Record Details

Synthesis, spectral characterization, and structural studies of 2-aminobenzoate complexes of divalent alkaline earth metal ions: X-ray crystal structures of [Ca(2-aba)(2)(OH2)(3)](infinity), [{Sr(2-aba)(2)(OH2)(2)}center dot H2O]infinity, and [Ba(2-aba)(2)(OH2)](infinity) (2-abaH=2-NH2C6H4COOH)

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Synthesis, spectral characterization, and structural studies of 2-aminobenzoate complexes of divalent alkaline earth metal ions: X-ray crystal structures of [Ca(2-aba)(2)(OH2)(3)](infinity), [{Sr(2-aba)(2)(OH2)(2)}center dot H2O]infinity, and [Ba(2-aba)(2)(OH2)](infinity) (2-abaH=2-NH2C6H4COOH)
 
Creator MURUGAVEL, R
KARAMBELKAR, VV
ANANTHARAMAN, G
WALAWALKAR, MG
 
Subject molecular-structure
glutamic-acid
amino-acids
magnesium
salicylate
strontium
chemistry
calcium
binding
 
Description Reactions of alkaline earth metal chlorides with 2-aminobenzoic acid (2-abaH) have been investigated. The treatment of MCl2. nH(2)O (M = Mg, Ca, Sr or Ba) with 2-abaH in a 1:2 ratio in a MeOH/H2O/NH3 mixture leads to the formation of anthranilate complexes [Mg(2-aba)(2)] (1), [Ca(2-aba)(2)(OH2)(3)](infinity) (2), [{Sr(2-aba)(2)(OH2)(2)}. H2O)](infinity) (3), and [Ba(2-aba)(2)(OH2)](infinity) (4), respectively. Alternatively, these products can also be obtained starting from the corresponding metal acetates. Anthranilate complexes 1-4 have been characterized with die aid of elemental analysis, pH measurements, thermal analysis, and infrared, ultraviolet, and NMR (H-1 and C-13) spectroscopic studies. All the products are found to be thermally very stable and do not melt on heating to 250 degrees C. Thermal studies of complexes 2-4, however, indicate the loss of coordinated and lattice water molecules below 200 degrees C. In the case of the magnesium complex, the analytical and thermogravimetric studies indicate the absence of any coordinated or uncoordinated water molecules. Further, the solid-state structures of metal anthranilates 2-4 have been established by single-crystal X-ray diffraction studies. While the calcium ions in 2 are heptacoordinated, the strontium and barium ions in 3 and 4 reveal a coordination number of 9 apart from an additional weak metal-metal interaction along the polymeric chains. The carboxylate groups show different chelating and bridging modes of coordination behavior in the three complexes. Interestingly, apart from the carboxylate functionality, the amino group also binds to the metal centers in the case of strontium and barium complexes 3 and 4. However, the coordination sphere of 2 contains only O donors. All three compounds form polymeric networks in the solid state with the aid of different coordinating capabilities of the carboxylate anions and O-H ... O and N-H ... O hydrogen bonding interactions.
 
Publisher AMER CHEMICAL SOC
 
Date 2011-07-15T00:38:52Z
2011-12-26T12:49:08Z
2011-12-27T05:34:54Z
2011-07-15T00:38:52Z
2011-12-26T12:49:08Z
2011-12-27T05:34:54Z
2000
 
Type Article
 
Identifier INORGANIC CHEMISTRY, 39(7), 1381-1390
0020-1669
http://dx.doi.org/10.1021/ic990895k
http://dspace.library.iitb.ac.in/xmlui/handle/10054/4107
http://hdl.handle.net/10054/4107
 
Language en