Record Details

Identification of heat treatments for better formability in an aluminum-lithium alloy sheet

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Identification of heat treatments for better formability in an aluminum-lithium alloy sheet
 
Creator BAIRWA, ML
DESAI, SG
DATE, PP
 
Subject car
aluminum-lithium alloys
formability
heat treatments
tensile properties
 
Description Research in the weight of an automobile is a continuous process among auto manufacturers. The "body in white" (BIW, i.e., the body of the car) deserves attention, being a major contributor to the weight of the vehicle. By virtue of a high strength to weight ratio (density smaller than aluminum) and a higher Young's modulus than aluminum, aluminum-lithium alloy sheet appears to hold promise as an autobody material. Because auto components are required in large numbers and are formed at room temperature, formability under these conditions becomes significant. Aluminum-lithium alloys acquire, because of aging over a short period of time, a good amount of strength and hence dent resistance. In principle, they can be given, through suitable heat treatments, a high formability as well as dent resistance, i.e., an ideal combination of properties. To this end, tensile properties have been determined for a number of heat treatments comprising three different solutionizing temperatures and for three aging times at each of the three aging temperatures. Considerable influence of heat treatment was observed on the mechanical properties (which in turn characterize both formability and dent resistance), such as the strain hardening exponent, average normal anisotropy, yield stress, ultimate tensile stress, and percentage elongation to failure. For each property, the best three heat treatments leading to a high formability were identified. Consequently, heat treatments that imparted the greatest formability for processes such as deep drawing and stretch forming have been identified. The investigations show that the best heat treatment for one property may not be the best for another property, calling for a compromise to obtain the most practicable heat treatment schedule. Results shed light on not only the biaxial formability but also springback behavior that is important in the BIW components. Further, the properties obtained from the heat treatment giving good formability in deep drawing were used to simulate car body fender and the S-rail using sheet metal forming simulation software PAMSTAMP2G. A comparison of simulation of aluminum-lithium alloy fender and S-rail with those made from steel demonstrates advantages using aluminum-lithium alloys in terms of weight reduction. Finally, based on the current oil prices and the projected demand for oil in the next decade, aluminum-lithium alloys seem to have an edge despite the difficulties in manufacturing, assembly, and joining of the aluminum-lithium components.
 
Publisher ASM INTERNATIONAL
 
Date 2011-07-18T15:51:08Z
2011-12-26T12:50:42Z
2011-12-27T05:36:42Z
2011-07-18T15:51:08Z
2011-12-26T12:50:42Z
2011-12-27T05:36:42Z
2005
 
Type Article
 
Identifier JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 14(5), 623-633
1059-9495
http://dx.doi.org/10.1361/105994905X64503
http://dspace.library.iitb.ac.in/xmlui/handle/10054/4973
http://hdl.handle.net/10054/4973
 
Language en