, Molecular docking. |
Publisher: | Indian Journals.com |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Among many relevant issues dealing with fish farming, microbial infections are a major problem. There are different viral infections, which are continuously creating problems in fish farming and among these viral infections Betanoda viral infection is a foremost problem. The Betanodavirus is an important, emerging group of viruses known to infect around 40 species worldwide. The major target of this virus is the central nervous system and retina of fishes especially in Barramundi species. Viral Nervous Necrosis (VNN) is now a serious problem for different fish species which is yet to be resolved through strong antiviral compounds. The In-silico screening of potential phytochemicals as a drug molecule with low or no side effects against viral nervous necrosis in barramundi is the major objective of the study. The present study discusses the molecular interaction studies carried out between virtually screened phytochemicals and MX protein of barramundi fish. Findings based on virtual screening, calculation of molecular properties and bioactivity score showed that among 101 compounds, the hypogallic acid, cineole, eugenol, linalool, camphene, oligonol, azulene, caravacrol, pistol and squalene are the active phytochemicals against the selected MX protein. Further intense screening showed that Camphene is the best screened phytochemical with the lowest binding energy in complex with MX protein of Barramundi. Further molecular dynamic simulation study at 100ns (Nano seconds) proved the importance, stability and establishment of camphene as better natural prophylactic and therapeutic approaches to overcome or reduce the problem of viral nervous necrosis in barramundi. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Research Journal of Pharmacy and Technology |
Journal Type: | International |
NAAS Rating: | 7.20 |
Impact Factor: | 1.203 |
Volume No.: | 14 (3) |
Page Number: | 1405-1411 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/73098 |
Appears in Collections: | FS-CIFE-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.