KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/77373
Title: | Microbial diversity and composition in acidic sediments of freshwater finfish culture ponds fed with two types of feed: a metagenomic approach. |
Other Titles: | Not Available |
Authors: | Not Available |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | Kusunur AB, Velayudhan LK, Vaiyapuri M, Gaurav R, Tripathi G, Prasad KP, Badireddy MR, Joseph TC |
Published/ Complete Date: | 2022-04-20 |
Project Code: | Not Available |
Keywords: | Illumina sequencing; acidic pond sediments; aquaculture; finfish; microbial structure. |
Publisher: | PubMed |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Microbial community profile associated with acidic pond sediments (APS) (pH = 3·0-4·5) of freshwater finfish aquaculture ponds (n = 8) was investigated. Sediment DNA extracted from the eight APS were subjected to high-throughput sequencing of V3 and V4 regions which yielded 7236 operational taxonomic units (OTUs) at a similarity of 97%. Overall results showed higher proportion of bacterial OTUs than archaeal OTUs in all the APS. Euryarchaeota (23%), Proteobacteria (19%), Chloroflexi (17%), Crenarchaeota (5·3%), Bacteroidetes (4·8%), Nitrospirae (3·2%), Nanoarchaeaeota (3%) which together constituted 75% of the microbial diversity. At the genus level, there was high preponderance of methanogens namely Methanolinea (5·4%), Methanosaeta (4·5%) and methanotrops, Bathyarchaeota (5%) in APS. Moreover, the abundant phyla in the APS were not drastically affected by the administration of chicken slaughter waste (R-group ponds) and commercial fish feed (C-group ponds), since 67% of the OTUs generated remained common in the APS of both the groups of ponds. There was a minimal difference of 24-26% of OTUs between C-group and R-group ponds, suggesting the existence of a core microbial community in these ponds driven by acidic pH over the years. This study concludes that microbial diversity in pond sediment was influenced to a lesser extent by the addition of chicken slaughter waste but was majorly driven by acidic nature of the pond. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Journal |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Letters in Applied Microbiology |
NAAS Rating: | 8.86 |
Impact Factor: | 2.858 |
Volume No.: | 75(1) |
Page Number: | 171-181 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/77373 |
Appears in Collections: | FS-CIFE-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.