Record Details

Comparison of S=0 and S=1/2 impurities in the Haldane chain compound Y2BaNiO5

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Comparison of S=0 and S=1/2 impurities in the Haldane chain compound Y2BaNiO5
 
Creator DAS, J
MAHAJAN, AV
BOBROFF, J
ALLOUL, H
ALET, F
SORENSEN, ES
 
Subject monte-carlo
heisenberg chain
y-89 nmr
staggered magnetization
system y2banio5
susceptibility
excitations
gap
antiferromagnets
temperature
 
Description We present the effect of Zn (S=0) and Cu (S=1/2) substitution at the Ni site of S=1 Haldane chain compound Y2BaNiO5. Y-89 nuclear-magnetic resonance (NMR) allows us to measure the local magnetic susceptibility at different distances from the defects. The Y-89 NMR spectrum consists of one central peak and several less intense satellite peaks. The central peak represents the chain sites far from the defect. Its shift measures the uniform susceptibility, which displays a Haldane gap Deltaapproximate to100 K and it corresponds to an antiferromagnetic (AF) coupling Japproximate to260 K between the nearest neighbor Ni spins. Zn or Cu substitution does not affect the Haldane gap. The satellites, which are evenly distributed on the two sides of the central peak, probe the antiferromagnetic staggered magnetization near the substituted site. The spatial variation of the induced magnetization is found to decay exponentially from the impurity for both Zn and Cu for T>50 K. Its extension is found identical for both impurities and corresponds accurately to the correlation length xi(T) determined by Monte Carlo simulations for the pure compound. In the case of nonmagnetic Zn, the temperature dependence of the induced magnetization is consistent with a Curie law with an "effective" spin S=0.4 on each side of Zn. This staggered effect is quantitatively well accounted for in all the explored range by quantum Monte Carlo (QMC) computations of the spinless-defect-induced magnetism. In the case of magnetic Cu, the similarity of the induced magnetism to the Zn case implies a weak coupling of the Cu spin to the nearest-neighbor Ni spins. The slight reduction of about 20-30 % of the induced polarization with respect to Zn is reproduced by QMC computations by considering an antiferromagnetic coupling of strength J(')=0.1J-0.2J between the S=1/2 Cu spin and nearest-neighbor Ni spin. Macroscopic susceptibility measurements confirm these results as they display a clear Curie contribution due to the impurities nearly proportional to their concentration. This contribution is indeed close to that of two spin half for Zn substitution. The Curie contribution is smaller in the Cu case, which confirms that the coupling between Cu and near-neighbor Ni is antiferromagnetic.
 
Publisher AMERICAN PHYSICAL SOC
 
Date 2011-07-17T12:15:45Z
2011-12-26T12:50:17Z
2011-12-27T05:36:30Z
2011-07-17T12:15:45Z
2011-12-26T12:50:17Z
2011-12-27T05:36:30Z
2004
 
Type Article
 
Identifier PHYSICAL REVIEW B, 69(14), -
1098-0121
http://dx.doi.org/10.1103/PhysRevB.69.144404
http://dspace.library.iitb.ac.in/xmlui/handle/10054/4724
http://hdl.handle.net/10054/4724
 
Language en