KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/73742
Title: | Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.) |
Other Titles: | Not Available |
Authors: | Samarendra Das Prabina Kumar Meher Anil Rai Lal Mohan Bhar Baidya Nath Mandal |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Indian Agricultural Statistics Research Institute |
Published/ Complete Date: | 2017-01-05 |
Project Code: | Not Available |
Keywords: | informative genes gene expression data microarray datasets Aluminum toxic stress |
Publisher: | Not Available |
Citation: | Das S, Meher PK, Rai A, Bhar LM, Mandal BN (2017) Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.). PLoS ONE 12(1): e0169605. doi:10.1371/journal.pone.0169605 |
Series/Report no.: | Not Available; |
Abstract/Description: | Selection of informative genes is an important problem in gene expression studies. The small sample size and the large number of genes in gene expression data make the selection process complex. Further, the selected informative genes may act as a vital input for gene co-expression network analysis. Moreover, the identification of hub genes and module interactions in gene co-expression networks is yet to be fully explored. This paper presents a statistically sound gene selection technique based on support vector machine algorithm for selecting informative genes from high dimensional gene expression data. Also, an attempt has been made to develop a statistical approach for identification of hub genes in the gene co-expression network. Besides, a differential hub gene analysis approach has also been developed to group the identified hub genes into various groups based on their gene connectivity in a case vs. control study. Based on this proposed approach, an R package, i.e., dhga (https://cran.r-project.org/web/packages/dhga) has been developed. The comparative performance of the proposed gene selection technique as well as hub gene identification approach was evaluated on three different crop microarray datasets. The proposed gene selection technique outperformed most of the existing techniques for selecting robust set of informative genes. Based on the proposed hub gene identification approach, a few number of hub genes were identified as compared to the existing approach, which is in accordance with the principle of scale free property of real networks. In this study, some key genes along with their Arabidopsis orthologs has been reported, which can be used for Aluminum toxic stress response engineering in soybean. The functional analysis of various selected key genes revealed the underlying molecular mechanisms of Aluminum toxic stress response in soybean. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | PLOS One |
NAAS Rating: | 9.24 |
Impact Factor: | 3.24 |
Volume No.: | 12 |
Page Number: | 1 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | https://doi.org/10.1371/journal.pone.0169605 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/73742 |
Appears in Collections: | AEdu-IASRI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.