Record Details

Reactively compatibilised polyamide6/ethylene-co-vinyl acetate blends: mechanical properties and morphology

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Reactively compatibilised polyamide6/ethylene-co-vinyl acetate blends: mechanical properties and morphology
 
Creator BHATTACHARYYA, AR
GHOSH, AK
MISRA, A
EICHHORN, KJ
 
Subject toughened nylon-6 blends
matrix molecular-weight
a/(b/c) polymer blends
ethylene-propylene rubber
maleic-anhydride
phase morphology
glycidyl methacrylate
block-copolymers
impact behavior
polyethylene
reactive compatibilisation
mechanical properties
morphology
 
Description Mechanical properties and morphological studies of compatibilised blends of PA6/EVA-g-MA and PA6/EVA/EVA-g-MA were studied as functions of maleic anhydride content (MA) and dispersed phase (EVA-g-MA) concentrations, respectively at blending composition of 20 wt% dispersed phase (EVA-g-MA or combination of EVA and EVA-g-MA). The maleic anhydride (MA) was varied from I to 6 wt% in the PA6/EVA-g-MA blend, whereas MA concentration was fixed at 2 wt% in the ternary compositions with varying level of EVA-g-MA. ATR-IR spectroscopy revealed the formation of in situ copolymer during reactive compatibilisation of PA6 and EVA-g-MA. It was found that notched Izod impact strength of PA6/EVA-g-MA blends increased significantly with MA content in EVA-g-MA. The brittle to tough transition temperature of reactively compatibilised blends was found to be at 23 degreesC. The impact fractured surface topology reveals extensive deformation in presence of EVA-g-MA whereas; uncompatibilised PA6/EVA blend shows dislodging of EVA domains from the matrix. Tensile strength of the PA6/EVA-g-MA blends increased significantly as compared to PA6/EVA blends. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase and the matrix. It is observed from the phase morphological analysis that the average domain size of the PA6/EVA.-g-MA blends is found to decrease gradually with increase in MA content of EVA-gMA. A similar decrease is also found to observe in PA6/EVA/EVA-g-MA blends with increase in EVA-g-MA content, which suggest the coalescence process is slower in presence of EVA-g-MA. An attempt has been made to correlate between impact strength and morphological parameters with regard to the compatibilised system over the uncompatibilised system. (C) 2004
 
Publisher ELSEVIER SCI LTD
 
Date 2011-07-22T11:33:03Z
2011-12-26T12:52:24Z
2011-12-27T05:37:07Z
2011-07-22T11:33:03Z
2011-12-26T12:52:24Z
2011-12-27T05:37:07Z
2005
 
Type Article
 
Identifier POLYMER, 46(5), 1661-1674
0032-3861
http://dx.doi.org/10.1016/j.polymer.2004.12.012
http://dspace.library.iitb.ac.in/xmlui/handle/10054/6210
http://hdl.handle.net/10054/6210
 
Language en