KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/77416
Title: | Dietary arginine attenuates hypoxia-induced HIF expression, metabolic responses and oxidative stress in Indian Major Carp, Cirrhinus mrigala. |
Other Titles: | Not Available |
Authors: | Not Available |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | Varghese T*, Dasgupta S, Anand G, Kumar VR, Sahu NP, Pal AK, Puthiyottil M |
Published/ Complete Date: | 2022-01-10 |
Project Code: | Not Available |
Keywords: | Mrigal HIF 1α Lipid peroxidation Antioxidant enzymes Erythrocyte fragility RBC count |
Publisher: | Elsevier |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Hypoxia is a common stressor in aquaculture systems, which causes severe physiological disturbances, ultimately leading to mortality or reduced productivity. Arginine, as a precursor of NO, has a role in enhancing oxygen delivery. Thus, an experiment was conducted to evaluate the effect of dietary arginine (Arg) in Cirrhinus mrigala exposed to hypoxia. The fish were fed with different levels of arginine for 60 days and exposed for 72 h to a sublethal level of hypoxia (0.50 ± 0.16 mg/L dissolved oxygen [DO]). The six treatment groups with three replicates were N0 (0% Arg + Normoxia), H0 (0% Arg + Hypoxia), N0.7 (0.70% Arg + Normoxia), H0.7 (0.70% Arg + Hypoxia), N1.4 (1.40% Arg + Normoxia), H1.4 (1.40% Arg + Hypoxia). Eighteen experimental units with twelve animals (5.8 ± 0.18 g) each were used for the trial.The results indicated that supplementation of arginine at 0.7 and 1.4% enhanced the hypoxia tolerance time, although the high dose (1.4%) did not yield any further increments. The exposure to hypoxia up-regulated Hypoxia Inducible Factor (HIF)-1α mRNA expression and supplementation of arginine significantly decreased hypoxia induced up-regulation of HIF at 1.4%. Arginine supplementation partially or completely normalised the hypoxia induced changes in the metabolic enzymes of C. mrigala. The fish exposed to hypoxic conditions exhibited significantly higher (P < 0.05) lipid peroxidation levels than those maintained under normoxic conditions, while arginine feeding significant in reducing lipid peroxidation. Antioxidant enzyme activities were significantly higher (P < 0.05) in hypoxia-exposed carp, indicating increased oxidative stress during the hypoxic exposure, that was improved in Arg-supplemented groups. However, arginine did not modulate erythrocyte countsalthough itreduced the erythrocyte fragility. We conclude arginine supplementation is effective in ameliorating hypoxia induced metabolic alterations and improving antioxidant defences in fish. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Journal |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology |
NAAS Rating: | 8.32 |
Impact Factor: | 2.32 |
Volume No.: | 259 |
Page Number: | 110714 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | Not Available |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/77416 |
Appears in Collections: | FS-CIFE-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.