Record Details

Modeling GCM and scenario uncertainty using a possibilistic approach: Application to the Mahanadi River, India

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Modeling GCM and scenario uncertainty using a possibilistic approach: Application to the Mahanadi River, India
 
Creator MUJUMDAR, PP
GHOSH, S
 
Subject relevance vector machine
climate-change scenarios
flood protection system
basin
sensitivity
precipitation
probabilities
patterns
impacts
 
Description Climate change impact assessment on water resources with downscaled General Circulation Model (GCM) simulation output is characterized by uncertainty due to incomplete knowledge about the underlying geophysical processes of global change ( GCM uncertainties) and due to uncertain future scenarios ( scenario uncertainties). Disagreement between different GCMs and scenarios in regional climate change impact studies indicates that overreliance on a single GCM with a scenario could lead to inappropriate planning and adaptation responses. This paper focuses on modeling GCM and scenario uncertainty using possibility theory in projecting streamflow of Mahanadi river, at Hirakud, India. A downscaling method based on fuzzy clustering and Relevance Vector Machine ( RVM) is applied to project monsoon streamflow from three GCMs with two green house emission scenarios. Possibilities are assigned to all the GCMs with scenarios based on their performance in modeling the streamflow of the recent past ( 1991 - 2005), when there are signals of climate forcing. The possibilities associated with different GCMs and scenarios are used as weights in computing the possibilistic mean of the CDFs projected for three standard time slices 2020s, 2050s, and 2080s. The result shows that the value of streamflow at which the CDF reaches 1 reduces with time, which shows the reduction in probability of occurrence of extreme high flow events in future. Historic record of monsoon streamflow of Mahanadi river also shows similar decreasing trend, which may be due to the effect of high surface warming. Reduction in Mahandai streamflow is likely to pose a major challenge for water resources engineers in meeting water demands in future.
 
Publisher AMER GEOPHYSICAL UNION
 
Date 2011-07-15T06:27:16Z
2011-12-26T12:49:17Z
2011-12-27T05:35:09Z
2011-07-15T06:27:16Z
2011-12-26T12:49:17Z
2011-12-27T05:35:09Z
2008
 
Type Article
 
Identifier WATER RESOURCES RESEARCH, 44(6), -
0043-1397
http://dx.doi.org/10.1029/2007WR006137
http://dspace.library.iitb.ac.in/xmlui/handle/10054/4176
http://hdl.handle.net/10054/4176
 
Language en